首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
Several remotely sensed sea surface salinity(SSS) retrievals with various resolutions from the soil moisture and ocean salinity(SMOS) and Aquarius/SAC-D missions are applied as inputs for retrieving salinity profiles(S) using multilinear regressions. The performance is evaluated using a total root mean square(RMS) error, different error sources, and the feature resolutions of the retrieved S fields. In the mixed layer of the salinity, the SSS-S regression coefficients are uniformly large. The SSS inputs yield smaller RMS errors in the retrieved S with respect to Argo profiles as their spatial or temporal resolution decreases. The projected SSS errors are dominant, and the retrieved S values are more accurate than those of climatology in the tropics except for the tropical Atlantic, where the regression errors are abnormally large. Below that level, because of the influence of a sea level anomaly, the areas of high-accuracy S values shift to higher latitudes except in the high-latitude southern oceans, where the projected SSS errors are abnormally large. A spectral analysis suggests that the CATDS-0.25° results are much noisier and that the BEC-L4-0.25° results are much smoother than those of the other retrievals. Aquarius-CAP-1° generates the smallest RMS errors, and Aquarius-V2-1° performs well in depicting large-scale phenomena. BEC-L3-0.25°,which has small RMS errors and remarkable mesoscale energy, is the best fit for portraying mesoscale features in the SSS and retrieved S fields. The current priority for retrieving S is to improve the reliability of satellite SSS especially at middle and high latitudes, by developing advanced algorithms, combining both sensors, or weighing between accuracy and resolutions.  相似文献   

2.
路泽廷  朱江  韩君  元慧慧 《海洋通报》2015,34(4):428-439
选取SMOS任务的2个海洋盐度专家中心(法国的CATDS-CECOS和西班牙的BEC)的5种经过再处理的新版SSS L3/4产品作为研究对象,以Argo浮标资料及WOA09资料作为参考标准,对其误差特征进行了细致的分析比较,为将其同化到海洋模式中以及用于其它海洋学的分析应用研究,提供必要的参考。主要结论如下:SMOS年平均海表盐度场与WOA09资料很接近,一些已知的重要的分布形势都有所体现;大洋中部误差较小,近陆误差大;热带误差较小,高纬地区误差较大;三大洋中太平洋均方根误差最小。随着时空分辨率的降低,SMOS SSS资料的均方根误差显著减小。检验的几种资料中,CATDS/CEC-OS处理制作的月平均海表盐度L3级产品误差最小,全球平均均方根误差(RMSE)为0.314;另外几种高分辨率产品中,除由BEC制作的简单加权平均产品均方根误差最大,全球平均0.543以外,其他3种资料的均方根误差量级相当,差异不太明显,全球平均的RMSE为0.3~0.4;BEC的两种分析产品总体上RMSE更小。  相似文献   

3.
对上层海洋次中尺度过程研究至关重要的卫星海表温度(Sea Surface Temperature, SST)场的空间精细度一直未受到足够重视。由于卫星SST产品反演噪声的影响和实测数据的缺乏等原因,目前对卫星SST场空间精细度的研究受到较大限制。本研究开发了一套估算卫星SST场空间精细度的方法,将Suomi National Polar-orbiting Partnership卫星Visible Infrared Imager Radiometer Suite(Suomi-NPP/VIIRS)和NOAA-15卫星Advanced Very High Resolution Radiometer(NOAA-15/AVHRR)Level-2 SST场的空间能量谱与长时间在同一航线反复观测的高空间分辨率实测海温数据的空间能量谱进行了比较。研究发现VIIRS SST场夜间沿扫描方向在1.5~50 km尺度对海表温度空间能量的分布特征和变化趋势描述准确,日变化导致VIIRS白天场次中尺度空间谱能量相对夜晚有所增加。AVHRR SST场空间谱能量在次中尺度相比VIIRS有较大升高。  相似文献   

4.
本文利用日本气象厅在137°E断面获得的水温和盐度长期观测资料,分析了该断面温度场和盐度场的时空特征.结果表明,137°E断面的温度场和盐度场都存在着明显的季节差异和年际变化.冬季,温度场变化的关键区位于3°~18°N的300m以浅海域,而盐度场变化的关键区则位于18°~34°N的300m以浅海域.夏季,温度场变化的关键区位于3°~16°N的300m以浅海域,而盐度场则有两个关键区,分别位于3°~18°N的200m以浅海域和24°~34°N的300m以浅海域.温度场的年际变化与ENSO循环相联系,而盐度场的年际变化则比较复杂.  相似文献   

5.
以西太平洋为研究区域,利用Argo浮标表层盐度观测值(5 m)对SMAP卫星获得的2016年海表面盐度反演质量进行了评估。首先将西太平洋2016-01—12期间的每日和每月SMAP卫星SSS数据与Argo实测SSS数据进行匹配,然后利用最小二乘线性回归法对其进行相关性分析,并对误差的分布特征进行了研究。结果表明:SMAP SSS与Argo SSS之间具有极显著的正相关关系;每日Argo浮标数据(WMO ID:2901520,WMO ID:2901548)和SMAP SSS的变化趋势基本一致,前者均方根误差(RMSE)、偏差(Bias)和相关系数(r)分别为0.43, 0.34和0.71,后者RMSE,Bias和r分别为0.41,0.26和0.69;研究区域内全年RMSE值处于0~0.35,在西太平洋南部海域偏差较大,这可能是由于该海域小岛众多,缺少Argo实测数据,导致其网格化的盐度存在较大误差。除夏季外,研究区域的大部分海域,RMSE都小于0.25。在海表盐度较低的海域,两者的对比结果误差较大,该现象在夏秋两季尤为显著。  相似文献   

6.
SMOS卫星盐度数据在中国近岸海域的准确度评估   总被引:3,自引:3,他引:0  
盐度是描述海洋的关键变量,对海表面盐度进行观测可以推进对全球水循环的理解。本文的主要目的是在中国近海海域对SMOS卫星盐度数据进行准确度评估。主要方法是将SMOS卫星L2海洋盐度数据产品(V317)与实测ARGO数据和走航数据进行匹配,并采用统计学的方法对SMOS卫星数据准确度进行评估。结果表明:匹配数据的线性关系不显著,SMOS卫星盐度数据(V317)在南海和东海的均方根误差分别约为1.2和0.7,应用海表面粗糙度修正模型得到的3组海表盐度数据准确度都相对较低,尤其在近岸强风场区域,海表盐度卫星数据相对于实测数据偏高,这可能是由于海表粗糙度和陆地射频干扰(RFI)作用影响的结果;SMOS卫星数据在东海的均方根误差比南海高0.5左右,这可能是由于东海海域为相对开阔海域,受陆地RFI影响相对南海较小;在中国近岸海域,应用SSS1和SSS3模型得到的盐度数据准确度相对较高,可以对模型进行地球物理参数修正,进行局地化改进,预计可以提高近岸海域盐度反演的准确度。  相似文献   

7.
自欧洲土壤湿度和盐度卫星SMOS和美国宝瓶座盐度卫星Aquarius相继发射之后,多个数据中心发布了两颗卫星的海表盐度网格化产品,其中包括法国海洋研究院SMOS卫星数据小组发布SMOS Locean L3盐度产品、西班牙巴塞罗那专家中心发布SMOS BEC L4盐度产品和美国宇航局喷气动力实验室发布AquariusV3.0 CAP L3盐度产品。本文利用精确盐度现场观测资料从产品精度和模拟海洋现象能力两个方面对以上3种产品质量进行了评估。研究表明:(1) 在精度方面,与盐度现场资料相比,Aquarius CAP 产品质量最高,产品盐度偏差和均方根误差全年稳定且偏差较小,部分海域达到了设计精度;SMOS两种卫星产品在全球海域偏差较不稳定,个别月份出现异常偏差值;SMOS产品在低纬和开阔海域的数据质量相对较高,但在高纬海域仍存在较大误差,需要进一步提升;(2) 在刻画海洋现象方面,Aquarius产品在热带太平洋较好刻画了淡池东缘盐度锋,SMOS BEC产品的刻画能力次之,SMOS Locean产品在热带太平洋充满了小尺度噪音,描述物理现象方面表现偏差。  相似文献   

8.
基于南海北部海面PY30-1石油平台气象站测风仪2011年7月19日—2012年9月17日实测的风场数据,分别开展了对卫星搭载的ASCAT和HY-2散射计所测风场数据的比较研究,分析散射计的测风能力(选取的时空窗口为30 min和25 km)。结果表明:在南海北部海域,ASCAT 散射计所测风速和PY30-1石油平台气象站观测风速的均方根误差为2.53 m/s,风向偏差较大,均方根误差为47.87°;HY-2散射计所测风速和PY30-1石油平台气象站观测风速的均方根误差为3.41 m/s,风向的均方根误差为58.66°。分别按低、中和高风速的不同条件将ASCAT和HY-2散射计所测的风场数据与PY30-1石油平台气象站观测的风场数据加以比较可知,ASCAT和HY-2散射计都具有较好的测风能力, 前者所测风速与PY30-1石油平台气象站测风仪观测风速的均方根误差稍小于后者。在150 min和15 km的时空窗口下,ASCAT与HY-2散射计所测风速的均方根误差为0.72 m/s,风向的均方根误差为8.50°。  相似文献   

9.
西北太平洋红外辐射计海表温度数据交叉比对分析   总被引:6,自引:2,他引:4  
本文将西北太平洋海域作为研究区域,以2003—2009年的三个海表温度(sea surface temperature,SST)红外产品(AVHRR Pathfinder/NOAA,MODIS/Terra和MODIS/Aqua)为研究对象,分别与Argo浮标数据进行了真实性检验,同时红外产品之间也进行了交叉比对分析。通过评定产品间的差异及使用条件,为融合产品数据源选取和权重分配提供参考依据,用以提高融合产品的数据质量。结果表明,三种红外数据与Argo浮标的平均偏差在±0.2°C之间,均方根误差小于0.8°C,且存在明显的季节性变化,白天的平均偏差均是夏季为正、冬季为负,夜间的平均偏差基本均为负偏差,冬季比夏季的偏差更大,冬季的均方根误差较小;三种红外数据之间的平均偏差在±0.1°C之间,均方根误差小于0.6°C;三个红外产品在空间上均能反映西北太平洋海域的海表温度变化趋势,三个产品之间无明显优劣差异;尽管红外数据的空间覆盖率偏低,但是它提供了高精度和高特征分辨率的数据产品,并弥补了近岸海域缺乏观测数据的不足。  相似文献   

10.
为了研究南海中尺度涡强度的季节和年际变化规律,利用Matlab提取50 a(1958~2007年)简单海洋资料同化(Simple Ocean Data Assimilation,SODA)月平均数据集中流场和海表面高度场数据,应用一个涡旋自动探测算法对南海中尺度涡初始生成位置进行分析,并分析了海表面高度异常均方根值的季节变化和年际变化。结果表明:50 a里南海中尺度涡主要分布在吕宋岛西北海域、吕宋岛西南海域和越南以东广大海域,秋、冬季中尺度涡能量较高,春季中尺度涡最弱,中尺度涡强度高值区年际变化明显。从季节变化上看,海面高度异常均方根春、夏季最小,秋冬季最大;从年际变化上看,与同时期Nino3指数有显著负相关,周期大约为3 a。  相似文献   

11.
为了建立高精度的海洋表面盐度预测模型,采用BP神经网络的方法,针对SMOS卫星level 1C级亮度温度数据和辅助数据建立了一种海表面盐度预测模型,以ARGO浮标观测值作为海表盐度实测值来检验新模型预测结果的准确度,同时利用验证集对模型的精度进行验证。结果表明:通过新模型预测的海表盐度(SSS0)比SMOS卫星的3个粗糙度模型盐度产品(SSS1,SSS2,SSS3)精度高;SSS0,SSS1,SSS2,SSS3与ARGO浮标实测盐度(SSS ARGO)的均方根误差分别为0.8473,2.0417,2.0288和2.0805,平均绝对误差分别为0.7553,1.4226,1.4216和1.4566,SSS0与SSS ARGO的均方根误差和绝对平均误差值都明显小于SSS1,SSS2和SSS3与SSS ARGO的;由此可见,建立的海表盐度预测模型精度较高。新模型为海表盐度的反演算法提供了新思路。  相似文献   

12.
针对传统海表盐度的物理机制反演模型拟合过程复杂且反演精度不高等问题,借助大范围、全天时、L波段探测的SMAP卫星微波海洋遥感产品,以北太平洋(135°~165°E,15°~45°N)范围为研究海域,利用深层神经网络(Deep Neural Network,DNN)和支持向量机(Support Vector Machin...  相似文献   

13.
This paper proposes a new method to retrieve salinity profiles from the sea surface salinity(SSS) observed by the Soil Moisture and Ocean Salinity(SMOS) satellite. The main vertical patterns of the salinity profiles are firstly extracted from the salinity profiles measured by Argo using the empirical orthogonal function. To determine the time coefficients for each vertical pattern, two statistical models are developed. In the linear model, a transfer function is proposed to relate the SSS observed by SMOS(SMOS_SSS) with that measured by Argo, and then a linear relationship between the SMOS_SSS and the time coefficient is established. In the nonlinear model, the neural network is utilized to estimate the time coefficients from SMOS_SSS, months and positions of the salinity profiles. The two models are validated by comparing the salinity profiles retrieved from SMOS with those measured by Argo and the climatological salinities. The root-mean-square error(RMSE) of the linear and nonlinear model are 0.08–0.16 and 0.08–0.14 for the upper 400 m, which are 0.01–0.07 and 0.01–0.09 smaller than the RMSE of climatology. The error sources of the method are also discussed.  相似文献   

14.
海洋的盐度观测对于气候和海洋科学的研究有重要的意义,盐度的卫星遥感观测需要估计各种因素带来的误差影响。本文基于海面微波辐射理论和海水相对电容率等模型,采用蒙特卡洛模拟方法研究了在盐度遥感中温度误差、仪器误差以及风速误差对于后续的盐度反演的影响。通过计算温度误差产生的盐度误差,并与敏感性方法的对比发现,在低温低盐时温度误差对盐度反演误差的影响较大,2种方法的偏差较大;而在高温高盐时温度误差对盐度反演误差的影响较小,2种方法的偏差较小。辐射计仪器噪声对盐度误差的影响普遍在0.1psu以上,在低温低盐时可达0.5psu以上。风速误差对盐度反演误差的影响在水平极化状态下随入射角增大,在温度低于20℃时普遍超过1psu;在垂直极化状态下随入射角先减小后增大,在温度低于20℃以及较小的入射角下误差也会超过1psu。对误差的综合分析发现,采用垂直极化状态在高温时这2种误差的影响较小。研究发现,当入射角是45.6°和垂直极化状态下,对于3种典型海面状态(35℃和35psu,20℃和35psu,5℃和30psu),反演的盐度反演误差可达到0.162,0.153和0.444psu,达到了卫星单次扫描对盐度反演的误差要求。  相似文献   

15.
Abstract

We calibrate a technique to use repeated multibeam sidescan surveys in the deep ocean to recover seafloor displacements greater than a few meters. Displacement measurements from seafloor patches (3?km by 20?km) on the port and starboard side of the ship are used to estimate vertical and across-track displacement. We present displacement measurements from a survey of the Ayu Trough southwest of the Marianas Trench using a 12?kHz multibeam. Vertical and across-track displacement errors for the 12?kHz multibeam sonar are typically 0–2?m with RMS uncertainties of 0.25–0.67 m in the across-track and 0.37–0.75 m in the vertical as determined by 3-way closure tests. The uncertainty of the range-averaged sound velocity is a major error source. We estimate that variations in the sound velocity profile, as quantified using expendable bathythermographs (XBTs) during data collection, contribute up to 0.3?m RMS uncertainty in the across-track direction and 1.6?m RMS uncertainty in the vertical direction.  相似文献   

16.
The spatial distribution of eddy diffusivity, basic characteristics of coherent mesoscale eddies and their relationship are analyzed from numerical model outputs in the Southern Ocean. Mesoscale fluctuation information is obtained by a temporal-spatial filtering method, and the eddy diffusivity is calculated using a linear regression analysis between isoneutral thickness flux and large-scale isoneutral thickness gradient. The eddy diffusivity is on the order of O (103 m2/s) with a significant spatial variation, and it is larger in the area with strong coherent mesoscale eddy activity. The mesoscale eddies are mainly located in the upper ocean layer, with the average intensity no larger than 0.2. The mean radius of the coherent mesoscale cyclonic (anticyclonic) eddy gradually decays from (121.2±10.4) km ((117.8±9.6) km) at 30°S to (43.9±5.3) km ((44.7±4.9) km) at 65°S. Their vertical penetration depths (lifespans) are deeper (longer) between the northern side of the Subpolar Antarctic Front and 48°S. The normalized eddy diffusivity and coherent mesoscale eddy activity show a significant positive correlation, indicating that coherent mesoscale eddy plays an important role in eddy diffusivity.  相似文献   

17.
The in situ sea surface salinity(SSS) measurements from a scientific cruise to the western zone of the southeast Indian Ocean covering 30°–60°S, 80°–120°E are used to assess the SSS retrieved from Aquarius(Aquarius SSS).Wind speed and sea surface temperature(SST) affect the SSS estimates based on passive microwave radiation within the mid- to low-latitude southeast Indian Ocean. The relationships among the in situ, Aquarius SSS and wind-SST corrections are used to adjust the Aquarius SSS. The adjusted Aquarius SSS are compared with the SSS data from My Ocean model. Results show that:(1) Before adjustment: compared with My Ocean SSS, the Aquarius SSS in most of the sea areas is higher; but lower in the low-temperature sea areas located at the south of 55°S and west of 98°E. The Aquarius SSS is generally higher by 0.42 on average for the southeast Indian Ocean.(2) After adjustment: the adjustment greatly counteracts the impact of high wind speeds and improves the overall accuracy of the retrieved salinity(the mean absolute error of the Zonal mean is improved by 0.06, and the mean error is-0.05 compared with My Ocean SSS). Near the latitude 42°S, the adjusted SSS is well consistent with the My Ocean and the difference is approximately 0.004.  相似文献   

18.
For the application of soil moisture and ocean salinity(SMOS) remotely sensed sea surface salinity(SSS) products,SMOS SSS global maps and error characteristics have been investigated based on quality control information.The results show that the errors of SMOS SSS products are distributed zonally,i.e.,relatively small in the tropical oceans,but much greater in the southern oceans in the Southern Hemisphere(negative bias) and along the southern,northern and some other oceanic margins(positive or negative bias).The physical elements responsible for these errors include wind,temperature,and coastal terrain and so on.Errors in the southern oceans are due to the bias in an SSS retrieval algorithm caused by the coexisting high wind speed and low temperature; errors along the oceanic margins are due to the bias in a brightness temperature(TB) reconstruction caused by the high contrast between L-band emissivities from ice or land and from ocean; in addition,some other systematic errors are due to the bias in TB observation caused by a radio frequency interference and a radiometer receivers drift,etc.The findings will contribute to the scientific correction and appropriate application of the SMOS SSS products.  相似文献   

19.
文章利用果蝇优化广义回归神经网络算法FOAGRNN (fruit fly optimization algorithm, FOA; generalized regression neural network, GRNN)对SODA (simple ocean data assimilation)再分析数据进行训练, 构建海表温度、盐度、海面高度与次表层温盐场之间的投影关系模型, 并在全球范围使用SODA和卫星遥感数据评估了模型的应用性能。首先, 利用独立的2016年SODA海表数据作为模型输入进行理想重构试验, 结果显示全球重构温、盐平均均方根误差(MRMSE)分别为0.36℃和0.08‰, 与世界海洋图集WOA13资料相比减小约50%和60%。然后, 利用卫星观测的海表信息作为模型输入进行实际应用试验, 并与Argo观测剖面进行比较评估。试验结果表明, 重构模型能有效表征海水温、盐特征, 其中重构温、盐MRMSE分别为0.79℃和0.16‰, 相比WOA气候态减小27%和11%。误差的垂向分布显示, 重构温度RMSE从海表向下迅速增大, 至100m达到峰值1.35℃, 而后又迅速回落,至250m处为0.81℃, 跃层往下不断减小; 重构盐度RMSE基本随深度增大而减小, 误差峰值位于25m附近, 约为0.25‰。此外, Argo浮标跟踪分析和区域水团统计结果也表明模型能够较好地刻画海洋三维温盐场的内部结构特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号