首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
通过建立波浪作用下锚碇沉管管段运动的时域数值计算模型,对锚碇沉管的运动响应及锚碇缆受力特性进行了研究。应用集中质量法求解锚碇缆力,应用四阶Runge-Kutta法求解管段时域运动方程,计算了在不同沉深、不同周期、不同波高和不同波向条件下沉管管段的运动幅值和锚碇缆力。数值计算的结果表明:锚碇沉管的锚碇缆对沉管管段的运动起到一定的约束作用,在沉放深度较浅、波浪周期较大时,锚碇缆对沉管管段运动幅度的制约更为明显。通过五种布缆方式的计算与分析,探讨了布缆方式对沉管管段运动响应及锚碇缆受力的影响,并给出了较为合理的布缆方案。  相似文献   

2.
The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved due to a large number of nonlinear factors, e.g. forces nonlinearity, mooring nonlinearity, motion nonlinearity and so on. This paper investigates the coupled effects through the numerical uncoupled model, mooring coupled model and fully coupled model accounting mooring and risers based on a novel deep draft multi-spar which is especially designed for deepwater in 2009. The numerical static-offset, free-decay, wind-action tests are executed, and finally the three hours simulations are conducted under 100-year return period of GOM conditions involving wave, wind and current actions. The damping contributions, response characteristics and mooring line tensions are emphatically studied.  相似文献   

3.
The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved due to a large number of nonlinear factors, e.g. forces nonlinearity, mooring nonlinearity, motion nonlinearity and so on. This paper investigates the coupled effects through the numerical uncoupled model, mooring coupled model and fully coupled model accounting mooring and risers based on a novel deep draft multi-spar which is especially designed for deepwater in 2009. The numerical static-offset, free-decay, wind-action tests are executed, and finally three hours simulations are conducted under 100-year return period of GOM conditions involving wave, wind and current actions. The damping contributions, response characteristics and mooring line tensions are emphatically studied.  相似文献   

4.
基于物理模型试验,探究畸形波和不规则波作用下浮体系泊张力差异问题。讨论相对波高、相对周期和畸形波参数α1对系泊张力的影响。结果显示:畸形波参数α1和浮体系泊张力显著相关。在α1=2.0~2.83范围内,畸形波作用下迎浪侧系泊张力最大值可达不规则波作用的1.9倍。在相对波高Hs/d=0.032~0.097范围内,畸形波作用下迎浪侧系泊张力最大值显著大于不规则波的作用结果,但畸形波和不规则波对应的1/3值及平均值几乎一致。就相对周期影响而言,迎浪侧系泊张力最大差别出现在谱峰周期Tp0p范围内。频域方面采用小波分析方法讨论畸形波和不规则波作用下浮体系泊张力时频谱特征,两种波浪作用下系泊张力时频特征有显著差别。  相似文献   

5.
为研究顺应式海洋平台慢漂运动的影响因素,以截断圆柱和漂浮方箱为例进行了不规则波作用下的慢漂运动模型试验。测量了不同系泊刚度条件下的漂浮方箱以及相同系泊刚度条件下的截断圆柱和漂浮方箱在静水中自由衰减运动和在不规则波中的运动响应,并将运动响应分解成一阶波频运动响应和二阶低频运动响应,分析了系泊刚度和浮体形状对浮体运动的影响。通过物理模型试验发现了系泊刚度及浮体形状对顺应式系泊浮体一阶运动标准差和二阶低频运动平均漂移值和标准差的关系。结果表明由于顺应式浮体的固有周期远离波浪谱峰周期时,系泊刚度以及浮体形状对慢漂运动的一阶运动响应影响不大;二阶低频运动相对偏离平衡位置的平均值和标准差均随系泊刚度增大而减小,浮体形状同样对慢漂运动的二阶低频纵荡运动响应影响较大。试验结果为实际海洋工程的外形选择和系泊刚度选择提供数据支持。  相似文献   

6.
With the floating structures pushing their activities to the ultra-deep water,model tests have presented a challenge due to the limitation of the existing wave basins.Therefore,the concept of truncated mooring system is implemented to replace the full depth mooring system in the model tests,which aims to have the same dynamic responses as the full depth system.The truncated mooring system plays such a significant role that extra attention should be paid to the mooring systems with large truncation factor.Three different types of large truncation factor mooring system are being employed in the simulations,including the homogenously truncated mooring system,non-homogenously truncated mooring system and simplified truncated mooring system.A catenary moored semi-submersible operating at 1000 m water depth is presented.In addition,truncated mooring systems are proposed at the truncated water depth of 200 m.In order to explore the applicability of these truncated mooring systems,numerical simulations of the platform’s surge free decay interacting with three different styles of truncated mooring systems are studied in calm water.Furthermore,the mooring-induced damping of the truncated mooring systems is simulated in the regular wave.Finally,the platform motion responses and mooring line dynamics are simulated in irregular wave.All these simulations are implemented by employing full time domain coupled dynamic analysis,and the results are compared with those of the full depth simulations in the same cases.The results show that the mooring-induced damping plays a significant role in platform motion responses,and all truncated mooring systems are suitable for model tests with appropriate truncated mooring line diameters.However,a large diameter is needed for simplified truncated mooring lines.The suggestions are given to the selection of truncated mooring system for different situations as well as to the truncated mooring design criteria.  相似文献   

7.
论文研究铰接系泊塔-油轮系统波流联合作用下的动力响应。考虑铰接塔-油轮单点系泊系统系缆刚度的非线性,将尼龙系缆处理为分段非线性刚度模型,采用M orison公式计算铰接塔的波浪载荷,采用线性波浪绕射理论计算波浪对油轮的作用,建立了两自由度耦合的分段非线性运动微分方程。计算了高177 m的铰接系泊塔和93 500 t油轮构成的FPSO系统的耦合动力响应,并讨论了系统运动对于系缆张力的影响。  相似文献   

8.
两层流体中内波作用下Spar平台运动响应   总被引:1,自引:1,他引:0  
研究两层流体中Spar平台在内波作用下的运动响应问题。在线性势流理论框架,提出在内波作用下Spar平台运动响应及分段式悬链线系泊张力特性的计算方法。数值分析两层流体内界面位置、入射内波的波长以及系泊索初始预张力对Spar平台运动响应及其系泊索张力特性的影响规律,结果表明内波对Spar平台纵摇运动响应的影响是小的,但对Spar平台纵荡与垂荡运动响应及其系泊索张力的影响是不可忽视的。因此,在Spar平台的设计中,考虑内波的影响是重要的。  相似文献   

9.
为配合我国南海重要岛礁陆域拓展及海洋资源开发,提出了一种基于新型单桩缓冲系泊与波浪能装置(WEC)集成的具有潮汐自适应特性的模块化浮体结构系统。基于三维势流理论,综合考虑浮体模块与单桩缓冲结构的相对运动及相关波浪能装置的机械耦合机理,重点研究了新型单模块浮式结构系统在典型海况下的动力响应特征,获得了单桩缓冲系泊系统的初步优化设计参数,并对极端海况进行安全校核,提出了优化自存策略。数值结果表明,此带有波浪能装置的新型单桩缓冲系泊系统,不仅可以有效地降低浮体模块的运动响应幅值并改善平台舒适度,还可以获得可观的发电量,而且在极端海况下,可以通过调整阻尼装置系统来稳定浮体模块的运动。  相似文献   

10.
以三锚系浮标系统为研究对象,基于AQWA与OrcaFlex软件开展了三锚系大型浮标系统运动响应特性数值模拟研究。对直径10 m的浮标结构在波浪荷载下的水动力特性进行研究,校核了浮标的初稳性和大倾角稳性特征,计算分析了浮标的附加质量、辐射阻尼、运动响应幅值算子RAO等水动力参数,阐明了不同风、浪、流工况下三锚系浮标与辅助浮筒的运动响应特性,揭示了浮标三锚链导缆孔处锚泊张力随入射角度、波高和周期等的变化规律。研究结果表明:该浮标稳性和随波性能较好。与无浮筒三锚系浮标相比,带辅助浮筒的三锚系浮标系统的运动响应和锚泊张力减小,随着波高和周期增大,三锚系浮标系泊锚链的极端张力值逐渐增大,尤其是在极端海况下,迎浪向锚链极端张力急剧增大。  相似文献   

11.
半潜浮式风机逐渐在深海风电开发中受到关注,建立风机、平台与系泊结构耦合数值计算模型,通过FAST与AQWA链接进行风机塔基荷载及平台运动响应相互耦合传递,基于随机波与极限波组合模型生成畸形波时程序列,进行半潜浮式风机系泊失效全过程时域模拟计算分析,得出系泊锚链张力、风机、塔筒和平台运动时程响应,探究系泊失效、风机停机和叶片变桨速率对浮式风机平台系泊结构动力响应的影响。结果表明:畸形波作用下浮式平台和系泊结构动力响应显著,系泊失效导致塔基剪力增加,平台纵荡和纵摇运动响应显著增大;风机停机会引起系泊锚链张力显著减小,转子推力、塔基剪力和叶尖挥舞位移响应逐渐衰减,平台纵荡、纵摇和横摇运动响应显著减小;随着叶片变桨速率增加,风机转子推力和塔基剪力波动幅值增大。  相似文献   

12.
随着海上风能的开发向深水发展,支撑风机的载体平台越来越受到关注。在经济性与安全性、稳定性的多重要求下,张力腿平台(TLP)在海洋风能资源的开发中体现出了重要地位。采用基于开源平台OpenFOAM开发的计算流体动力学(CFD)水动力学求解器naoe-FOAM-SJTU对一座处于中等水深下的风机基础水下TLP(STLP)的运动响应进行了数值模拟与研究。文中使用弹簧锚链模型模拟STLP的垂向系泊锁链系统,模拟该平台在不同波浪环境下的运动响应情况。首先将STLP单自由度自由衰减CFD模拟结果与已有全耦合时域分析结果进行对比,验证了naoe-FOAM-SJTU求解器及使用弹簧模型模拟STLP系泊系统的准确性与可靠性。随后在考虑非线性波浪载荷的情况下研究极端海况下与一般作业海况下STLP的运动响应情况,计算工况中的风机基础所受弯矩及锚链受力情况,并详细展示流场、速度场信息,分析高阶波浪成分、不同海况等条件对于STLP运动性能的影响。研究结果表明,TLP在中等水深中具有良好的运动性能,naoe-FOAM-SJTU求解器可以有效模拟水中生产平台在波浪环境下的水动力问题,并可以对整个流场进行可视化展示与分析。  相似文献   

13.
Liu  Ya-qiong  Ren  Nian-xin  Ou  Jin-ping 《中国海洋工程》2022,36(6):880-893

The present work reports a Hybrid Modular Floating Structure (HMFS) system with typical malfunction conditions. The effects of both fractured mooring lines and failed connectors on main hydrodynamic responses (mooring line tensions, module motions, connector loads and wave power production) of the HMFS system under typical sea conditions are comparatively investigated. The results indicate that the mooring tension distribution, certain module motions (surge, sway and yaw) and connector loads (Mz) are significantly influenced by mooring line fractures. The adjacent mooring line of the fractured line on the upstream side suffers the largest tension among the remaining mooring lines, and the case with two fractured mooring lines in the same group on the upstream side is the most dangerous among all cases of two-line failures in view of mooring line tensions, module motions and connector loads. Therefore, one emergency strategy with appropriate relaxation of a proper mooring line has been proposed and proved effective to reduce the risk of more progressive mooring line fractures. In addition, connector failures substantially affect certain module motions (heave and pitch), certain connector loads (Fz and My) and wave power production. The present work can be helpful and instructive for studies on malfunction conditions of modular floating structure (MFS) systems.

  相似文献   

14.
Hybrid model testing technique is widely used in verification of a deepwater floating structure and its mooring system,but the design of the truncated mooring systems which can reproduce both static and dynamic response same as the full-depth mooring system is still a big challenge,especially for the mooting systems with large truncation.A Cell-Tress Spar operated in 1500 m water depth is verified in a wave basin with 4 m water depth.A large truncation factor arises even though a small model scale 1:100 is adopted.Computer program modules for analyzing the static and frequency domain dynamic response of mooting line are combined with multi-objective genetic algorithm NSGA-II to optimize the truncared mooting system.Considering the asymmetry of layout of mooring hnes,two different truncated mooring systems are respectively designed for both directions in which the restoring forces of the.mooting system are quite,different.Not only the static characteristics of the mooting systems are calibrated,but also the dynamic responses of the single truncated mooting line are evaluated through time domain numerical simulation and model tests.The model test results of 100-year storm in the GOM are reconstructed and extrapolated to a full depth.It is found that the experimental and numerical resuits of Spar wave frequency motion agree well,and the dynamic responses of the full-depth mooring lines are better reproduced,but the low frequency surge motion is overestimated due to the smaller mooring-induced damping.It is a feasible method adopting different truncated mooring systems for different directions in which the restoring force characteristics are quite different and cannot be simulated by one truncated mooring system.Hybrid verification of a deepwater platform in wave basin with shallow water depth is still feasible if the truncated mooring systems are properly designed,and numerical extrapolation is necessary.  相似文献   

15.
新型深海系泊系统及数值分析技术   总被引:7,自引:1,他引:7  
随着海洋油气资源开发逐渐向深海转移,传统的悬链式系泊系统在技术和经济上遇到难以逾越的障碍。作为一种新型的适用于深水和超深水环境的系泊系统,绷紧索系泊系统面临广阔的应用前景。文章对这种新型系泊系统的发展情况进行了介绍,基于有限元数值分析技术,对系泊系统的两个关键特性,即系缆的绷紧-松弛特性以及纤维系缆的动刚度特性进行了分析和处理,通过算例考察了深海平台运动引起的系缆力响应。  相似文献   

16.
—Most terminals for tankers are piers and sea islands,while other types include single pointmoorings and multiple-buoy moorings.The LNG and LPG carrier moored to the jetty is a very commonterminal for transfer of gas in open seas.It is important to estimate the motions and line tensions of theLNG carrier when it moors to a jetty in metocean environment.Normally,the motions of the LNG carrierwould be restricted by the loading arm,which is connected to LNG carrier's manifold.An example of125,000m~3 LNG carrier moored to a jetty exposed to a set of environment conditions is given.Amathematical model which is based on the equations of motion in the time domain is used to the analysisof LNG moored to an offshore jetty exposed to waves,swell,wind and current.By means of a time do-main computer program TERMSIM computations are carried out to determine and optimize the lay-outand/or orientation of the jetty and mooring gear in terms of forces in mooring lines and fenders and theenvelope of motions of the loadi  相似文献   

17.
The drag-induced damping in a mooring cable due to combined first- and second-order wave excited motion of a moored vessel has been determined by statistical linearisation. A dynamic stiffness approach developed elsewhere is used to deal with the dynamics of the mooring cables. The power spectral densities of low- and wave-frequency responses are obtained which clearly show the influence of mooring line damping. The non-Gaussian probability density functions (pdf) and expected crossing rates of vessel responses and dynamic cable tensions are determined using the Kac–Seigert technique, and the influence of drag damping is highlighted.  相似文献   

18.
我国南海海域海洋环境条件复杂且海水密度垂直层化现象显著,内孤立波活动频繁,因内孤立波而造成海洋开采平台破坏的案例屡见不鲜。依托水动力计算软件AQWA二次开发功能,采用Kdv方程,借助Fortran语言将深水半潜式平台立柱、浮箱、系泊系统3部分的内孤立波作用力叠加到外力项中,联合求解半潜式平台的6自由度动力响应特性。数值模拟结果表明,在内孤立波作用下,半潜式平台的运动及系泊线张力均受到了显著的影响。在不考虑系泊系统受内孤立波作用时,平台在纵荡和横荡方向上产生较大的漂移运动,最大偏移量较无内孤立波情况下增加了8倍;系泊线最大张力提高了17%,增加了系泊线断裂的风险。在考虑系泊系统受内孤立波作用时,平台的纵荡和横荡运动响应在原响应基础上继续提高15%,但是系泊线张力变化不大。内孤立波不同浪向下的平台纵荡和横荡响应相差也很明显;系泊系统合力在不同方向上的大小决定了平台不同方向上运动的大小。  相似文献   

19.
Dynamic Analysis of Turret-Moored FPSO System in Freak Wave   总被引:1,自引:1,他引:0  
Freak wave is the common wave which has significant wave height and irregular wave shape, and it is easy to damage offshore structure extremely. The FPSOs (Floating Production Storage and Offloading) suffer from the environment loads, including the freak wave. The freak waves were generated based on the improved phase modulation model, and the coupling model of FPSO-SPM (Single Point Mooring) was established by considering internal-turret FPSO and its mooring system. The dynamic response characteristics of both FPSO and SPM affected by the freak wave were analyzed in the time domain. According to the results, the freak waves generated by original phase modulation model mainly affect the 2nd-order wave loads. However, the freak waves which are generated by random frequencies phase modulation model affect both 1st-order and 2nd-order wave loads on FPSO. What is more, compared with the irregular waves, the dynamic responses of mooring system are larger in the freak waves, but its amplitude lags behind the peak of the freak wave.  相似文献   

20.
In this paper, motion response of a moored floating structure interacting with a large amplitude and steep incident wave field is studied using a coupled time domain solution scheme. Solution of the hydrodynamic boundary value problem is achieved using a three-dimensional numerical wave tank (3D NWT) approach based upon a form of Mixed-Eulerian–Lagrangian (MEL) scheme. In the developed method, nonlinearity arising due to incident wave as well as nonlinear hydrostatics is completely captured while the hydrodynamic interactions of radiation and diffraction are determined at every time step based on certain simplifying approximations. Mooring lines are modelled as linear as well as nonlinear springs. The horizontal tension for each individual mooring line is obtained from the nonlinear load-excursion plot of the lines computed using catenary theory, from which the linear and nonlinear line stiffness are determined. Motions of three realistic floating structures with different mooring systems are analyzed considering various combinations of linear and approximate nonlinear hydrodynamic load computations and linear/nonlinear mooring line stiffness. Results are discussed to bring out the influence and need for consideration of nonlinearities in the hydrodynamics and hydrostatics as well as the nonlinear modelling of the line stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号