首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A bio-optical dataset collected during the 1998?C2007 period in the Yellow and East China Seas (YECS) was used to provide alternative empirical ocean-color algorithms in the retrieval of chlorophyll-a (Chl-a), total suspended matter (TSM), and colored dissolved organic matter (CDOM) absorption coefficients at 440 nm (ag440). Assuming that remote-sensing reflectance (Rrs) could be retrieved accurately, empirical algorithms for TChl (regionally tuned Tassan??s Chl-a algorithm) in case-1 waters (TChl2i in case-2 waters), TTSM (regionally tuned Tassan??s TSM algorithm), and Tag440 or Cag440 (regionally tuned Tassan??s or Carder??s ag440 algorithm) were able to retrieve Chl-a, TSM, and ag440 with uncertainties as high as 35, 46, and 35%, respectively. Applying the standard SeaWiFS Rrs, TChl was not viable in the eastern part of the YECS, which was associated with an inaccurate SeaWiFS Rrs retrieval because of improper atmospheric correction. TChl behaved better than other algorithms in the turbid case-2 waters, although overestimation was still observed. To retrieve more reliable Chl-a estimates with standard SeaWiFS Rrs in turbid water (a proxy for case-2 waters), we modified TChl for data with SeaWiFS normalized water-leaving radiance at 555 nm (nLw555) > 2 mW cm?2 ??m?1 sr?1 (TChl2s). Finally, with standard SeaWiFS Rrs, we recommend switching algorithms from TChl2s (for case-2 waters) to MOCChl (SeaWiFS-modified NASA OC4v4 standard algorithm for case-1 waters) for retrieving Chl-a, which resulted in uncertainties as high as 49%. To retrieve TSM and ag440 using SeaWiFS Rrs, we recommend empirical algorithms for TTSM (pre-SeaWiFS-modified form) and MTag440 or MCag440 (SeaWiFS Rrs-modified forms of Tag440 or Cag440). These could retrieve with uncertainties as high as 82 and 52%, respectively.  相似文献   

2.
The Changjiang Diluted Water (CDW) significantly influences the chemical, biological, and sedimentary processes in the Yellow and East China Seas. Based on in situ observations during the summers of 2006 and 2008 and associated satellite-derived data, the offshore detachment of the CDW plume and its mechanisms are investigated, and the related ecological impacts associated with the detached CDW are examined. We show that the detached low-salinity water from the CDW plume can partially reach the seabed, with its volume gradually diminishing from the surface to the seabed, and with a horizontal distribution that initially shifts eastward and then southward. The double-upwelling system, combined with the prevailing southerly wind and the anticyclonic eddy off the Changjiang Estuary, favors the detachment of the CDW plume. In particular, the anticyclonic eddy provides a habitat or venue for the formation and maintenance of the detached low-salinity water, and is responsible for the local presence of low-salinity water along the seabed. Data analysis indicates that this detachment can induce phytoplankton blooms and that enhanced chlorophyll a (Chl-a) contents were significantly associated with moderate nutrient concentrations and good light conditions in the offshore low-salinity water. This study also demonstrates that the variability in the vertical distribution of Chl-a off the Changjiang Estuary is related to the offshore detached CDW, and that the local deepening of the DCM (depth of Chl-a maximum) and the peak primary production occur within the offshore CDW. More importantly, we find that high Chl-a concentrations in the bottom water can be induced by the anticyclonic-eddy-featuring offshore CDW. Our results may facilitate a better understanding on the role of the detached CDW in local marine biogeochemical processes.  相似文献   

3.
This paper presents three years (1998–2000) of chlorophyll a (chl a) data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) for Case 2 waters of Chesapeake Bay and the middle Atlantic bight (MAB) to describe phytoplankton dynamics on seasonal to interannual time scales. We used extensive data on inherent and apparent optical properties in conjunction with satellite retrievals to: (1) characterize the bio-optical properties of the study area relevant to processing and interpreting SeaWiFS data; (2) test the applicability of the SeaWiFS bio-optical algorithm (OC4v.4) for the estuarine and coastal waters; (3) evaluate the accuracy of the SeaWiFS remote sensing reflectance (RRS) and chl a products on regional and seasonal bases using in situ observations. The characteristically strong absorption by chromophoric dissolved organic matter (acdom) and non-pigmented particulate matter (ad) in estuarine and coastal waters contributed to overestimates of chl a using OC4v.4 applied to in situ radiances for the Bay (mean ratio 1.42±1.20) and the MAB (2.60±1.36). Values of RRS from SeaWiFS in the blue region of the spectrum were low compared to in situ RRS, suggesting that uncertainties remain in atmospheric correction. Direct comparisons of SeaWiFS retrievals of chl a with in situ chl a for the Bay showed larger biases and uncertainties (mean ratio 1.97±1.85) than for chl a estimated from OC4v.4 applied to in situ RRS. The larger biases were attributed to errors in SeaWiFS radiances and the larger uncertainties to time-space “aliasing” of satellite observations and in situ measurements. To reduce the time differences between SeaWiFS and in situ data, we compared chl a obtained from continuous underway fluorometric measurements on selected ship tracks to SeaWiFS chl a and showed that SeaWiFS captured phytoplankton dynamics in much of the Bay. The agreement of SeaWiFS chl a with in situ chl a was strongest in the mid- (regions 3, 4) to lower Bay (regions 1, 2), and deteriorated toward the upper Bay (regions 5, 6), in part due to a reduction of sensitivity and an increase of noise for SeaWiFS products in the highly absorbing, low RRS waters of the upper Bay. A three-year time-series of SeaWiFS and in situ data showed that SeaWiFS accurately and reliably captured seasonal and interannual variability of chl a associated with variations of freshwater flow. Significant short-term variability of chl a in summer that was unresolved with shipboard data was detected in the SeaWiFS time-series and the implications are discussed. The overall performance of SeaWiFS in the mid- to lower Bay and the MAB, combined with high spatial (∼1 km2) and temporal (∼100 clear scenes per year) resolution, indicate current SeaWiFS products are valuable for quantifying seasonal to interannual variability of chl a in estuarine and coastal waters.  相似文献   

4.
南海北部表层颗粒有机碳的季节和年际变化遥感分析   总被引:1,自引:1,他引:0  
海洋颗粒有机碳(POC)是海洋固碳的一个关键参数。为了研究南海北部陆架及海盆表层POC浓度的时空分布特征以及变化趋势,本文利用2009-2011年4个季节的实测数据,对NASA发布的MODIS/AQUA卫星月平均POC遥感产品,进行了验证和校正;并利用校正后的遥感数据分析了2003-2014年POC的时空分布特征和变化趋势。发现POC遥感产品与南海北部实测数据具有较好的线性关系(R2=0.72),但存在系统性偏高,需利用实测数据对遥感数据进行区域性校正。分析校正后的遥感数据发现,南海北部陆架POC浓度较高,平均为(33.34±8.02)mg/m3;吕宋海峡西南海域浓度较低,平均为(29.25±6.20)mg/m3;中央海盆区浓度最低,平均为(27.02±4.84)mg/m3。春夏季POC浓度较低,最低值一般出现在5月,冬季(12月至翌年1月)POC浓度达到最高。利用2003-2014年的长时间序列遥感叶绿素(Chl a)和海表温度(SST)、混合层深度(MLD)模式数据,以及实测数据对南海北部POC浓度的影响机制进行了分析。发现POC与Chl a在秋冬呈现较好的相关关系(R2=0.51),但在春夏季较离散,表明秋冬季生物作用对POC影响较大。2003-2014年期间,POC与Chl a、MLD及SST存在明显的年际变化,但并没有显著的上升或下降趋势。  相似文献   

5.
Satellite-derived ocean color data of Coastal Zone Color Scanner (CZCS) on board the Nimbus-7 and Ocean Color and Temperature Scanner (OCTS) on board the Advanced Earth Observing Satellite (ADEOS) are jointly used with historical in situ data to examine seasonal and spatial distributions of chlorophyll a (Chl-a) and suspended particulate matter (SPM) concentrations in the East China Sea. Ocean color imagery showed that Chl-a concentrations on the continental shelf were higher than those of the Kuroshio area throughout the year. Satellite-derived Chl-a concentrations are generally in good accordance with historical in situ values during spring through autumn (although no shipboard in situ measurement was conducted at nearshore areas). In contrast, ocean color imagery in winter indicated high Chl-a concentrations (4–10 mg m–3) on the continental shelf where bottom depth was less than 50 m when surface water was turbid (2–72 g m–3 of SPM at surface), while historical in situ values were usually less than 1 mg m–3. This suggests that resuspended bottom sediment due to wind-driven mixing and winter cooling is responsible for the noticeable overestimation of satellite-derived Chl-a concentrations. The algorithm for ocean color needs to be improved urgently for turbid water.  相似文献   

6.
Seasonal and interannual variations in physicochemical properties (i.e., temperature, salinity, dissolved oxygen and dissolved inorganic nutrients), chlorophyll a (Chl-a), particulate carbon and nitrogen (PC and PN, respectively), and primary production were investigated in the neritic area of Sagami Bay, Kanagawa, Japan, from January 2002 to December 2008. These abiotic/biotic variables, except for NH4 +–N, repeated similar seasonal variations for all 7 years. On the basis of the analysis of data obtained on 167 sampling dates, depth-integrated primary production in this water can be easily estimated from Chl-a at the surface using the regression equations obtained in the present study. Intermittently high values of dissolved inorganic nutrients, Chl-a, PC, PN and primary productivity at the surface during the summer stratified period were induced by high freshwater discharge from the rivers after rainfalls and by the expansion of nutrient-rich Tokyo Bay Water. Temperature, salinity and dissolved inorganic nutrients showed drastic variations within a scale of a few days and/or weeks, and these variations were related to sea levels that represent the intrusion of the Kuroshio Water, Intermediate Oyashio Water or deep water from the continental slope. However, there was no consistent trend in the variations in Chl-a, PC, PN and primary production due to the complex effects of these waters.  相似文献   

7.
The variability of Chlorophyll-a (Chl-a) distribution derived from MODIS (on Aqua and Terra platforms) and MERIS sensors have been compared with SeaWiFS data in the Arabian Sea. MODIS Aqua has overestimated the SeaWiFS Chl-a within 25–32% in the coastal turbid (eutrophic) waters and underestimated in open ocean waters with error within 20%. However, there is no significant bias (?0.1 on log-scale) observed as the slope is well within 0.97-1.1 (log transformed). MODIS-Terra has underestimated the Chl-a concentration in open ocean waters by about 29–31%, which is higher than MODIS-Aqua. MODIS-Terra is observed to be more accurate than MODIS-Aqua in the coastal waters. MERIS is overestimating the SeaWiFS Chl-a with log RMS error of ~0.15 and log bias of ~0.13–0.2. The differences in the Chl-a estimates between each sensor are possibly due to differences in the sensor design, bio-optical algorithms and also due to the time differences between the satellites over passes. We have examined that the MERIS is performing similar to SeaWiFS and the MODIS-Aqua (Terra) data are reliable in open ocean (coastal) waters. However, Chl-a retrieval algorithms need to be improved especially for coastal turbid waters to continue with SeaWiFS data for long-term studies.  相似文献   

8.
Dimethylsulfide (DMS), chlorophyll a (Chl-a), accessory pigments (fucoxanthin, peridinin and 19-hexanoyloxyfucoxanthin), and bacterial production (BP) were measured in the surface layer (0–100 m) of the subarctic North Pacific, including the Bering Sea, during summer (14 July–5 September, 1997). In surface sewater, the concentrations of DMS and Chl-a varied widely from 1.3 to 13.2 nM (5.1 ± 3.0 nM, mean ± S.D., n = 48) and from 0.1 to 2.4 µg L–1 (0.6 ± 0.6 µg L–1, n = 24), respectively. In the subarctic North Pacific, DMS to Chl-a ratios (DMS/Chl-a) were higher on the eastern side than the western side (p < 0.0001). Below the euphotic zone, DMS/Chl-a ratios were law and the correlation between DMS and Chl-a was relatively strong (r 2 = 0.700, n = 27, p < 0.0001). In the euphotic zone, DMS/Chl-a ratios were higher and the correlation between DMS and Chl-a was weak (r 2 = 0.128, n = 50, p = 0.01). The wide variation in DMS/Chl-a ratios would be at least partially explained by the geographic variation in the taxonomic composition of phytoplankton, because of the negative correlation between DMS/Chl-a and fucoxanthin-to-Chl-a ratios (Fuc/Chl-a) (r 2 = 0.476, n = 26, p = 0.0001). Furthermore, there was a positive correlation between DMS and BP (r 2 = 0.380, n = 19, p = 0.005). This suggests that BP did not represent DMS and dimethylsulfoniopropionate (DMSP) removal by bacterial consumption but rather DMSP degradation to DMS by bacterial enzyme.  相似文献   

9.
Hydrographic data collected in cyclonic eddies in the Mozambique Channel and Basin revealed notable differences in temperature and salinity at a depth of 100 m, the upper mixed layer, the nitracline depths, and vertical distribution of chlorophyll-a (Chl-a). Differences in temperature and salinity did not show any consistent patterns. In contrast, the differences in the upper mixed layer, nitracline depths and the vertical Chl-a profile appeared to be driven by combined effects of eddy dynamics (i.e. shoaling of isopleths) and the seasonal variation in light availability and mixing conditions in the upper layers. Cyclonic eddies studied during austral spring and summer in the Mozambique Channel exhibited shallower upper mixed layers and nitracline depths, and deeper euphotic zones. Distinct subsurface Chl-a maxima (SCM) were associated with the stratified conditions in the upper layers of these eddies. In contrast, a cyclonic eddy studied during mid-austral winter in the Mozambique Basin had a shallower euphotic zone, deeper upper mixed layer and uniform Chl-a profiles. Another eddy sampled in the Mozambique Basin toward the end of winter showed a less pronounced SCM and roughly equal euphotic zone and upper mixed layer depths, suggestive of a transition from a well-mixed upper layer during winter to stratified conditions in summer.  相似文献   

10.
Eighteen years of summertime hydrographic and chlorophyll-a (Chl-a) data (~2700 stations) from the South Shetland Islands (Antarctica) region show that a “bell-shaped” (unimodal) distribution of phytoplankton biomass results annually when plotted against the inshore to offshore gradient in surface salinity. The maximum for this unimodal Chl-a distribution corresponds with a shallow upper mixed layer (UML) in iron-rich waters that occurs at salinities ~34. Methods of gradient analysis are used to distinguish sources of variability for bloom development among years. The control of phytoplankton biomass is resolved across the salinity gradient that separates the co-limiting conditions of deep UML depths and low-iron concentrations as opposing end-members. Chlorophyll-fluorescence yield data (a proxy for Fe-stress) showed that at salinities ~34, phytoplankton biomass was unlikely to be limited by Fe. Instead, blooming at salinities ~34 (1.3±1 mg Chl-a m?3) co-varied with shallow UML depths (41±19 m) that occurred as a function of higher UML temperature (1.5±0.5 °C) among years, and is evidence that atmospheric climate variability impacts summertime phytoplankton biomass and production in this Southern Ocean seascape.  相似文献   

11.
Ninety-four stations were sampled in the Atlantic subtropical gyres during 10 cruises carried out between 1995 and 2001, mainly in boreal spring and autumn. Chlorophyll a (Chl-a) and primary production were measured during all cruises, and phytoplankton biomass was estimated in part of them. Picoplankton (<2 μm) represented >60% of total Chl-a concentration measured at the surface, and their contribution to this variable increased with depth. Phytoplankton carbon concentrations were higher in the upper metres of the water column, whereas Chl-a showed a deep maximum (DCM). At each station, the water column was divided into the upper mixed layer (ML) and the DCM layer (DCML). The boundary between the two layers was calculated as the depth where Chl-a concentration was 50% of the maximum Chl-a concentration. On average DCML extends from 67 to 126 m depth. Carbon to Chl-a (C:Chl-a) ratios were used to estimate phytoplankton carbon content from Chl-a in order to obtain a large phytoplankton carbon dataset. Total C:Chl-a ratios averaged (±s.e.) 103±7 (n=22) in the ML and 24±4 (n=12) in the DCML and were higher in larger cells than in picoplankton. Using these ratios and primary production measurements, we derived mean specific growth rates of 0.17±0.01 d−1 (n=173) in the ML and 0.20±0.01 d−1 (n=165) in the DCML although the differences were not significant (t-test, p>0.05). Our results suggest a moderate contribution of the DCML (43%) to both phytoplankton biomass and primary production in the Atlantic subtropical gyres.  相似文献   

12.
A new water quality index for evaluating the water quality of Jinhae Bay and Gwangyang Bay was developed. Four water quality parameters were selected as water quality indicators for the water quality index: dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), chlorophyll-a (Chl-a), and dissolved oxygen (DO). Reference levels of DIN, DIP, and Chl-a were determined as 6.22 μmol L?1, 0.38 μmol L?1, and 2.32 μmol L?1, respectively, on the basis of a long-term dataset that was collected monthly in the Korea Strait over a period of seven years (2006–2012). The water quality index established for Jinhae Bay and Gwangyang Bay is (bottom DO grade × 0.33) + (surface Chl-a grade × 0.33) + (surface DIN grade × 0.17) + (surface DIP grade × 0.17). On the basis of a three-year observation, the water quality of Jinhae Bay was classified as “good” in winter and spring, “poor” in summer, and “fair” in autumn and exhibited large spatial variation, with the lowest-quality water observed in Masan Bay. The water quality of Gwangyang Bay was classified as “good” in winter, “fair” in spring, “poor” in summer, and “fair” in autumn. Unlike Jinhae Bay, the water quality of Gwangyang Bay exhibited minimal spatial variation. In both bays, water quality among the four seasons was worse during summer. It is essential that a survey for water quality evaluation be conducted during summer.  相似文献   

13.
Giant jellyfish (Nemopilema nomurai) outbreaks in relation to satellite sea surface temperature (SST) and chlorophyll-a concentrations (Chl-a) were investigated in the Yellow Sea and East China Sea (YECS) from 1998 to 2010. Temperature, eutrophication, and match–mismatch hypotheses were examined to explain long-term increases and recent reductions of N. nomurai outbreaks. We focused on the timing of SST reaching 15 °C, a critical temperature enabling polyps to induce strobilation and enabling released ephyra to grow. We analyzed the relationship of the timing with interannual variability of SST, Chl-a, and the timing of phytoplankton blooms. Different environmental characteristics among pre-jellyfish years (1998–2001), jellyfish years (2002–2007, 2009), and non-jellyfish years (2008, 2010) were assessed on this basis. The SST during late spring and early summer increased significantly from 1985 to 2007. This indicated that high SST is beneficial to the long-term increases in jellyfish outbreaks. SST was significantly lower in non-jellyfish years than in jellyfish years, suggesting that low SST might reduce the proliferation of N. nomurai. We identified three (winter, spring, and summer) major phytoplankton bloom regions and one summer decline region. Both Chl-a during non-blooming periods and the peak increased significantly from 1998 to 2010 in most of the YECS. This result indicates that eutrophication is beneficial to the long-term increases in jellyfish outbreaks. Timing of phytoplankton blooms varied interannually and spatially, and their match and mismatch to the timing of SST reaching 15 °C did not correspond to long-term increases in N. nomurai outbreaks and the recent absence.  相似文献   

14.
Moored sediment traps were deployed from January 2004 through December 2007 at depths of 550 and 800 m in San Pedro Basin (SPB), CA (33°33.0′N, 118°26.5′W). Additionally, floating sediment traps were deployed at 100 and 200 m for periods of 12-24 h during spring 2005, fall 2007, and spring 2008. Average annual fluxes of mass, particulate organic carbon (POC), ??13Corg, particulate organic nitrogen (PON), ??15N-PON, biogenic silica (bSiO2), calcium carbonate (CaCO3), and detrital material (non-biogenic) were coupled with climate records and used to examine sedimentation patterns, vertical flux variability, and organic matter sources to this coastal region. Annual average flux values were determined by binning data by month and averaging the monthly averages. The average annual fluxes to 550 m were 516±42 mg/m2 d for mass (sdom of the monthly averages, n=117), 3.18±0.26 mmol C/m2 d for POC (n=111), 0.70±0.05 mmol/m2 d for CaCO3 (n=110), 1.31±0.21 mmol/m2 d for bSiO2 (n=115), and 0.35±0.03 mmol/m2 d for PON (n=111). Fluxes to 800 and to 550 m were similar, within 10%. Annual average values of ??13Corg at 550 m were −21.8±0.2‰ (n=108), and ??15N averages were 8.9±0.2‰ (n=95). The timing of both high and low flux particle collection was synchronous between the two traps. Given the frequency of trap cup rotation (4-11 days), this argues for particle settling rates ≥83 m/d for both high and low flux periods. The moored traps were deployed over one of the wettest (2004-2005, 74.6 cm rainfall) and driest (2006-2007, 6.6 cm) rain years on record. There was poor correlation (Pearson's correlation coefficient, 95% confidence interval) of detrital mass flux with: Corg/N ratio (r=0.10, p=0.16); ??15N (r=−0.19, p=0.02); and rainfall (r=0.5, p=0.43), suggesting that runoff does not immediately cause increases in particle fluxes 15 km offshore. ??13Corg values suggest that most POC falling to the basin floor is marine derived. Coherence between satellite-derived chlorophyll a records from the trap location (±9 km2 resolution) and SST data indicates that productivity and export occurs within a few days of upwelling and both of these parameters are reasonable predictors of POC export, with a time lag of a few days to 2 weeks (with no time lag—SeaWiFS chlorophyll a and POC flux, r=0.25, p=0.0014; chlorophyll a and bSiO2 flux, r=0.28, p=0.0002).  相似文献   

15.
Remote sensing and surface POC concentration in the South Atlantic   总被引:1,自引:0,他引:1  
Several SeaWiFS products have been compared with shipboard data to assess the possibility of using remote sensing to estimate particulate organic carbon (POC) concentration in surface waters. Transmissometer data were collected during six South Atlantic Ventilation Experiment (SAVE) hydrographic expeditions conducted between November 1987 and March 1989 from R/V Knorr, and Melville. A total of 361 beam attenuation profiles were made with a SeaTech transmissometer interfaced with a CTD/rosette. In order to calculate the POC concentration from transmissometer profiles, a regression between beam attenuation and POC for open Atlantic Ocean waters derived from our research in the North Atlantic (North Atlantic Bloom Experiment, NABE) and enhanced by data from the Bermuda Atlantic Time Series Station (BATS) was applied. The profiles were processed and examined as vertical sections of the surface 250 m. The data were collected in two successive years, during the same season, which allowed us to compile a combined data set over the austral summer for examination. Beam attenuation/POC concentrations were integrated down to one attenuation depth with the intent of making comparisons with satellite optical data. No satellite optical data were available for 1987–1989, so the only option was to compare our integrated data with SeaWiFS-derived variables from later years averaged over the same season as SAVE data. Analysis of four SeaWiFS products acquired from 1997 to 2002 demonstrated very low variations from year to year for seasonally averaged data, suggesting that making comparisons of the beam attenuation/POC fields with averaged satellite optical products from later years is a valid (though not optimal) approach for this area. The highest correlation between beam attenuation/POC concentration and remotely derived products was found with normalized water-leaving radiance at 555 nm. Other SeaWiFS-derived variables—chlorophyll concentration, diffuse attenuation coefficient at 490 nm and integral chlorophyll (integrated over one attenuation depth)—were also compared but showed a slightly less satisfactory correlation.  相似文献   

16.
Mesozooplankton community structure and environmental factors were monitored monthly at a fixed station off Tongyeong, southeastern coast of Korea, from 2011 to 2014 to better understand the variability of the mesozooplankton community in relation to changes in the marine environment. Total mesozooplankton density varied from 747 to 8,945 inds. m-3 with peaks in summer. The surface water temperature (r = 0.338, p < 0.05) and chlorophyll-a (Chl-a) concentration (r = 0.505, p < 0.001) were parts of the factors that may have induced the mesozooplankton peaks in summer. Copepods accounted for 71% of total mesozooplankton. Total copepod density, particularly cyclopoid copepods, increased during the study period. Cumulative sum plots and anomalies of the cyclopoid copepod density revealed a change of the cyclopoid density from negative to positive in June 2013. A positive relationship between cyclopoid copepods and the Chl-a concentration (r = 0.327, p < 0.05) appeared to be one of the reasons for the increase in cyclopoids. Dominant mesozooplankton species such as Paracalanus parvus s.l., Oikopleura spp., Evadne tergestina, Cirripedia larvae, Corycaeus affinis, Calanus sinicus, and Oithona similis accounted for 60% of total mesozooplankton density. Based on cluster analysis of the mesozooplankton community by year, the seasonal distinction among groups was different in 2014 compared to other years. P. parvus s.l. and its copepodites contributed most in all groups in all four years. Our results suggest that the high Chl-a concentration since 2013 may have caused the changes in mesozooplankton community structure in the study area.  相似文献   

17.
We compared in-situ and satellite-derived measures of the biological carbon pump efficiency at the two seemingly similar subtropical North Atlantic gyre time series sites, the Bermuda time series (BATS, Bermuda Atlantic time-series study and OFP, ocean flux program) in the western gyre and the ESTOC time series (European station for time-series in the ocean, Canary Islands) in the eastern gyre. Satellite-derived surface chlorophyll a was slightly lower at Bermuda compared to ESTOC (annual average of 0.10±0.04 vs. 0.14±0.05-mg-m?3), as was satellite-derived primary production (annual average of 380±77 vs. 440±80-mg C-m?2 d?1). However, export production normalized to primary production (export ratio) was higher at Bermuda by a factor of 2–3 when estimated using mesopelagic traps moored at 500-m depth and by a factor of 3–4 when estimated using surface-tethered drifting traps. When averaged seasonally, flux at BATS was highest in spring (March, April, May) at all depths followed by summer (June, July, August) and decreasing towards fall, but this seasonality was less visible at ESTOC. Seasonal comparison showed the fastest flux attenuation at Bermuda in winter and spring, coinciding with the highest POC flux. POC/PIC ratios derived from the moored traps were significantly higher at BATS than at ESTOC in fall and winter, but this difference was not significant in spring (p>0.05). This study shows that while the western and eastern Atlantic subtropical gyres have similar rates of primary production, the biological carbon pump differs between the two provinces. Higher new nutrient input observed at Bermuda compared to ESTOC might explain part of the difference in export ratio but alone is insufficient. Greater winter mixed-layer depths and higher mesoscale eddy activity at Bermuda resulting in pulsed production events of labile organic matter might explain both the higher export flux and export ratios found at Bermuda.  相似文献   

18.
Primary production, nutrient concentrations, phytoplankton biomass (incl. chlorophyll a) and water transparency (Secchi depth), are important indicators of eutrophication. Earlier basin-wide primary production estimates for the Baltic Sea, a shallow shelf sea, were based mainly on open-sea data, neglecting the fundamentally different conditions in the large river plumes, which might have substantially higher production. Mean values of the period 1993–1997 of nutrient concentrations (phosphate, nitrate, ammonium and silicate), phytoplankton biomass, chlorophyll a (chl a) concentration, turbidity and primary production were calculated in the plumes of the rivers Oder, Vistula and Daugava and Klaipeda Strait as well as the open waters of the Arkona Sea, Bornholm Sea, eastern Gotland Sea and the Gulf of Riga. In the plumes, these values, except for primary production, were significantly higher than in the open waters. N:P ratios in the plumes were >16 (with some exceptions in summer and autumn), indicating potential P-limitation of phytoplankton growth, whereas they were <16 in the open Baltic Proper, indicating potential N-limitation. On the basis of in situ phytoplankton primary production, phytoplankton biomass and nutrient concentrations, the large river plumes and the Gulf of Riga could be characterized as eutrophic and the outer parts of the coastal waters and the open sea as mesotrophic. Using salinity to define the border of the plumes, their mean extension was calculated by means of a circulation model. Taking into account the contribution of coastal waters, the primary production in the Baltic Proper and the Gulf of Riga was 42·6 and 4·3×106 t C yr−1, respectively. Hence, an annual phytoplankton primary production in the whole Baltic Sea was estimated at 62×106 t C yr−1. The separate consideration of the plumes had only a minor effect on the estimation of total primary production in comparison with an estimate based on open sea data only. There is evidence for a doubling of primary production in the last two decades. Moreover, a replacement of diatoms by dinoflagellates during the spring bloom was noticed in the open sea but not in the coastal waters. A scheme for trophic classification of the Baltic Sea, based on phytoplankton primary production and biomass, chl a and nutrient concentrations, is proposed.  相似文献   

19.
Chlorophyll-a (chl-a) concentration has an important economic effect in coastal and marine environments on fisheries resources and marine aquaculture development. Monthly climatologies the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) derived chl-a from February 1998 to August 2004 around Funka Bay were used to investigate the spatial and temporal variability of chl-a concentrations. SeaWiFS-derived suspended sediment, MODIS derived sea surface temperature (SST), solar radiation and wind data were also analyzed. Results showed two distinct chlorophyll blooms in spring and autumn. Chl-a concentrations were relatively low (<0.3 mg m3) in the bay during summer, with high concentrations occurring along the coast, particularly near Yakumo and Shiraoi. In spring, chl-a concentrations increased, and a large (>2 mg m3) phytoplankton bloom occurred. The spatial and temporal patterns were further confirmed by empirical orthogonal function (EOF) analysis. About 83.94% of the variability could be explained by the first three modes. The first chl-a mode (77.93% of the total variance) explained the general seasonal cycle and quantified interannual variability in the bay. The spring condition was explained by the second mode (3.89% of the total variance), while the third mode (2.12% of the total variance) was associated with autumn condition. Local forcing such as the timing of intrusion of Oyashio water, wind condition and surface heating are the mechanisms that controlled the spatial and temporal variations of chlorophyll concentrations. Moreover, the variation of chlorophyll concentration along the coast seemed to be influenced by suspended sediment caused by resuspension or river discharge.  相似文献   

20.
《Marine Chemistry》2005,93(1):21-32
We investigated distributions of surface water CO2 partial pressure (pCO2), dissolved oxygen (DO) and associated carbonate parameters in the Pearl River estuary, a large subtropical estuary under increasingly anthropogenic pressure in China, in the summer of 2000 and late spring of 2001. pCO2 levels, measured underway using a continuous measurement system, were high during both seasons, with levels of >4000 μatm at salinity <0.5. pCO2 distribution overall mirrored DO across the salinity gradient. Using the linear relationship between excess CO2 and apparent oxygen utilization (AOU) in surface water, we conclude that aerobic respiration is the most important process in maintaining such high pCO2 measured upstream. The material being respired is likely in a close association with the organic pollutants discharged into the system. Based on the measured excess CO2 vs. AOU plots, we estimate that the upper limit of pCO2 should be ∼7000 μatm in the Pearl River estuary assuming that CO2 was produced solely by aerobic respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号