首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海冰是极地气候系统重要组成部分。基于1982—2004年的卫星反照率、海冰密集度数据,选取了7个北极海域(分别位于格陵兰海、巴伦支海、喀拉海、拉普捷夫海、东西伯利亚海及以北海域、楚科奇海及以北海域和波弗特海及以北海域)进行了研究。对比分析发现,两数据区域平均序列相关性比较高,最低相关系数为0.51,最高相关系数为0.94。格陵兰海海域和巴伦支海海域夏季海表反照率、海冰密集度较低,多为无冰海面;喀拉海域、拉普捷夫海域、东西伯利亚海及以北海域6月份海表反照率、海冰密集度较高,7、8月份海冰加速融化,海冰密集度下降明显;楚科奇海及以北海域、波弗特海及以北海域夏季海表反照率、海冰密集度较高。7个海域海表反照率、海冰密集度均呈现下降趋势,西部的楚科奇海及以北海域、波弗特海及以北海域下降速度最快,巴伦支海海域下降速度最慢。海表反照率和海冰总量的减少,对气候演变有着重要影响。  相似文献   

2.
受全球气候变化的影响,极区海浪尤其是北极海浪在过去几十年发生了显著的变化,使得海冰边缘区海冰与海浪的相互作用愈发显著。本文从物理海洋学的角度出发,较系统地总结了海冰对海浪作用研究的国内外现状,从理论和实测的角度分别探讨了海冰对海浪能量的耗散及其引起的波动频散关系的变化,同时分析了当前海冰覆盖海域海浪的数值模拟与现场观测研究,指出了未来开展有冰海域海浪数值模拟与预报所面临的主要问题,并对该方向今后的研究做出展望。总体来看,尽管海冰对海浪作用的机理复杂且与海冰类型高度相关,但是海冰对海浪能量的衰减与传播距离基本呈指数关系,并且海冰会一定程度上影响海浪的传播速度。未来依然需要更多不同海冰类型下海浪的观测数据以开展进一步的机理分析、模型检验和参数校准,进而实现高精度的业务化预报。  相似文献   

3.
气候态下的北极海冰运动特征   总被引:1,自引:0,他引:1  
利用国际北极浮冰运动观测资料(IABP)(1979-2006年),分析了年平均、季节平均和月平均的北极海冰运动特征.分析结果表明,在不同时间尺度上,都体现出北极海冰运动的两个基本特征,即反气旋式的波弗特涡和穿极漂流,但是强度有所差异.6-9月,北极上空存在一个低压系统,导致海冰出现气旋式运动,穿极漂流较弱.波弗特涡中心在1-9月由加拿大海盆逐渐退缩至海岸附近,之后又向东西伯利亚海方向移动.北极海冰运动特征与海平面气压有密切关系,但北极表层洋流的作用也是不可忽略的,尤其是弗雷姆海峡附近海域.  相似文献   

4.
渤海是中国主要的海冰存在区域,同时渤海地区也是我国的经济重心,海上交通发达,经济活动频繁。海冰的存在对于海上波浪情况会产生重要的影响。随着渤海海冰范围的缩减,包括航运和海上建设在内的经济发展也在持续增加,这需要可靠的波浪和海冰预测来应对这种不断变化的环境,同时对经济活动影响最重大的海冰边缘区的波浪模拟变得越来越重要。本文使用WAVEWATCH ■不同海冰模型对渤海的海浪进行了模拟,并研究比较了不同海冰模型的差异。研究发现,在海冰模型中,其IC0和IC1均不是真实的理论模型,它们不具备模拟海冰覆盖海域下海浪的能力。IC2和IC3为理论模型,其衰减率随着频率变化,并且可以对高频部分进行有效的衰减,同时在低频区域的衰减率也处于合理的范围,而IC0与IC1则无法做到。针对海冰覆盖海域的海浪模拟,应首选IC2或IC3,同时根据实地海冰的情况来确定参数。  相似文献   

5.
1979-2012年北极海冰运动学特征初步分析   总被引:3,自引:3,他引:0       下载免费PDF全文
利用美国冰雪数据中心(NSIDC)发布的海冰速度和范围数据,本文分析了1979—2012年间北极海冰的运动学特征,以及北极海冰运动与分布范围演变之间的关系。结合欧洲中期天气预报中心(ECMWF)发布的2007和2012年高分辨率的气压场、风场数据,探讨了北极风场和气压场与海冰运动、辐散辐合和海冰面积的关系。结果表明,在1979-2012年间北极海冰平均运动速度呈显著增强的趋势,冬季海冰平均运动速度增加趋势明显强于夏季;北极、波弗特-楚科奇海域和弗拉姆海峡的冬、夏季海冰平均运动速度的增加率分别为2.1%/a和1.7%/a、2.0%/a和1.6%/a以及4.9%/a和2.2%/a。1979-2012年北极海冰平均运动速度和范围的相关性为-0.77,二者存在显著的负相关关系。北极冬季和夏季风场的长期变化趋势与海冰平均运动速度的变化趋势一致,冬季和夏季的相关系数分别为0.50和0.48。风场和气压场对海冰的运动、辐散及重新分布发挥着重要作用。2007年夏季,第234~273天波弗特海域一直被高压系统控制,波弗特涡旋加强,使得波弗特海域海冰聚集在北极中央区;顺时针的风场促使海冰向格陵兰岛和加拿大北极群岛以北聚合。2012年,白令海峡和楚科奇海域处于低压和高压系统的交界处,盛行偏北风,海冰从北极东部往西部输运,加拿大海盆的多年海冰因离岸运动而辐散,向楚科奇海域的海冰输运增加,受太平洋入流暖水影响,移入此区域的海冰加速融化,从而加剧海冰的减少。  相似文献   

6.
海浪搅拌混合对北太平洋海表面温度模拟的影响   总被引:1,自引:1,他引:0  
利用NCEP再分析风场驱动WAVEWATCH III海浪模式对北太平洋海域的海浪过程进行模拟,利用浮标观测资料对模拟出的海浪要素有效波高进行验证,发现他们之间具有很好的一致性。基于模式输出的有效波高等波浪要素,利用特征波参数化理论,在海洋环流模式中引入海浪搅拌混合作用,分析其对北太平洋海表面温度模拟的影响,初步数值模拟结果表明,sbPOM模式在考虑海浪搅拌混合作用以后,模拟精度进一步提升,这对提供一个准确的大气模式下边界条件具有重要作用。  相似文献   

7.
时莹  梁书秀  孙昭晨 《海洋工程》2018,36(6):116-123
基于浅水斜坡地形的物理模型试验数据,考察SWAN模型对实验室小尺度浅水波浪的模拟效果,进而检验其浅水项的模拟精度。模拟中采用直接输入初始测点的实测海浪谱进行造波,重点考察浅水中三波相互作用和变浅破碎两个源项,对不同工况下,SWAN模式在水深条件变化下的有效波高、谱平均周期、海浪谱演化的模拟能力进行研究。研究表明:模拟的有效波高较符合实测波浪的增长和衰减,但谱平均周期计算值明显偏小;海浪谱的能量转移机制同实测有较大区别,频谱模拟结果出现高频高估、低频低估现象。对两个源项进行对比分析得出三波相互作用对海浪谱的能量转换影响远大于变浅破碎耗散。想要提高近岸区谱平均周期和海浪谱的模拟精度则SWAN模型中三波非线性项的计算精确度仍需更多研究和改进。  相似文献   

8.
印尼沿岸易受气旋生浪和咆哮西风带产生的涌浪的侵蚀,但其海浪发展及传播机理尚不明确,给海岸工程建设和防护带来极大困扰。本文基于第三代海浪模式WAVEWATCH Ⅲ,采用CCMP交叉校正多平台海洋表面V2.0风场(Cross-Calibrated Multi-Platform Ocean Surface Wind Velocity)作为驱动风场,建立自整个印度洋至印尼沿岸的三级嵌套海浪模型,模拟咆哮西风带及热带气旋作用下印尼沿岸灾害性海浪,并研究其海浪分布及传播特性。结果表明:(1)咆哮西风带单独作用下,印尼沿岸盛行南向海浪,有效波高等值线沿东北方向平行递减,海浪谱为多峰,西南向涌浪占主导地位,能量集中分布于60°—90°范围,呈现北传特性;(2)咆哮西风带和热带气旋联合作用下,气旋路径左侧出现涌浪低值区,东南向风浪主导,风浪能量集中分布于110°—130°范围,路径右侧西北向风浪和南向涌浪并存,60°—90°附近涌浪波动能量占主导,风浪能量集中在210°附近;近岸浅水海域涌浪能量主导,开敞海域涌浪能量集中在60°—90°范围,有掩护海域涌浪能量峰值位于0°附近。  相似文献   

9.
海冰运动是影响北极海冰平流输运和物质平衡空间重新分布的重要因素。本研究基于2018年9月至2019年8月期间北冰洋66个冰基浮标位置记录数据,结合大气再分析数据,计算得到了海冰运动速度、冰速与风速的比值和海冰运动惯性强度,以刻画北极海冰运动学特征参数在一个冰季的时空变化,并讨论了不同区域冰速与风速比与海冰密集度的关联性。海冰漂移速度在波弗特–楚科奇海、东北极中央区和西北极中央区呈秋冬降低春夏升高的季节变化特征。格陵兰海月均海冰漂移速度((0.32±0.06)m/s)最大,其次是弗拉姆海峡((0.17±0.07)m/s)和波弗特–楚科奇海((0.14±0.05)m/s),而东北极中央区((0.09±0.02)m/s)和西北极中央区((0.07±0.03)m/s)较低。在月尺度上,冰漂移速度与风速的比值主要受海冰漂移速度支配。弗拉姆海峡和格陵兰海受较强的表层海流影响,冰速与风速比值较大,西北极中央区、东北极中央区和波弗特–楚科奇海的冰速与风速比值随着海冰密集度的增加趋近,并分布在0~0.02之间。所有浮标的月平均惯性运动指数为0.158±0.144,秋冬季过渡期间,海冰对风的响应以及海冰运...  相似文献   

10.
陶树豪  杜凌 《海洋学报》2021,43(7):100-113
随着北冰洋海冰快速减退,气–冰–海系统发生显著变化,波弗特流涡也发生显著变化。本文使用实测资料和海洋大气再分析数据,探讨北冰洋波弗特流涡的长期变化和大气动量输入对波弗特流涡变化的影响。波弗特流涡的长期变化可以分为3个典型时期(1980–1995年,1996–2007年,2008–2018年)。最近时期(2008–2018年),波弗特流涡平均流涡强度达到4.39×10–7,相较于第1个时期(1980–1995年),流涡强度增加近2倍,达到稳定的状态。波弗特流涡范围扩大,主体向西北移动;上层海洋斜压性增强。与此同时,上层海洋环流主模态已发生显著转变:1980–1995年,环流主模态为影响整个加拿大海盆的加拿大海盆模态;2008–2018年的主模态则转变为影响整个研究海域的太平洋扇区模态。最近时期,表征气–海之间动量输入的气–海应力显著增加,尤其是夏末秋初的8–10月,与冰–海应力几乎相当。增加的大气动量输入带来平均动能增加,埃克曼泵压效应增强,下盐跃层深度加深,增加的大气动量输入进而导致近年来波弗特流涡的显著增强。加拿大海盆南部是大气动量输入的关键区。  相似文献   

11.
北极海冰的快速减退是近年来全球变化最重要的现象,对全球气候产生显著影响。海表面风场是影响海冰变化的核心因素,但风场对各个海域海冰变化的贡献有很大差异,需要深入了解海表面风场对各个边缘海的贡献才能理解北极海冰变化的原因。本文采用SVD方法,分析海冰面积显著变化时的矢量风场与海冰密集度变化的关系,探讨风场对各个海域海冰的总体影响及对整个北极海冰变化的贡献。结果表明,各海区海冰密集度的变化都与海面风场有联系,但相关程度有明显差异,表明在有些海域风场起支配性作用,而在另一些海域其他因素的作用也很显著。对海冰产生影响的风场类型主要有三类:纬向风、经向风和气旋式风场。在波弗特海-拉普捷夫海这4个海域中,仅有1种类型的风场(纬向风或经向风)对海冰产生显著影响,同一海域海冰密集度呈现位相一致的变化。而在其他海域,有2种类型的风场(纬向风与气旋式风场,经向风与气旋式风场)影响海冰变化,同一海域的海冰密集度会呈现位相相反的变化。北极海冰的变化是一个整体,各个边缘海的海冰既有各自的变化特点,又有很好的整体协同变化特点。而2004年以来,加拿大海盆反气旋式风场与欧亚海盆弱的气旋式风场的整体结构呈现逐渐加强的趋势,有利于北极海冰的进一步减退。  相似文献   

12.
海面风场在海浪模拟和预报中起着重要作用。文中分别利用CCMP风场和Q/N混合风场驱动WAVEWATCHⅢ海浪模式对北太平洋海域的海浪过程进行了模拟。利用NDBC(美国国家浮标资料中心)提供的浮标资料和Jason-1卫星高度计资料对模拟结果进行了检验分析。分析表明:在北太平洋海域,CCMP风场较Q/N混合风场与浮标风速资料有更好的一致性,更能代表该海域的海面风场状况;CCMP风场驱动下的海浪模拟结果总体上优于Q/N混合风场的结果。  相似文献   

13.
刘涛 《海洋世界》2011,(11):33-37
中国第四次北极考察队自2010年7月1日至9月20日,以北极海冰快速变化机理研究和北极海洋生态系统对海冰快速变化的响应为科学目标,先后对白令海、楚科奇海、加拿大海盆、北极点等海域,进行了135个海洋站位和10个冰上站位的考察作业,系统观测了海冰、海洋和大气变化,获得了大量的样品和数据。本次北极考察历时82天,总航程达12600海里,调查范围南北纵贯2300海里,东西横跨1100海里,是历次北极考察中范围最广、距离最远的一次考察,创造了多项国内纪录,其中"雪龙"船北进至北纬88度26分,创下中国航海史上最北端的纪录;部分科考队员利用直升机抵达北极点进行科考,实现中国人靠自身能力挺进到北极点的伟大壮举。  相似文献   

14.
杜艳  刘国强  何宜军  韩雪 《海洋科学》2020,44(10):12-22
台风是影响中国黄东海的强天气现象,其引起的强风、巨浪和台风增水严重威胁着沿海地区人民的生命与财产安全。本文以海浪模式SWAN(Simulating Waves Nearshore)与区域海洋模式ROMS(Regional Ocean Modeling System)为基础,构建了中国黄东海海域在201509号台风“灿鸿”影响下的海浪-海洋耦合模式。通过浮标与Jason-2高度计有效波高数据验证了模式结果的准确性。进行了敏感性实验分析,对比耦合(ROMS+SWAN)与非耦合(SWAN)下以及使用不同地形数据(ETOPO1、ETOPO2、GEBCO)、不同物理参数化方案(风能输入、白冠耗散、底摩擦耗散)下的模拟结果差异。结果发现在射阳与前三岛浮标处,使用GEBCO地形数据(15弧秒间隔)下的模拟效果更好且稳定。在空间分布上,台风中心附近的浪流相互作用显著,在其前进方向右侧表现为耦合的有效波高值低于非耦合有效波高值,差值最高可达1米。选择不同风输入与耗散项方案时的模拟差异主要发生在最大波高处,选择不同的风能输入与白冠耗散项方案带来的差异接近0.4米,而底摩擦项方案选择不同带来的差异接近1米。因而在模拟实际的海况时,需要综合考虑这些因素带来的影响,才能达到SWAN海浪模型最好的海浪模拟效果。  相似文献   

15.
利用1979—2012年Nimbus-7和DMSP海冰密集度资料对北极海冰进行研究。EOF分析结果表明整个北极海域海冰密集度变化具有非常强的季节变化特征,海冰最多的月份在1—4月、最少的在7—10月,其中鄂霍次克海和日本海、白令海等海域夏季无冰。北极海冰变化的总体趋势是减少,喀拉海和巴伦支海的减少速度最快,只有白令海海冰密集度呈增加趋势。北极区域海冰面积异常变化的主要周期一般在1 a左右,喀拉海和巴伦支海的主周期较长,为18.5 a。  相似文献   

16.
北极海域海面风场和海浪遥感观测能力分析   总被引:1,自引:1,他引:0  
杨俊钢  张杰  王桂忠 《海洋学报》2018,40(11):105-115
卫星遥感是开展北极海域海面风场和海浪分布特征与变化规律研究的重要手段。本文基于在轨多源卫星遥感数据,从遥感观测空间覆盖、时间覆盖和多源卫星遥感数据融合等方面开展北极海域海面风场与海浪遥感观测能力分析,研究主要结果为:基于ASCAT和HY-2A散射计可实现北极海域海面风场遥感观测,通过多星联合观测可获取北极海域时空分辨率优于12 h和0.1°的海面风场遥感融合数据;基于HY-2A、CryoSat-2、SARAL和Sentinel-3高度计可实现北极海域海浪遥感观测,同样通过多星联合观测可获取北极海域时空分辨率优于1 d和0.25°的海浪有效波高遥感融合数据;基于2016年北极海面风场和海浪遥感融合数据,分析得出北极海域海面风场和海浪在2月处于极大值,然后逐渐减小,7月最小,随后开始逐渐增大。本研究表明,基于多源散射计和高度计遥感观测可实现北极海域海面风场和海浪的高时空分辨率遥感业务化监测。  相似文献   

17.
本文详细介绍了SIS海冰模式中引进两种盐度参数化方案即等盐度方案和盐度廓线方案对海冰模拟所存在的差异。利用盐度廓线方案导出的表征盐度与海冰温度间关系的方程比等盐度方案多出一项,将定义为盐度差异项。盐度差异项对海冰厚度的热力作用表现为:在海冰厚度增长季节(11月到次年5月),盐度差异项通过升高海冰内部温度,抑制海冰增长;在消融的第一阶段(6.8月),盐度差异项通过升高海冰内部温度加快海冰消融;在消融的第二阶段(9.10月),盐度差异项通过降低海冰内部的温度抑制海冰消融。但尺度分析表明,盐度差异项要比方程中队海冰温度作用最大项小1.2个量级,如果采用一级近似,可以略去盐度差异项,因此盐度差异项对海冰增长和消融影响很小。同时利用冰洋耦合模式(ModularOceanModel,MOM4),分别采用两种盐度参数化方案模拟北极海冰厚度和海冰密集度的季节性变化,模拟结果也表明两种方案模拟得到的海冰厚度和海冰密集度的季节性变化相差甚小。  相似文献   

18.
刘子龙  史剑  蒋国荣 《海洋科学》2017,41(3):122-129
基于海浪模式WAVEWATCH Ⅲ模拟北太平洋海浪要素,结合NDBC浮标资料进行验证,发现模拟出的有效波高与浮标测量值具有很好的一致性。基于改进型白冠覆盖率耗散模型,利用海浪模式模拟出的有效波高、有效波周期和摩擦速度等海浪要素计算出单位面积水柱内因海浪破碎产生的湍动能通量。通过改变环流模式sbPOM湍动能方程的上边界条件,引入海浪破碎产生的湍动能通量,并探究海浪破碎对北太平洋海表面温度模拟的影响。研究表明,由于海浪破碎的引入,环流模式sbPOM对北太平洋海表面温度模拟的准确程度得到提升,这为大气模式提供一个准确的北太平洋下边界条件具有重要意义。  相似文献   

19.
海冰的热力过程及其与动力过程的耦合模拟   总被引:17,自引:0,他引:17  
研究和讨论了海气相互作用过程中海冰演变的物理过程;大气和海洋对海冰的热力作用以及冰内物理过程;大气和海洋热力学参数对冰厚和密集度等冰情参数的影响和上述物理过程的数学处理。计算了冰面与水面能量收支,并分析海冰热力增长函数的特征;将热力模式与动力模式。对渤海1989-1990年度海冰进行数值模拟。结果表明,考虑热力过程的热动力模式,对类似于1990年2月12-18日海冰融化过程显示出明显的优越性,模拟  相似文献   

20.
Stokes漂流对海洋上混合层中的流场和温度场结构具有不可忽视的作用。本文基于WAVEWATCHⅢ海浪模式模拟的海浪要素计算得到Stokes漂流,将其引入SBPOM模式的动量方程中,从体积输运的角度研究Stokes漂流对全球海表面温度的影响。分析发现Stokes漂流与Stokes输运在全球呈现高纬度强于中低纬度的带状分布特征,且这种流动与输运对全球海表面温度具有降温作用,该降温作用的分布与全球Stokes输运强度相对应,高纬降温作用大于中低纬度,特别是南极绕极流海域平均降温明显大于其余海域,最大降温可达1.5℃,且全球月平均降温超过0.1℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号