首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1988-2010年中国海域波浪能资源模拟及优势区域划分   总被引:7,自引:2,他引:5  
郑崇伟  苏勤  刘铁军 《海洋学报》2013,35(3):104-111
基于国际先进的第三代海浪数值模式WAVEWATCH -Ⅲ,以CCMP风场为驱动场,模拟得到中国海域域1988年1月-2010年12月的海浪场。从提高波浪能资源利用效率的角度出发,定义了波浪能资源开发的有效时间,综合考虑波浪能流密度的大小、资源开发有效时间出现的频率、能流密度的稳定性(变异系数)、SWH和能流密度的变化趋势、资源的总储量和有效储量等方面,对中国海域域的波浪能资源进行评估。研究发现:(1)南海北部四季皆为能流密度的大值区,各个季节基本都在8 kW/m以上,秋冬两季更是高达20 kW/m以上。(2)东海和南海大部分海域的波浪能资源开发有效时间出现频率较高。(3)能流密度的稳定性在1月最好,4月和10月次之,7月最差;南海能流密度的稳定性好于其余海域,其中又以南海北部海域的稳定性最好。(4)中国海域域大部分海域单位面积的波浪能总储量在2×104 kW·h/m以上,高值中心分布于南海北部海域,有效储量的分布特征与总储量基本一致。(5)我国大部分海域的SWH和波浪能流密度呈显著的逐年线性递增趋势,SWH的递增趋势为0.5~2.5 cm/a,能流密度的递增趋势为0.05~0.55 kW/(m·a)。(6)我国大部分海域蕴藏着较为丰富的波浪能资源,其中南海北部、台湾以东洋面及琉球群岛附近海域为波浪能资源的优势区域。  相似文献   

2.
利用ERA-40海表10 m风场驱动WAVEWATCH-Ⅲ(WW3)海浪模式,模拟得到南海-北印度洋1957年9月—2002年8月的海浪资料,采用一元线性回归方法,分析了该海域有效波高的长期趋势,以期为研究全球气候变化、波浪能资源开发、防灾减灾等提供参考。结果表明:(1)1958—2001年期间,该海域的SWH有线性递增趋势,递增率为0.0017 m/a,且变化趋势表现出很大的区域性差异:仅部分小范围海域呈显著性递减,其余大部分海域的SWH呈显著性递增;(2)SWH的变化趋势存在较大的季节性差异:各个季节呈显著性递减的区域范围都较小;低纬度的递增趋势主要体现在春季和冬季,尤其冬季几乎整个南海-北印度洋的SWH均呈显著性递增趋势;索马里以东一近似圆形海域的递增趋势主要体现在夏季。  相似文献   

3.
近45 年南海-北印度洋波浪能资源评估   总被引:2,自引:0,他引:2  
郑崇伟  李训强  潘静 《海洋科学》2012,36(6):101-104
利用 ERA-40海表10 m 风场驱动第三代海浪数值模式(WAVEWATCH-,Ⅲ简称 WW3),得到南海–北印度洋1957年9月~2002年8月的海浪资料,计算该海域的波浪能,分析波浪能流密度的四季分布特征、不同能级出现的频率及波浪能流密度的稳定性,为海浪发电、海水淡化等选址提供依据.研究发现,南海–北印度洋海域蕴藏着较为丰富的波浪能:(1)南海–北印度洋大部分海域的年平均波浪能流密度在2 kW/m 以上,大值区位于南海、孟加拉湾、索马里附近海域.(2)南海–北印度洋海域波浪能流密度大于2 kW/m 和大于4 kW/m 出现的频率都较高.(3)南海–北印度洋的波浪能流密度具有较好的稳定性,春季、秋季、冬季的稳定性好于夏季,南海的稳定性好于北印度洋  相似文献   

4.
文章利用来自ECMWF的ERA-interim海浪再分析资料,统计分析了21世纪海上丝路涉及海域的波候特征,结果表明:1 2月,南海的有效波高(SWH——significant wave height)在1.4m以上,明显大于北印度洋。南海的波向以NE向为主导;北印度洋以偏S、偏E向为主。5月,北印度洋以偏S向浪为主;南海中部为SE向,北部为偏E向。北印度洋的SWH在1.2m以上,明显大于南海。8月,南海—北印度洋以SW向的浪为主。阿拉伯海的SWH在2.2m以上,孟加拉湾为1.4~2.8m;南海的SWH相对最弱。11月,南海的波向以NE向为主,北印度洋以偏S、偏E向为主。南海的SWH明显大于北印度洋。2 2月,南海以偏NE向的浪出现频率最高,需要引起重视的有NE、NNE、ENE向的强浪。北印度洋主要以偏S向的浪为主,强浪出现频率很低。8月,南海—北印度洋以偏S、SW向的浪为主;需要注意的是SSW、SW、WSW向的强浪。3 2月、11月,北印度洋的大浪频率在10%以内,南海明显高于北印度洋。5月,南海—北印度洋在10%以内。8月,阿拉伯海的大浪频率在40%以上,孟加拉湾次之,南海的频率低于北印度洋。4 1979-2014年期间,南海大部分海域的SWH显著性递增,趋势在每年0.4cm/s以上。孟加拉湾、印度半岛西部海域没有显著的变化趋势。阿拉伯海西部、印度洋15°S-0°显著递增,趋势为每年0.1~0.4cm/s。仅部分零星海域表现出显著性递减。  相似文献   

5.
1957~2002年南海—北印度洋海浪场波候特征分析   总被引:2,自引:0,他引:2  
郑崇伟  李训强  潘静 《台湾海峡》2012,31(3):317-323
利用ERA-40海表10 m风场驱动第三代海浪数值模式WAVEWATCH-Ⅲ,得到南海—北印度洋1957年9月至2002年8月的海浪场,并分析其波候(风候)特征.研究发现如下主要特征:(1)该海域的波高波向、风速风向受季风影响显著;(2)北印度洋大部分海域的海表风速呈显著性逐年线性递增趋势,大约0.01~0.02 m/(s·a),南海线性递增的区域则较少,有效波高呈显著性逐年线性递增的区域主要集中在低纬度中东印度洋(约0.003~0.006 m/a)、索马里附近海域(大约0.002~0.005 m/a)、南海大部分海域(约0.002~0.004 m/a),线性递减的区域主要集中在孟加拉湾海域(约-0.002 m/a);(3)Nino3指数与南海—北印度洋的海表风场、浪场存在密切的关系;(4)南海—北印度洋的海表风速与有效波高存在5.2a左右的共同周期,南海的海表风速、有效波高还存在2.0a左右的共同周期,北印度洋的海表风速、有效波高还存在26.0a的长周期震荡.  相似文献   

6.
钓鱼岛、黄岩岛海域风能及波浪能开发环境分析   总被引:2,自引:0,他引:2  
利用模拟海浪数据、CCMP风场资料,对我国钓鱼岛、黄岩岛附近海域的波浪能、风能资源特征展开研究,为海浪发电、风力发电、海水淡化等资源开发工作提供参考,也期望可为解决我国维护海洋权益、海洋资源开发、在边远海岛驻军、军用/民用舰船在远洋活动的电力、淡水问题提供科学依据和辅助决策。此外本研究还就钓鱼岛、黄岩岛附近海域的风力等级频率、浪级频率、风向频率、波向频率等海洋环境特征进行统计分析,为海洋工程、防灾减灾等提供参考。结果表明:(1)钓鱼岛海域的风能密度呈单峰型月变化特征,年平均值为450 W·m-2,黄岩岛海域的风能密度呈"W"型月变化特征,年平均值为228 W·m-2;钓鱼岛年平均值波浪能流密度为14 kW·m-1,黄岩岛为11 kW·m-1;(2)钓鱼岛、黄岩岛海域的有效风速、可用波高、100W·m-2以上风能密度、2 kW·m-1以上波浪能流密度出现频率都整体较高,这对资源开发是很有利的;(3)1988—2010年期间,钓鱼岛、黄岩岛的风能密度、波浪能流密度整体呈递增趋势,这对风能、波浪能资源的开发也是有利的。(4)从资源的储量来看,钓鱼岛、黄岩岛蕴藏着丰富的波浪能、风能资源,且资源储量比我国沿海平均值丰富。综上,钓鱼岛、黄岩岛海域蕴藏着丰富的、适宜开发的风能、波浪能资源,实行海浪发电、风力发电、风浪联合发电、海水淡化等工作,将具有广阔的军事和经济前景。  相似文献   

7.
中国南海岛礁建设:风力发电、海浪发电   总被引:4,自引:0,他引:4  
电力和淡水紧缺直接影响到深远海、边远海岛的生存与可持续发展,一直以来是一项世界性难题。本文利用CCMP风场、模拟的海浪场数据,以某重点岛礁作为研究对象,对风能和波浪能资源特征进行了系统性的分析。结果表明,研究海域蕴藏着较为丰富、适宜开发的风能、波浪能资源:(1)除去极端风、浪情况外,全年基本都可进行风能和波浪能开发,峰值出现在12月至翌年1月,月平均风能密度在370W/m2左右,波浪能流密度在20kW/m左右;即使在最贫乏的4—5月,能源均处于可利用状态。(2)有效风速、可用波高出现频率、能级频率都很丰富:各月有效风速频率在70%以上;全年大部分时间可用波高、50W/m2以上风能密度、2kW/m以上波浪能流密度出现频率都在50%以上。(3)研究海域的波浪能主要由以下海况贡献:波高2~3m,波周期6~7s的海况,贡献率为14.6%。(4)研究区域的风能主要由ENE、NE、SW、WSW向贡献,其中又以100~300W/m2出现的频率最高;1 000W/m2以上的高风能主要由WSW向贡献。波浪能主要由NNE和WSW向的浪贡献;频率最高的是0~5、5~10kW/m。(5)近24年研究海域的风能密度没有显著的变化趋势,波浪能流密度以0.25kW·m-1·a-1的趋势显著性递增。(6)风能、波浪能在冬夏两季、夏季风向冬季风过渡期间都表现出很好的稳定性,5月的稳定性相对较差。(7)风能总储量为2 050kW·h/m2,有效储量为1 722kW·h/m2;波浪能的总储量为84 079kW·h/m,有效储量为66 336kW·h/m。  相似文献   

8.
由于南海海域地形复杂,岛屿众多,不可避免的会产生折射、变浅、绕射、波浪破碎、非线性波相互作用等近岸物理过程。因此采用以风场驱动的第三代海浪数值模式SWAN,可得到南海海域1986年1月至2005年12月较高分辨率的波浪场,计算了南海海域的波浪能流密度,综合考虑能流密度的大小和14个站位能流密度分级统计的特征等方面对南海海域波浪能资源进行了研究,寻找该海域波浪能资源的相对优势区域,为建立海上波浪能电站提供科学依据。  相似文献   

9.
利用1991—2010年的NCEP再分析风场驱动LAGFD-WAM海浪数值模式,通过数值后报方法,对海南万宁近海海域近20年的波浪场进行了逐时数值模拟,数值模拟结果和实测结果对比的一致性良好。在数值后报数据的基础上计算了万宁近海波浪能流密度和能流密度变异系数,并对其年内变化特点、区域分布特征和稳定性进行了分析。万宁近海年均波浪能流密度3—10 k W/m,属于波浪能资源可利用区和较丰富区。年内各月月均能流密度差别较大,12月波浪能资源最好,5月波浪能资源最差。秋季(9—11月)和冬季(12—2月)月均波浪能流密度分别为5—24 k W/m和6—29 k W/m,春季(3—5月)和夏季(6—8月)分别为3—7 k W/m和1—6 k W/m。地形对波浪能量的辐聚作用明显,受岬角、岛屿、海底陡坡等因素影响,大洲岛、白鞍岛周边、大花角附近及白鞍岛以北部分近岸区域形成波浪能富集区。除9月外,年内其他时段能流密度变异系数都在2.8以下,9月能流密度变异系数在3.0—5.9之间。  相似文献   

10.
波浪能是一种可再生能源,对波浪能资源进行可靠的评估是开发利用的前提。本文利用欧洲中期天气预报中心(ECMWF)ERA-Interim 1981-2015年0.125°×0.125°的较高分辨率的海浪场数据,计算了中国海域的波浪能流密度,采用波浪能流密度的富集度频率和变异系数评价了中国海域的波浪能资源,系统研究了波浪能流密度的季节特征及富集度特征。研究表明:(1)我国周边海域波浪能资源呈现非常明显的季节分布特征,秋冬季较丰富、春夏季较贫乏。(2)波浪能资源的丰富的海区为海南岛以东、广东省以南海域(即南海中北部),同时,台湾岛东部海域波浪能资源也较为丰富。(3)波浪能资源相对稳定的区域为台湾岛以东海域和南海中北部海域,其中冬季稳定性最好,夏季最差。(4)综合考虑到波能资源开发的特点,建议选择广东沿岸海域作为波浪能开发的重点海域。  相似文献   

11.
利用ERA-40海表10 m风场驱动WAVEWATCH-Ⅲ(WW3)海浪模式,模拟得到南海-北印度洋1957年9月—2002年8月的海浪资料,采用线性回归、功率谱分析、MK检验等方法,分析了该海域有效波高(SWH)的线性趋势、变化周期、突变形势。结果表明:(1)近44 a期间,吕宋岛东北部近海、吕宋海峡、南海大风区、斯里兰卡-苏门答腊岛、索马里以东的SWH有线性递增趋势;(2)索马里以东、斯里兰卡-苏门答腊岛、南海大风区、吕宋岛以东近海的SWH存在共同的3.3—5.2 a显著性变化周期和26 a以上的长周期震荡;(3)索马里以东的SWH存在显著的突变现象,突变期为1982年;斯里兰卡-苏门答腊岛的SWH无显著的突变现象;南海大风区和吕宋岛以东近海的SWH均存在显著的突变现象,突变期分别为1971年和1969年。  相似文献   

12.
基于WAVEWATCH-Ⅲ模式的近22年中国海波浪能资源评估   总被引:6,自引:0,他引:6  
以CCMP风场驱动第三代海浪数值模式WAVEWATCH-Ⅲ,得到中国海1988年1月~2009年12月较高分辨率的海浪场,计算了中国海的波浪能流密度,综合考虑能流密度的大小、能级频率、能流密度的稳定性等各方面对波浪能资源进行研究,寻找波浪能资源的相对优势区域,为波浪能资源的开发与利用(如海浪发电的选址)提供科学依据。  相似文献   

13.
基于1988—2009年高时空分辨率的CCMP风场资料,分析了中国海及周边海域风能密度的分布特征,给出了这些海域风能密度的整体变化趋势、变化趋势的区域性差异和季节性差异,以期为风能资源开发工作提供科学依据。结果表明:(1)中国海及周边海域风能密度大值区主要分布于琉球群岛-台湾岛-南海大风区一线,呈东北-西南向带状分布,年平均风能密度能达到450 W/m~2以上。渤海、渤海海峡、黄海北部的年平均风能密度基本在200 W/m~2以内;黄海中南部为200~350 W/m~2;东海基本都在300 W/m~2以上;5°N以北的南海大部分海域的风能密度基本都在200 W/m~2以上;(2)近22 a期间,该区域的风能密度整体上以4.1637 W/(m2·yr)的速度逐年递增;(3)中国海及周边海域大范围海域的风能密度表现出显著性逐年线性递增趋势,同时也表现出较大的区域性差异,仅部分零星海域的风能密度表现出显著性递减趋势;(4)中国海及周边海域风能密度的变化趋势在近22 a期间表现出很大的季节性差异。冬季的递增趋势最为强劲,呈递增趋势的区域范围夜最广,春季次之,夏季和秋季呈显著性递增的区域范围相对较小。  相似文献   

14.
采用中尺度大气模式MM5构建渤海、黄海和东海高时空分辨率风场,以此风场驱动第三代海浪数值模式SWAN,得到成山头海域1991年1月至2010年12月较高分辨率的波浪场,计算了成山头海域的波浪能流密度,综合考虑能流密度的大小和10个站位能流密度分级统计的特征等方面对成山头海域波浪能资源进行了研究,寻找该海域波浪能资源的相对优势区域,为波浪能海上测试场场址的选择提供科学依据。  相似文献   

15.
山东省周边海域波浪能资源评估   总被引:2,自引:0,他引:2  
采用第三代海浪模式SWAN对2001-2010年期间山东省周边海域的波浪状况进行了数值模拟。波浪能数值模拟值与台站观测值的比对结果表明模拟值可靠、实用。分析发现山东省周边海域平均波能流密度以2 000W/m以下为主,低于中国南部海域及欧美沿岸波能流密度。选取12个典型代表点,从波能流密度大小、变化特征、稳定性等角度分析了不同代表点的波浪能情况,发现山东周边波能流密度受气候变化影响近10年来呈上升趋势。综合不同区域波浪能大小及需求情况,建议选取山东半岛东部海域、蓬莱外围岛屿近渤海中部海域和渤海中部海域作为波浪能开发利用的首选区域。其中成山头东部海域波能流密度在冬季高达5 000 W/m,在该季节大部分区域可归为一类资源丰富区。基于此,建议开发利用中小规模的波浪能供电设备或供电设施。  相似文献   

16.
利用ECMWF的ERA-Interim风场数据与GEBCO_2014系列的水深数据,基于近海海浪模式SWAN,对2007年1月—2017年12月舟山近海的海浪开展水平分辨率为0.01°×0.01°的精细化模拟。通过对波功率密度、能级频率、变异系数的计算,并结合有效波高及风场的变化特征,综合分析了舟山海域的波能分布特征、富集程度及稳定状况,从而为舟山海域波浪能资源的开发和利用提供科学依据。结果表明:(1)舟山海域的波浪能分布具有显著的地域和季节性变化特征,其中朱家尖东南方向海域的波浪能在夏季最为丰富,而东极岛东北方向海域的波浪能则在冬季最为丰富,这两个海域的年平均波功率分别为1.97 kW/m和1.73 kW/m;(2)舟山海域波浪能稳定性存在差异,东极岛东北方向的海域在冬季波浪能的稳定性较好,朱家尖东南方向的海域以及象山、岱山等地区的北侧海域在夏季波浪能稳定性最差;(3)东极岛东北方向海域的波浪能丰富程度以及稳定性均为最佳,该海域具有较好的波浪能开发前景。  相似文献   

17.
西沙、南沙海域波浪及波浪能季节变化特征   总被引:4,自引:0,他引:4  
采用来自ECMWF将风浪、涌浪分离的近45 a ERA-40海浪再分析资料,对西沙和南沙海域的海面风速、风浪有效波高、涌浪有效波高、浪级频率、波向频率的多年变化特征进行统计研究,重点讨论了西沙和南沙海域风浪能和涌浪能季节变化和稳定性特点.结果表明:南海海域涌浪能明显比风浪能稳定,西沙海域年均能流密度约8.0kW/m,风...  相似文献   

18.
利用海南东方近岸海域2014年至2015年间一整年的海浪观测资料, 分析了海浪的时间变化特征。观测时间段内, 有效波高最大值为4.03m, 平均值0.79m; 平均周期最大值为6.32s, 平均值为3.58s。该海域冬季波高较大, 秋季最小, 常浪向为SSW方向, 强浪向为WSW向。基于该长期观测数据, 文章亦研究了平均周期、有效波高之间的关系, 同时还确立了该海域波高与平均持续时间之间的关系。最后讨论了观测时间段内波浪能流密度的变化特征, 发现一年中能流密度大于2kW·m-1的频率为26%, 且从全年的计算结果来看, 观测位置处12月的波浪能较适宜开发, 但总体波浪能资源不够丰富。文章对于认识海南东方近岸海域波浪特征以及工程设计都具有重要的意义。  相似文献   

19.
1988—2009年中国海波候、风候统计分析   总被引:3,自引:0,他引:3  
利用高精度、高时空分辨率、长时间序列的CCMP(Cross-Calibrated,Multi-Platform)风场,驱动国际先进的第三代海浪模式WAVEWATCH-Ⅲ(WW3),得到中国海1988年1月~2009年12月的海浪场。对中国海的波候(风候)进行精细化的统计分析,分析了海表风场和浪场的季节特征、极值风速与极值波高、风力等级频率和浪级频率、海表风速和波高的逐年变化趋势,结果显示:(1)中国海的海浪场与海表风场具有较好的一致性,尤其是在DJF(December,January,February)期间;海表风速和波高在MAM(March,April,May)期间为全年最低,在DJF期间达到全年最大;MAM和JJA(June,July,August)期间,中国海大部分海域的波周期在3~5.5s,SON(September,October,November)和DJF期间为4.5~6.5s。(2)中国海极值风速、极值波高的大值区分布于渤海中部海域、琉球群岛附近海域和台湾以东广阔洋面、台湾海峡、东沙群岛附近海域、北部湾海域、中沙群岛南部海域。(3)吕宋海峡在MAM、SON、DJF期间均为6级以上大风和4m以上大浪的相对高频海域,JJA期间,6级以上大风的高频海域位于中国南半岛东南部海域,4m以上大浪主要出现在10°N以北。(4)在近22a期间,中国海大部分海域的海表风速、有效波高呈显著性逐年线性递增趋势,风速递增趋势约0.06~0.15m.s-1.a-1,波高递增趋势约0.005~0.03m.a-1。  相似文献   

20.
利用来自ECMWF的ERA-40海表10m风场资料,对西北太平洋海域海表风速的长期变化趋势等进行研究,研究发现:(1)1958-2001年期间,西北太平洋第一岛链以内海域的海表风速不存在显著的逐年变化趋势,第一岛链以外地广阔洋面则基本表现出显著性逐年线性递增趋势,递增趋势约0.005-0.02 m·s1·a-1,呈显著性逐年线性递减的海域主要分布于一些零星海域;(2)近44年期间,西北太平洋海域的海表风速整体上以0.0072m·s-1·a-1的速度显著性逐年线性递增,在1958-1974年期间,海表风速的递增趋势较强,1975-2001年期间,西北太平洋海域的海表风速整体上变化趋势较为平缓,尤其是在1976-1983年期间,海表风速的走势甚为平缓;(3)西北太平洋海域的海表风速不存在显著的逐MAM、逐JJA变化趋势,逐SON和逐DJF则表现出显著的线性递增趋势,逐SON的递增趋势为0.0047 m· s-1· a-1,逐DJF的递增趋势为0.0079m·s-1·a-1;(4)西北太平洋海域的海表风速存在多种尺度的变化周期,具有明显的2.0-2.4年、4.3-5.2年以及26年以上的长周期震荡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号