首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Comprehensive experimental and numerical studies have been undertaken to investigate wave energy dissipation performance and main influencing factors of a lower arc-plate breakwater. The numerical model, which considers nonlinear interactions between waves and the arc-plate breakwater, has been constructed by using the velocity wave- generating method, the volume of fluid (VOF) method and the finite volume method. The results show that the relative width, relative height and relative submergence of the breakwater are three main influencing factors and have significant influence on wave energy dissipation of the lower arc-plate open breakwater. The transmission coefficient is found to decrease with the increasing relative width, and the minimum transmission coefficient is 0.15 when the relative width is 0.45. The reflection coefficient is found to vary slightly with the relative width, and the maximum reflection coefficient is 0.53 when the relative width is 0.45. The transmission and reflection coefficients are shown to increase with the relative wave height for approximately 85% of the experimental tests when the relative width is 0.19 0.45. The transmission coefficients at relative submergences of 0.04, 0.02 and 0 are clearly shown to be greater than those at relative submergences of 0.02 and 0.04, while the reflection coefficient exhibits the opposite relationship. After the wave interacts with the lower arc-plate breakwater, the wave energy is mainly converted into transmission, reflection and dissipation energies. The wave attenuation performance is clearly weakened for waves with greater heights and longer periods.  相似文献   

2.
A series of regular and irregular wave experiments are conducted to study the reflective and transmitting performances of quarter circular breakwater (QCB) in comparison with those of semi-circular breakwater (SCB). Based on regular wave tests, the reflection and transmission characteristics of QCB are analyzed and a few influencing factors are investigated. Then, the wave energy dissipation as wave passing over the breakwater is discussed based on the hydraulic coefficients of QCB and SCB. In irregular wave experiments, the reflection coefficients of QCB and their spectrums are studied. Finally, the comparisons between the experimental results and numerical simulations for QCB under regular and irregular wave conditions are presented.  相似文献   

3.
O.S. Rageh 《Ocean Engineering》2009,36(14):1112-1118
The efficiency of the breakwater, which consists of caissons supported on two or three rows of piles, was studied using physical models. The efficiency of the breakwater is presented as a function of the transmission, reflection and the wave energy dissipation coefficients. Regular waves with wide ranges of wave heights and periods and constant water depth were used. Different characteristics of the caisson structure and the supporting pile system were also tested. It was found that, the transmission coefficient (kt) decreases with increasing the relative breakwater draft D/L, increasing the relative breakwater width B/h, and decreasing the piles gap-diameter ratio G/d. It is possible to achieve kt values less than 0.25 when D/L≥0.1. The reflection coefficient takes the opposite trend especially when D/L≤0.15. The proposed breakwater dissipates about 10-25% of the incident wave energy. Also, simple empirical equations are developed for estimating the wave transmission and reflection. In addition, the proposed breakwater model is efficient compared with other floating breakwaters.  相似文献   

4.
The aim of this paper is to develop an offshore breakwater, for which coefficients of both the wave reflection and transmission have low values. The breakwater is suggested to compose of n layers of porous materials with different porosities. A complex eigen function method is used in the theoretical analysis. Continuities of both mass flux and fluid pressure are assumed at interfaces between every two adjoining porous materials and at the interface between end materials and water region. Following a series of mathematical processes, the coefficients of the wave transmission and reflection along with the wave energy loss are calculated. The porosity of materials is varied in computations; and results are compared among structures composing of different layers of porous materials. A single layer offshore breakwater is shown to reduce simultaneously the coefficients of transmission and reflection only when the structure is very wide in the direction of wave propagation, and the structure material has a high porosity. A multilayer breakwater, however, can function well in reducing both coefficients at a much narrower width; structure having more layers can be more effective at narrower width. Finally, several experiments are conducted; theoretical computations and experimental results agree well.  相似文献   

5.
A series of regular and irregular wave experiments are conducted to study the reflective and transmitting performances of quarter circular breakwater (QCB) in comparison with those of semi-circular breakwater (SCB). Based on regular wave tests, the reflection and transmission characteristics of QCB are analyzed and a few influencing factors are investigated. Then, the wave energy dissipation as wave passing over the breakwater is discussed based on the hydraulic coefficients of QCB and SCB. In irregular wav...  相似文献   

6.
In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h-1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.  相似文献   

7.
Interaction Between Waves and A Comb-Type Breakwater   总被引:2,自引:1,他引:2  
DONG  Guo-hai 《中国海洋工程》2003,17(4):517-526
The characteristics of wave transmission, reflection and energy dissipation of comb-type caisson breakwaters are studied through laboratory physical model tests. Regular and irregular waves, with a wide range of wave heights and periods and a constant water depth, are considered. Different dimensions of each portion of the comb-type caisson breakwater are tested. Empirical formulae for calculating the reduction coefficient k, which is the ratio of horizontal wave force on unit length of the comb-type breakwater to that on unit length of the vertical wall breakwater, and for calculating the reflection coefficient of waves k, are obtained from the measurements. The comb-type caisson breakwater has been found to be very efficient in dissipating incident wave energy and in reducing wave reflection, and has already been used for the construction of an island breakwater in the Dayao Bay of Dalian Port, Liaoning Province, China. Compared with the cost of a common caisson breakwater, about 24. 5% of the investm  相似文献   

8.
中咀湾是一个天然的避风良港,一般情况下外海波浪影响很小,主要受局部风场产生的局部风浪影响。本文采用曹宏生在Massel的扩展缓坡方程基础上推导出来的考虑陡变地形和能量耗散效应的缓坡方程为控制方程,结合固边界的反射边界条件,构成波浪传播变形的联合折射、绕射和反射的数学模型。文中将此方法运用在中国台州市大陈岛中咀湾避风港中,用波浪数学模型计算极端高水位和设计高水位时3种波况分别在3组重现期时工程海域的波浪要素,提供防波堤的堤前波高,并分析比较此处实心式和透空式防波堤的防浪性能。  相似文献   

9.
An impedance analytical method (IAM) is developed to study the interaction between regular waves and a perforated-wall caisson breakwater that consists of a front perforated-wall and a chamber with a rigid impermeable back wall. The boundary conditions at the perforated-wall are established in terms of the flow resistances of the fluid passing through the holes. As a result, explicit algebraic expressions are obtained for reflection coefficients and wave loads. In the formulae, all of the parameters are known a priori. The predicted reflection coefficients and the wave forces are compared with the experimental data of other authors.  相似文献   

10.
波浪与起伏水平板防波堤相互作用数值模拟   总被引:1,自引:1,他引:0  
利用自主研发的基于紧致插值曲线CIP(constrained interpolation profile)方法的数学模型,开展规则波与起伏水平板防波堤相互作用的数值模拟研究。模型在笛卡尔直角坐标下建立,以CIP方法为流场基本求解器,分步求解Navier-Stokes方程,利用高精度的流体体积类型的THINC/SW (tangent of hyperbola for interface capturing with slope weighting)方法重构自由液面,采用浸入边界IBM(immersed boundary method)方法处理波浪与起伏板防波堤的耦合作用问题,通过动量源项造波方法模拟波浪的产生。重点关注波浪的浅水变形和板两端涡旋脱落的非线性现象,分析不同潜深、波要素下的板周围流场分布、板的运动响应和波浪的反透射系数。结果表明:起伏水平板主要通过能量反射、板上浅水变形和板两端的涡脱落消能,能有效减小板后波高,具有作为防波堤的可行性。  相似文献   

11.
Breakwaters are often built in coastal waters to facilitate navigation and recreation, both inside and outside regions of the breakwater. This requires that the reflection and transmission characteristics of the structure be both minimized at the same time. This is achieved by a design that will allow dissipation of wave energy by multiple reflection. Such structures will need the knowledge of these characteristics in their design. Model tests were performed on a shallow water breakwater concept of this type to determine the reflection and transmission coefficients. The concept of the breakwater was to reduce both the reflection and transmission of waves. It was found that the breakwater design was effective at certain wave characteristics. Nondimensional loads and local pressures on the breakwater panels are also reported which will facilitate the structural design of such breakwaters.  相似文献   

12.
《Coastal Engineering》2001,44(2):141-151
An analytical model has been developed that predicts the reflection of irregular waves normally incident upon a perforated-wall caisson breakwater. To examine the predictability of the developed model, laboratory experiments have been conducted for the reflection of irregular waves of various significant wave heights and periods impinging upon breakwaters having various wave chamber widths. For frequency-averaged reflection coefficients, though the overall agreement is fairly good between measurement and calculation, the model somewhat over-predicts the reflection coefficients at larger values, and under-predicts at smaller values. The model also underestimates the energy loss coefficients as wave reflection becomes larger. These differences occur because the model neglects the evanescent waves near the breakwater, which increase the energy loss at the perforated wall. The frequency-averaged reflection coefficient shows a minimum when the wave chamber width is approximately 0.2 times the significant wavelength, and it decreases with increasing wave steepness. Finally, it is shown that the reflection of irregular waves from a perforated-wall caisson breakwater depends on the wave frequency, so that the reflected wave spectrum shows a frequency dependent oscillatory behavior.  相似文献   

13.
This paper presents an analytical solution for scattering of oblique incident, small amplitude, monochromatic wave trains by a stationary rigid multi-layered objects with rectangular cross-section. The object is infinite long and consists of multilayers, which can be either solid or permeable. This paper extends the previous work by Hu and Liu [1] from normal incident wave condition with a special object configuration to oblique incident waves with multi-layered object. The present model is validated with several existing solutions for normal/oblique waves interacting with a single object; excellent agreement is observed. New numerical results are presented to investigate the effects of incidence angle on reflection, transmission and energy loss coefficients for a combined floating and bottom-mounted permeable breakwater. A new floating board-cage breakwater is developed from the present model and its solutions are discussed in detail. A computer program, AWAS-P, has been updated so that it is applicable for both oblique and normal incident waves, while the object is multi-layered.  相似文献   

14.
This work presents a simple method to evaluate the performance of a porous breakwater when it is impinged with normal incidence by a non-breaking monochromatic wave train. It is based on: 1) a potential flow model for wave interaction with permeable structures and 2) a set of experimental tests on a rectangular porous structure with uniform granular distribution. A characteristic friction diagram is obtained considering wave energy balance in a control volume, minimising the error between the numerical model and the experimental results for the wave transmission coefficient. Results show that, for large breakwater widths, the reflection process reaches a saturation regime before the waves exit the structure at a distance from the seaside between the interval 0.2 < x/< 0.45. For larger breakwater widths, the reflection coefficient is almost constant (except for “resonant” conditions) and wave transmission decreases exponentially. Under such conditions, the wave propagation through the porous medium depends on the relative diameter D/L and the porosity of the material; the dependence on the relative breakwater width B/L and the ratio diameter wave height D/H is weak. This diagram intends to be useful for preliminary engineering studies of breakwater's efficiency and performance and as an adequate selection criteria of the experimental stone diameter to minimize scale effects in laboratory studies.  相似文献   

15.
波浪反射系数谱的特征分析   总被引:3,自引:1,他引:2  
应用斜向不规则波反射系数的改进两点法(MTPM),用模型试验研究了混凝土护面堤和块石护面堤波浪反射系数的频率谱和方向谱,结果表明,分析的反射系数随入射波频率的增加、结构坡度的减小和入射角的加大而减小.给出了波浪反射系数频率谱及其随Iribarren数变化的规律,提出了反射系数三维谱的经验公式,由此可定量地描述斜向不规则波的反射系数随无量纲特征参数Iribarren数和入射波角度的变化规律.  相似文献   

16.
The wave transmission, reflection, and energy dissipation of the double rows of vertical piles suspending horizontal steel C shaped bars are experimentally and theoretically studied under normal regular waves. Different wave and structural parameters are investigated e.g. the wave length, the C shaped bars draft and spacing, the supporting piles diameter and spacing, and the space between the double rows. Also, the theoretical model based on an eigenfunction expansion method is developed to study the hydrodynamic breakwater performance. In order to examine the validity of the theoretical model, the theoretical results are compared with the experimental and theoretical results obtained by different authors. Comparison between experiments and predictions showed that theoretical model provides a good estimate to the different hydrodynamic coefficients when the friction factors of the upper and the lower parts are fU = 1.5 and fL = 0.75. The present breakwater physical model gives efficiency near other similar systems of different shapes.  相似文献   

17.
Based on the linear potential flow theory and matching eigen-function expansion technique, an analytical model is developed to investigate the hydrodynamics of two-dimensional dual-pontoon floating breakwaters that also work as oscillating buoy wave energy converters (referred to as the integrated system hereafter). The pontoons are constrained to heave motion independently and the linear power take-off damping is used to calculate the absorbed power. The proposed model is verified by using the energy conservation principle. The effects of the geometrical parameters on the hydrodynamic properties of the integrated system, including the reflection and transmission coefficients and CWR (capture width ratio, which is defined as the ratio of absorbed wave power to the incident wave power in the device width). It is found that the natural frequency of the heave motion and the spacing of the two pontoons are the critical factors affecting the performance of the integrated system. The comparison between the results of the dual-pontoon breakwater and those of the single-pontoon breakwater shows that the effective frequency range (for condition of transmission coefficient KT < 0.5 and the total capture width ratio ηtotal > 20%) of the dual-pontoon system is broader than that of the single-pontoon system with the same total volume. For the two-pontoon system, the effective frequency range can be broadened by decreasing the draft of the front pontoon within certain range.  相似文献   

18.
于珍  李雪艳  程志  孟钰婕 《海洋工程》2023,41(2):132-143
鉴于双弧板式透空堤的消浪性能仍不理想,提出了一种潜堤—双弧板组合结构,并基于OpenFOAM软件建立了波浪与该结构相互作用的数值模型,采用试验结果对所建数值模型进行验证。在此基础上,讨论了该新型结构的消浪特性、波压力分布特征以及所受波浪力的影响因素。结果表明,透射系数随相对板宽的增大而减小,反射系数则相反。透射与反射系数随相对潜深的变化较为显著。当结构位于静水位上方(即相对潜深为-0.05)时,透射系数最小而反射系数最大;当结构位于静水位下方(即相对潜深为0.05)时,透射系数最大而反射系数最小。该组合结构两块弧板上下表面的正负压力变化关于横轴近似对称,不同测点处的压力值差异显著。水平波浪力与垂直波浪力的变化趋势大致相似,但垂直波浪力远大于水平波浪力。研究结果可为其工程应用提供理论指导与技术支撑。  相似文献   

19.
双消浪室局部开孔沉箱防波堤具有低反射、结构受力小、适宜较大水深和工程造价低等优点。为明确双消浪室局部开孔沉箱水动力特性的主要影响因素,采用理论分析和物理模型试验相结合的方法,对规则波和不规则波作用下双消浪室局部开孔沉箱防波堤的反射特性进行研究。基于势流理论,建立规则波和不规则波对局部开孔沉箱防波堤作用的三维解析解,采用二次压力损失边界条件考虑沉箱开孔墙对波浪运动的影响,利用周期性边界条件考虑防波堤结构沿长度方向的周期性变化。开展相应规则波和不规则波物理模型试验,验证理论模型的合理性。通过算例分析,研究不同波浪要素和结构参数对防波堤反射特性的影响。研究表明:双消浪室局部开孔沉箱相对消浪室宽度取值为0.08~0.20,沉箱前墙开孔率大于后墙开孔率时,防波堤在较大波浪频率范围内消波效果显著;当前后墙的开孔率相等时,防波堤反射系数的最小值随着开孔率增大而减小。  相似文献   

20.
The hydrodynamic efficiency of the vertical porous structures is investigated under regular waves by use of physical models. The hydrodynamic efficiency of the breakwater is presented in terms of the wave transmission (kt ), reflection (kr) and energy dissipation (kd ) coefficients. Different wave and structural parameters affecting the breakwater efficiency are tested. It is found that, the transmission coefficient (kt ) decreases with the increase of the relative water depth (h/L), the wave steepness (Hi/L), the relative breakwater widths (B/L, B/h), the relative breakwater height (D/h), and the breakwater porosity (n). The reflection coefficient (kr) takes the opposite trend of kt when D/h=1.25 and it decreases with the increasing h/L, Hi/L and B/L when D/h 1.0. The dissipation coefficient (kd) increases with the increasing h/L, Hi/L and B/L when D/h 1.0 and it decreases when D/h=1.25. In which, it is possible to achieve values of kt smaller than 0.3, krlarger than 0.5, and kd larger than 0.6 when D/h=1.25, B/h=0.6, h/L 0.22, B/L 0.13, and Hi/L 0.04. Empirical equations are developed for the estimation of the transmission and reflection coefficients. The results of these equations are compared with other experimental and theoretical results and a reasonable agreement is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号