首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, a two-dimensional five-layer primitive equation (P. E.) model is used for numerical experiment with regard to the monsoon circulation influenced by the atmospheric heat sources and their medium-range oscillation. It is concluded that both the single heating source and the double heating centers can excite a monsoon circulation or a Walker circulation, that the change of vertical heating profile can influence the thickness of the monsoon cell, that the cooling sources over the Arabian Peninsula and the Mid-Pacific play an important role in forming a monsoon circulation, that the heating sources over the Bay of Bengal and the South China Sea and its medium-range oscillation are the main mechanism forming the monsoon circulation, and that a strengthened source might intensify a monsoon circulation while reducing its extent, conversely, the results would be opposite, so the effects of the two heat centers interact with each other.  相似文献   

2.
The seasonal variabilities of a latent-heat flux (LHF), a sensible-heat flux (SHF) and net surface heat flux are examined in the northern South China Sea (NSCS), including their spatial characteristics, using the in situ data collected by ship from 2006 to 2007. The spatial distribution of LHF in the NSCS is mostly controlled by wind in summer and autumn owing to the lower vertical gradient of air humidity, but is influenced by both wind and near-surface air humidity vertical gradient in spring and winter. The largest area-averaged LHF is in autumn, with the value of 197.25 W/m 2 , followed by that in winter; the third and the forth are in summer and spring, respectively. The net heat flux is positive in spring and summer, so the NSCS absorbs heat; and the solar shortwave radiation plays the most important role in the surface heat budget. In autumn and winter, the net heat flux is negative in most of the observation region, so the NSCS loses heat; and the LHF plays the most important role in the surface heat budget. The net heating is mainly a result of the offsetting between heating due to the shortwave radiation and cooling due to the LHF and the upward (outgoing) long wave radiation, since the role of SHF is negligible. The ratio of the magnitudes of the three terms (shortwave radiation to LHF to long-wave radiation) averaged over the entire year is roughly 3:2:1, and the role of SHF is the smallest.  相似文献   

3.
琼东南盆地深水区构造热演化特征及其影响因素分析   总被引:5,自引:1,他引:4  
To reveal the tectonic thermal evolution and influence factors on the present heat flow distribution, based on 154 heat flow data, the present heat flow distribution features of the main tectonic units are first analyzed in detail, then the tectonic thermal evolution histories of 20 profiles are reestablished crossing the main deep-water sags with a structural, thermal and sedimentary coupled numerical model. On the basis of the present geothermal features, the Qiongdongnan Basin could be divided into three regions: the northern shelf and upper slope region with a heat flow of 50–70 m W/m2, most of the central depression zone of 70–85 m W/m2, and a NE trending high heat flow zone of 85–105 m W/m2 lying in the eastern basin. Numerical modeling shows that during the syn-rift phase, the heat flow increases generally with time, and is higher in basement high area than in its adjacent sags. At the end of the syn-rift phase, the heat flow in the deepwater sags was in a range of 60–85 m W/m2, while in the basement high area, it was in a range of 75–100 m W/m2. During the post-rift phase, the heat flow decreased gradually, and tended to be more uniform in the basement highs and sags. However, an extensive magmatism, which equivalently happened at around 5 Ma, has greatly increased the heat flow values, and the relict heat still contributes about 10–25 m W/m2 to the present surface heat flow in the central depression zone and the southern uplift zone. Further analyses suggested that the present high heat flow in the deep-water Qiongdongnan Basin is a combined result of the thermal anomaly in the upper mantle, highly thinning of the lithosphere, and the recent extensive magmatism. Other secondary factors might have affected the heat flow distribution features in some local regions. These factors include basement and seafloor topography, sediment heat generation, thermal blanketing, local magmatic injecting and hydrothermal activities related to faulting and overpressure.  相似文献   

4.
The impact of Stokes drift on the mixed layer temperature variation was estimated by taking into account an advective heat transport term induced by the Stokes drift in the equation of mixed layer temperature and using the oceanic and wave parameters from a global ocean circulation model (HYCOM) and a wave model (Wave Watch III). The dimensional analysis and quantitative estimation method were conducted to assess the importance of the effect induced by the Stokes drift and to analyze its spatial distribution and seasonal variation characteristics. Results show that the contribution of the Stokes drift to the mixed layer temperature variation at mid-to-high latitudes is comparable with that of the mean current, and a substantial part of mixed layer temperature change is induced by taking the Stokes drift effect into account. Although the advection heat transport induced by the Stokes drift is not the leading term for the mixed layer temperature equation, it cannot be neglected and even becomes critical in some regions for the simulation of the upperocean temperature.  相似文献   

5.
With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be obeerved. It is the reason why SSTs can keep stableover the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal aftermonsoon onset.  相似文献   

6.
北部湾的环流和水团对季节性强迫的响应   总被引:1,自引:1,他引:0  
In the past 20 a, the gulf-scale circulation in the Beibu Gulf has been commonly accepted to be driven by a wind stress or density gradient. However, using three sensitive experiments based on a three-dimensional baroclinic model that was verified by observations, the formation mechanisms were revealed: the circula- tion in the northern Beibu Gulf was triggered by the monsoon wind throughout a year; whereas the southern gulf circulation was driven by the monsoon wind and South China Sea (SCS) circulation in winter and sum- mer, respectively. The force of heat flux and tidal harmonics had a strong effect on the circulation strength and range, as well as the local circulation structures, but these factors did not influence the major circulation structure in the Beibu Gulf. On the other hand, the Beibu Gulf Cold Water Mass (BGCWM) would disappear without the force of heat flux because the seasonal thermocline layer was generated by the input of heat so that the vertical mixing between the upper hot water and lower cold water was blocked. In addition, the wind-induced cyclonic gyre in the northern gulf was favorable to the existence of the BGCWM. However, the coverage area of the BGCWM was increased slightly without the force of the tidal harmonics. When the model was driven by the monthly averaged surface forcing, the circulation structure was changed to some extent, and the coverage area of the BGCWM almost extended outwards 100%, implying the circulation and water mass in the Beibu Gulf had strong responses to the temporal resolution of the surface forces.  相似文献   

7.
加拿大海盆深层双扩散对流的观测分析   总被引:1,自引:0,他引:1  
The Canada Basin(CB) is the largest sub-basin in the Arctic, with the deepest abyssal plain of 3 850 m. The double-diffusive process is the possible passage through which the geothermal energy affects the above isolated deep waters. With the temperature-salinity-pressure observations in 2003, 500-m-thick transition layers and lower1 000-m-thick bottom homogenous layers were found below 2 400 m in the central deep CB. Staircases with downward-increasing temperature and salinity are prominent in the transition layers, suggesting the doublediffusive convection in deep CB. The interface of the stairs is about 10 m thick with 0.001–0.002°C temperature difference, while the thicknesses of the homogenous layers in the steps decrease upward from about 60 to 20 m.The density ratio in the deep central CB is generally smaller than 2, indicating stronger double-diffusive convection than that in the upper ocean of 200–400 m. The heat flux through the deepest staircases in the deep CB varies between 0.014 and 0.031 W/m2, which is one-two orders smaller than the upper double-diffusive heat flux,but comparable to the estimates of geothermal heat flux.  相似文献   

8.
The seasonal variation of mixing layer depth(MLD) in the ocean is determined by a wind stress and a buoyance flux.A South China Sea(SCS) ocean data assimilation system is used to analyze the seasonal cycle of its MLD.It is found that the variability of MLD in the SCS is shallow in summer and deep in winter,as is the case in general.Owing to local atmosphere forcing and ocean dynamics,the seasonal variability shows a regional characteristic in the SCS.In the northern SCS,the MLD is shallow in summer and deep in winter,affected coherently by the wind stress and the buoyance flux.The variation of MLD in the west is close to that in the central SCS,influenced by the advection of strong western boundary currents.The eastern SCS presents an annual cycle,which is deep in summer and shallow in winter,primarily impacted by a heat flux on the air-sea interface.So regional characteristic needs to be cared in the analysis about the MLD of SCS.  相似文献   

9.
Diapycnal mixing is important in oceanic circulation. An inverse method in which a semi-explicit scheme is applied to discretize the one-dimensional temperature diffusion equation is established to estimate the vertical temperature diffusion coefficient based on the observed temperature profiles. The sensitivity of the inverse model in the idealized and actual conditions is tested in detail. It can be found that this inverse model has high feasibility under multiple situations ensuring the stability of the inverse model, and can be considered as an efficient way to estimate the temperature diffusion coefficient in the weak current regions of the ocean. Here, the hydrographic profiles from Argo floats are used to estimate the temporal and spatial distribution of the vertical mixing in the north central Pacific based on this inverse method. It is further found that the vertical mixing in the upper ocean displays a distinct seasonal variation with the amplitude decreasing with depth, and the vertical mixing over rough topography is stronger than that over smooth topography It is suggested that the high-resolution profiles from Argo floats and a more reasonable design of the inverse scheme will serve to understand mixing processes.  相似文献   

10.
Zonal overturning circulation(ZOC) and its associated zonal heat flux(ZHF) are important components of the oceanic circulation and climate system, although these conceptions have not received adequate attentions.Heaving induced by inter-annual and decadal wind stress perturbations can give rise to anomalous ZOC and ZHF.Based on a simple reduced gravity model, the anomalous ZOC and ZHF induced by idealized heaving modes in the world oceans are studied. For example, in a Pacific-like model basin intensified equatorial easterly on decadal time scales can lead to a negative ZOC with a non-negligible magnitude(–0.3×106 m3/s) and a considerable westward ZHF with an amplitude of –11.2 TW. Thus, anomalous ZOC and ZHF may consist of a major part of climate signals on decadal time scales and thus play an important role in the oceanic circulation and climate change.  相似文献   

11.
Development of a thermal bar in a laboratory flume with an inclined bottom (3.7°–12°) under the conditions of cooling/heating of the water with a temperature close to that of the maximal density is studied. The structure of the temperature field and currents during different stages of the circulation is examined: (i) formation of an along-slope gravity current, (ii) generation of a subsurface jet, and (iii) transformation of one type of the circulation into another at passing the temperature of the maximum density. The “fall” and “spring” types of the thermal bar are shown to be dynamically equivalent: the transport of the near-shore waters to the deepwater part, which is driven by the buoyancy flux rather than by the heat flux across the surface, transforms stage (i) into stage (ii), while the opposite (on-shore) flow is generated in the intermediate layers. A comparison of the results with the field and laboratory data published allows us to suggest that the propagation of the thermal bar front in the “fast” stage can be considered as the development of a convective jet with its velocity Uh 3/4, which is proportional to the growing thickness of the upper layer h affected by the heating/cooling processes  相似文献   

12.
A model for the density Q of vertical mass flux of sand (dust) in the convective atmospheric boundary layer as a function of the number density N of convective elements (including vortices), friction velocity u *, and vertical (turbulent) buoyancy flux B is proposed. It is shown that the flux Q is proportional to the product of the square root of B and the sixth power of u *. This finding is consistent with empirical dependences Q(u *) reported in the literature. We discuss two methods for experimentally determining density N when the lifting of dust occurs, mainly due to (terrestrial and Martian) dust devils.  相似文献   

13.
Particulate organic carbon (POC) is vertically transported to the oceanic interior by aggregates and their ballasts, mainly CaCO3 and biogenic opal, with a smaller role for lithogenic aerosols through the mesopelagic zone. Diel migrating zooplankton communities effect vertical transport and remineralization of POC in the upper layers of the ocean. Below 1.5 km, the presence of zooplankton is reduced and thus the aggregates travel mainly by gravitational transport. We normalized the fluxes of POC, CaCO3, and biogenic opal from data published on samples collected at 134 globally distributed, bottom-tethered, time-series sediment trap (TS-trap) stations to annual mole fluxes at the mesopelagic/bathypelagic boundary (m/b) at 2 km and defined them as Fm/bCorg, Fm/bCinorg, and Fm/bSibio. Using this global data set, we investigated (1) the geographic contrasts of POC export at m/b and (2) the supply rate of ∑CO2 to the world mesopelagic water column. Fm/bCorg varies from 25 (Pacific Warm Pool) to 605 (divergent Arabian Sea) mmolC m−2 yr−1; Fm/bCinorg varies from >8 (high latitude Polar Oceans) or 15 (Pacific Warm Pool) to 459 (divergent Arabian Sea) mmolC m−2 yr−1; and Fm/bSibio, the most spatially/temporally variable flux, ranges from 6 (North Atlantic Drift) to 1118 (Pacific Subarctic Gyre) mmolSi m−2 yr−1. The oceanic region exhibiting the highest POC flux over a significantly large region is the area of the North Pacific Boreal Gyres where the average Fm/bCorg = 213, Fm/bCinorg = 126, and Fm/bSibio = 578 mmol m−2 yr−1. Fm/bCorg and Fm/bCinorg are particularly high in large upwelling margins, including the divergent Arabian Sea and off Cape Verde. One of the data sets showing the lowest flux over a significant region/basin is Fm/bCorg = 39, Fm/bCinorg = 69, and Fm/bSibio = 22 mmol m−2 yr−1 in the North Pacific subtropical/tropical gyres; Pan-Atlantic average fluxes are similar except Fm/bSibio fluxes are even lower. Where Corg/Cinorg and Sibio/Cinorg are <1 defines the “Carbonate Ocean”, and where these ratios are ?1 defines the “Silica Ocean”. The Carbonate Ocean occupies about 80% of the present world pelagic ocean between the two major oceanographic fronts, the North Pacific Polar Front and the Antarctic Polar Front, and the Silica Ocean is found on the polar sides of these fronts. The total global annual fluxes of Fm/bCorg, Fm/bCinorg, and Fm/bSibio at m/b calculated by parameterizations of the export flux data from 134 stations are surprisingly similar; 36.2, 33.8, and 34.6 teramol yr−1 (120, 112, and 114 mmol m−2 yr−1), respectively, resulting in a near uniform binary ratio between the above three elements of about one. The global ternary % ratios estimated from 152 TS-trap samples of the three elements are 35:32:33. From our global Fm/bCorg and a published model estimate of the global export production, we estimate the regeneration rate of CO2 through the mesopelagic zone by the biological pump is 441 teramolC yr−1. Based on our global Fm/bCinorg and recently estimated global primary production of PIC, 36-86 teramolC yr−1 of PIC is assumed to be dissolved within the upper 2 km of the water column.  相似文献   

14.
《Ocean Modelling》2008,20(1):1-16
Argo is a global array of profiling floats that provides temperature (T) and salinity (S) profiles from 2000 m to the surface every ten days with a nominal spatial resolution of 3°. Here we present idealized experiments where the adjoint method is used to synthesize simulated sets of Argo profiles with a general circulation model, over a one-year period, in the North Atlantic. Using a number of drifting profilers consistent with Argo deployment objectives, the simulated array permits one to identify large-scale anomalies in the hydrography and circulation, despite the presence of a simulated eddy noise of large amplitude. Model dynamics provide an objective means to distinguish eddy noise from large-scale oceanic variability, and to infer the absolute velocity field (including abyssal velocities and sea surface height) from sets of Argo profiles of T and S. In particular, our idealized experiments suggest that volume and heat transports can be efficiently constrained by sets of Argo profiles. Increasing the number of Argo floats seems to be an adequate strategy to further reduce errors in circulation estimates.  相似文献   

15.
2012年夏季海南岛东岸上升流区的混合观测   总被引:1,自引:0,他引:1  
The turbulent mixing in the upwelling region east of Hainan Island in the South China Sea is analyzed based on in situ microstructure observations made in July 2012. During the observation, strong upwelling appears in the coastal waters, which are 3℃ cooler than the offshore waters and have a salinity 1.0 greater than that of the offshore waters. The magnitude of the dissipation rate of turbulent kinetic energy ε in the upwelling region is O(10–9 W/kg), which is comparable to the general oceanic dissipation. The inferred eddy diffusivity K_ρ is O(10–6 m~2/s), which is one order of magnitude lower than that in the open ocean. The values are elevated to K_ρ≈O(10–4 m~2/s) near the boundaries. Weak mixing in the upwelling region is consistent with weak instability as a result of moderate shears versus strong stratifications by the joint influence of surface heating and upwelling of cold water.The validity of two fine-scale structure mixing parameterization models are tested by comparison with the observed dissipation rates. The results indicate that the model developed by Mac Kinnon and Gregg in 2003 provides relatively better estimates with magnitudes close to the observations. Mixing parameterization models need to be further improved in the coastal upwelling region.  相似文献   

16.
The role of extreme surface turbulent fluxes in total oceanic heat loss in the North Atlantic is studied. The atmospheric circulation patterns enhancing ocean–atmosphere heat flux in regions with significant contributions of the extreme heat fluxes (up to 60% of the net heat loss) are analyzed. It is shown that extreme heat fluxes in the Gulf Stream and the Greenland and Labrador Seas occur in zones with maximal air pressure gradients, i.e., in cyclone–anticyclone interaction zones.  相似文献   

17.
Below the sill depth (at about 2400 m) of the Alpha-Mendeleyev ridge complex, the waters of the Canada Basin (CB) of the Arctic Ocean are isolated, with a 14C isolation age of about 500 yr. The potential temperature θ decreases with depth to a minimum θm≈−0.524°C near 2400 m, increases with depth through an approximately 300 m thick transition layer to θh≈−0.514°C, and then remains uniform from about 2700 m to the bottom at 3200–4000 m. The salinity increases monotonically with depth through the deep θm and transition layer from about 34.952 to about 34.956 and then remains uniform in the bottom layer. A striking staircase structure, suggestive of double-diffusive convection, is observed within the transition layer. The staircase structure is observed for about 1000 km across the basin and has been persistent for more than a decade. It is characterized by 2–3 mixed layers (10–60 m thick) separated by 2–16 m thick interfaces. Standard formulae, based on temperature and salinity jumps, suggest a double-diffusive heat flux through the staircase of about 40 mW m−2, consistent with the measured geothermal heat flux of 40–60 mW m−2. This is to be expected for a scenario with no deep-water renewal at present as we also show that changes in the bottom layer are too small to account for more than a small fraction of the geothermal heat flux. On the other hand, the observed interfaces between mixed layers in the staircase are too thick to support the required double-diffusive heat flux, either by molecular conduction or by turbulent mixing, as there is no evidence of sufficiently vigorous overturns within the interfaces. It therefore seems, that while the staircase structure may be maintained by a very weak heat flux, most of the geothermal heat flux is escaping through regions of the basin near lateral boundaries, where the staircase structure is not observed. The vertical eddy diffusivity required in these near-boundary regions is O(10−3) m2 s−1. This implies Thorpe scales of order 10 m. We observe what may be Thorpe scales of this magnitude in boundary-region potential temperature profiles, but cannot tell if they are compensated by salinity. The weak stratification of the transition layer means that the large vertical mixing rate implies a local dissipation rate of only O(10−10) W kg−1, which is not ruled out by plausible energy budgets. In addition, we discuss an alternative scenario of slow, continuous renewal of the CB deep water. In this scenario, we find that some of the geothermal heat flux is required to heat the new water and vertical fluxes through the transition layer are reduced.  相似文献   

18.
Turbulent mixing in the central equatorial Pacific has been quantitatively evaluated by analyzing data from microstructure measurements and conductivity temperature depth profiler (CTD) observations in a meridionally and vertically large region. The result that strong turbulent mixing with dissipation rate ε (>O(10?7) W kg?1), continuing from sea-surface mixed layer to low Richardson number region below, in the area within 1° of the equator, shows that turbulent mixing has a close relationship to shear instability. ε > O(10?7) W kg?1 and turbulent diffusivity K ρ  > O(10?3) m2 s?1 were obtained from near-surface to 85 db at stations even southwardly beyond 3°S, where it is already far from the southern boundary (~2°S) of the Equatorial Undercurrent. Turbulence-induced heat flux and salinity flux were calculated, and both had their maxima in the equatorial upwelling region, though the former was downward and the latter was upward. Accordingly, vertical velocity in the upwelling region was estimated to be similar to the results derived by other methods. These fluxes and the vertical velocity suggest the critical importance of turbulent mixing in maintaining the well-mixed upper layer. Secondly, in the intermediate region (>500 db), turbulent eddies were investigated by applying Thorpe’s method to the CTD data. A large number of overturns were detected, with spatial-averaged K ρ (700–1,000 db) being 3.3 × 10?6 m2 s?1, and the corresponding K ρ-max reaching to O(10?4) m2 s?1 in the north (3°–13°N). The results suggest that, in the intermediate region, considerable turbulent mixing occurs and moderates the properties of the water masses.  相似文献   

19.
The propeller of an Autonomous Underwater Vehicle (AUV) operates at low Reynolds number in laminar to turbulent transition region. The performance of these propellers can be calculated accurately using RANSE solver with γReθ transition model. In this study, the global and local hydrodynamic characteristics of open and ducted propeller are investigated using the γReθ transition model. The capability of the γReθ transition model to capture laminar to turbulent transition on the surface of the open propeller is demonstrated by comparison with published experimental results. The application of transition model for the propeller Ka-4-70 inside the duct 19A shows that the centrifugal forces are dominant at low Reynolds number and the flow is mainly directed in the radial direction. The transition model is able to predict complex flow physics such as leading-edge separation, tip leakage vortex, and the separation bubble on outer surface of the duct. The accurate prediction of these flow phenomenon can lead to correct calculation of global hydrodynamic forces and moments acting on the propeller at low Reynolds number.  相似文献   

20.
- During the second course of USA - PRC joint air sea interaction experiment in 1986, the temperature structure parameters CT2 were measured by sodar over the Western Pacific Ocean. Based on similarity theory, a method is discussed to calculate the sensible heat flux over the ocean in unstable stratification. Becausehumidity is great over the ocean, so we have to consider the influence of water vapor structure parameter Ce2and the correlation coefficient betweene and T on the calculation of sensible heat flux using CT2 profiles measured by sodar. A new formula is suggested in terms of parameterization. The sensible heat flux calculated by sodar measurements is compared with that by bulk transfer method, and the results agree well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号