首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake of inorganic carbon and ammonium by the plankton community of three North Carolina estuaries was measured using 14C and 15N isotope methods. At 0% light, C appeared to be lost via respiration, and at increasing light levels uptake of inorganic carbon increased linearly, saturated (mean Ik = 358±30 μEin m−2 s−1), and frequently showed inhibition at the highest light intensities. At 0% light NH4+ uptake was significantly greater than zero and was frequently equivalent to uptake in the light (light independent); at increasing light levels NH4+ uptake saturated (mean Ik = 172±44 μEin m−2 s−1) and frequently indicated strong inhibition. Light-saturated uptake rates of inorganic carbon and NH4+ were a function of chlorophyll a (r2 = 0·7−0·9); average assimilation numbers were 625 nmol CO2 (μg chl. a)−1 h−1 and 12·9 nmol NH4+ (μg chl. a)−1 h−1 and were positively correlated with temperature (r2 = 0·3−0·7). The ratio of dark to light-saturated NH4+ uptake tended to be near 1·0 for large algal populations at low NH4+ concentrations, indicating near light independence of uptake; whereas the ratio was lower for the opposite conditions. These data are interpreted as indicative of nitrogen stress, and it is suggested that uptake of NH4+ deep in the euphotic zone and at night are mechanisms for balancing the C:N of cellular pools. A 24-h study using summed short-term incubations confirmed this; the cumulative C:N of CO2 and NH4+ uptake during the daylight period was 10–20, whereas over the 24-h period the ratio was 6 due to dark NH4+ uptake. Annual carbon and nitrogen primary productivity were respectively estimated as 24 and 4·0 mol m−2 year−1 for the South River estuary, 42 and 7·3 mol m−2 year−1 for the Neuse River estuary, and 9·6 and 1·6 mol m−2 year−1 for the Newport River estuary.  相似文献   

2.
Nutrient-enrichment bottle experiments in the northwestern Indian Ocean surface waters were conducted to investigate phytoplankton growth following enrichments with either NH4+, NO3, Fe or Fe + NO3. Stimulation of phytoplankton growth could be achieved by the addition of either NH4+ or NO3 under the ambient Fe concentrations, but the most significant increases in Chl a, POC, and cell densities were observed in the Fe + NO3-amended culture. Iron addition caused more rapid responses of phytoplankton growth in the Fe + NO3 treatment than those in the NO3 and NH4 treatment. However, the Fe-enrichment treatment revealed minimal growth of phytoplankton because of severe major nutrient deficiency and was similar to the control treatment. Increases in the cell density of diatoms and spherical phytoplankton cells (< 10 μm) were significant in the NH4+-enriched samples, whereas NO3 enrichment alone had little effect on the diatoms. Simultaneous addition of Fe and NO3 stimulated maximal growth of phytoplankton, in particular in diatoms, coccolithophorids and Phaeocystis type colonies. However, the dominance of coccolithophorids and Phaeocystis type colonies in the Fe + NO3 treatment may be interpreted as resulting from Si-limitation. The high N/P ratio for phytoplankton nutrient uptake in the N-amended culture indicates the possibility of some P-limited growth. From these results, we conclude that in the northwestern Indian Ocean, Fe and major nutrients are co-limiting phytoplankton production during the northeast monsoon. Iron appeared to affect the ability of phytoplankton to respond quickly to transient nutrient inputs.  相似文献   

3.
The first estimates of uptake kinetic parameters for NH4+, NO3, and urea in the Ross Sea, Antarctica were measured on three cruises during austral late winter–early spring 1996 (pre-bloom), late spring 1997 (bloom development), and summer 1997 (bloom decline). Nitrogen (N) uptake experiments were conducted with water collected at the 50% light penetration depth using trace-metal clean protocols and 15N tracer techniques. At all sites, ambient NO3 concentrations ranged from 5.8 to 30.5 μg-at N l−1 and silicic acid concentrations were greater than 62.0 μg-at Si l−1. The following trends were observed. First, based on maximum uptake rates (Vmax), apparent N utilization followed the order NO3>NH4+>urea during the pre-bloom and bloom development cruises. During the summer cruise, as the bloom was declining, the apparent order of utilization was NH4+>NO3>urea. Second, evidence for possible repression of NO3 uptake by elevated NH4+ concentrations was only observed at one site. Third, the kinetic parameters of NH4+ uptake rates corrected for isotope dilution were compared with the kinetic parameters determined from uncorrected rates. In this comparison, the measure of substrate affinity, α (α=Vmax/Ks) increased by an average of 4.6-fold when rates were corrected for isotope dilution, but values of Vmax remained unchanged. Fourth, using bacterial production data, the magnitude of bacterial N uptake was estimated. Assuming that all bacterial N demands were met with NH4+, the estimated bacterial portion of NH4+ uptake ranged from <1%, when the ratio of bacteria to autotrophic biomass was low, to 35%, when bacterial abundance and biomass were highest. Finally, dramatic changes in NH4+ uptake capacity were observed at one station (Stn. O), where kinetic parameters were measured during all three cruises. We hypothesize that a mutualistic relationship exists between phytoplankton and heterotrophic bacteria, and that the creation of microzones of high NH4+ concentrations contributed to the changes seen at this station.  相似文献   

4.
Rates for nitrification, phytoplankton uptake of ammonium, and regeneration of ammonium were measured in the Delaware River as functions of irradiance and nutrient concentrations, using 15N labeling methods. Phytoplankton uptake increased and nitrification rates declined with increased light intensity. The irradiance level required for maximum uptake by phytoplankton was similar to that for maximal inhibition of nitrification (about 300μEm−2 s−1). Daily, water-column averaged rates, calculated by integration of the observed rate-intensity relationships, indicate that light plays a key role in regulating the balance between oxidation of NH4+ by bacteria and assimilation by phytoplankton in the Delaware. The results show that uptake of ammonium by phytoplankton in the dark may exceed uptake in the light in optically thick systems.  相似文献   

5.
The Loire estuary has been surveyed from 1982 to 1985 by 13 isochronous longitudinal profiles realized at low tide. Nutrient (SiO2, NO3, NH4+, PO3−4, particulate organic carbon or POC) patterns are very variable depending on the season, the estuarine section [river, upper-inner estuary, upstream of the fresh-water-saline-water interphase FSI, the lower-inner estuary characterized by the high turbidity zone (HTZ), the outer estuary] and the river discharge. Biological processes are dominant. In the eutrophied River Loire (summer pigment > 100 μg l−1), the high algal productivity (algal POC > 3 mg l−1) results in severe depletion of SiO2, PO43−, NO3. The enormous biomass (55 000 ton algal POC/year) is degraded in the HTZ where bacterial activity is intense. As a result, there is generally a regeneration of dissolved SiO2 and PO43−, a marked NH4+ maximum, while NO3 is conservative or depleted when the HTZ is nearly anoxic. Other processes can be considered including pollution from fertilizer plans (PO43−, NH4+) and from a hydrothermal power plant (NH4+). In the less turbid outer estuary, nutrients are generally conservative. Major variations of concentrations are observed in the lowest chlorinity section (Cl < 1 g kg) and also upstream the FSI, defined here as a 100% increase in Cl. Nutrient inputs to the ocean are not significantly modified for SiO2 and NO2, but are increased by 70% and 180% for PO43− and NH4+ and depleted by 60% for POC. Odd hydrological events, especially some floods, may perturbate or even mask the usual seasonal pattern observed in profiles.  相似文献   

6.
We report the first application of a biogeochemical model in which the major elemental composition of the phytoplankton is flexible, and responds to changing light and nutrient conditions. The model includes two phytoplankton groups: diatoms and non-siliceous picoplankton. Both fix C in accordance with photosynthesis-irradiance relationships used in other models and take up NO3 and NH4+ (and Si(OH)4 for diatoms) following Michaelis-Menten kinetics. The model allows for light dependence of photosynthesis and NO3 uptake, and for the observed near-total light independence of NH4+ uptake and Si(OH)4 uptake. It tracks the resulting C/N ratios of both phytoplankton groups and Si/N ratio of diatoms, and permits uptake of C, N and Si to proceed independently of one another when those ratios are close to those of nutrient-replete phytoplankton. When the C/N or Si/N ratio of either phytoplankton group indicates that its growth is limited by N, Si or light, uptake of non-limiting elements is controlled by the content of the limiting element in accordance with the cell-quota formulation of Droop (J. Mar. Biol. Ass. U.K 54 (1974) 825).We applied this model to the Bermuda Atlantic Time-series Study (BATS) site in the western Sargasso Sea. The model was tuned to produce vertical profiles and time courses of [NO3], [NH4+] and [Si(OH)4] that are consistent with the data, by adjusting the kinetic parameters for N and Si uptake and the rate of nitrification. The model then reproduces the observed time courses of chlorophyll-a, particulate organic carbon and nitrogen, biogenic silica, primary productivity, biogenic silica production and POC export with no further tuning. Simulated C/N and Si/N ratios of the phytoplankton indicate that N is the main growth-limiting nutrient throughout the thermally stratified period and that [Si(OH)4], although always limiting to the rate of Si uptake by diatoms, seldom limits their growth rate. The model requires significant nitrification in the upper 200 m to yield realistic time courses and vertical profiles of [NH4+] and [NO3], suggesting that NO3 is not supplied to the upper water column entirely by physical processes. A nitrification-corrected f-ratio (fNC), calculated for the upper 200 m as: (NO3 uptake—nitrification)/(NO3 uptake+NH4+ uptake) has annual values ranging from only 0.05–0.09, implying that 90–95% of the N taken up annually by phytoplankton is supplied by biological regeneration (including nitrification) in the upper 200 m. Reported discrepancies between estimates of organic C export based on seasonal chemical changes and POC export measured at the BATS site can be almost completely resolved if there is significant regeneration of NO3 via organic-matter decomposition in the upper 200 m.  相似文献   

7.
Cultures of six marine phytoplankton were grown at ammonium concentrations ranging up to 200 μg-atom NH4---N litre−1. Only the growth of dinoflagellates, Gymnodinium splendens and Gonyaulax polyedra was inhibited at the two highest concentrations used. In 3-h photosynthetic 14CO2 uptake experiments, only Gymnodinium was inhibited at concentrations of NH4---N greater than 100 μg-atom litre−1. We conclude that the increased ammonium concentrations found near Southern California sewage outfalls would not be inhibiting to phytoplankton in the vicinity of such outfalls.  相似文献   

8.
Global change models predict effects of climate change on hydrological regimes at the continental scale in Europe. The aim of this study was to gain a better understanding of the possible effect of changing external forcing conditions on the functioning of estuarine ecosystems. In densely populated areas, anthropogenic nutrient enrichment and consequent alteration of nutrient biogeochemical cycles have already had a big impact on these ecosystems. The average yearly discharge of the upper Schelde estuary increased nearly threefold over the period 1996–2000, from 28 m3 s−1 in 1996 to 73 m3 s−1 in 2000. The continuously rising discharge conditions over the five-year period were used as a reference situation for possible future effects of climate on ecological functioning through increase of discharge. At high discharges, nutrient (NH4+, NO3, dissolved silica and PO43−) concentrations in the tidal fresh- and brackish water showed a decrease of up to 50% while total discharged nutrient loadings increased up to 100%. Opposite effects of increasing discharge on NH4+, NO3 and dissolved silica concentrations in summer and winter, resulted in the flattening out of seasonal cycles for these nutrients. Under high discharge conditions, silica uptake by diatom communities was lowered. Dissolved silica loadings to the coastal area increased concurrently with total silica loadings upstream. Salt intrusion to the marine parts of the estuary decreased. This resulted in a downstream shift of the salinity gradient, with lower salinity observed near the mouth. As a result, TDIN, NO3 and dissolved silica concentrations doubled at the mouth of the estuary.  相似文献   

9.
On the basis of mass balance calculations performed for nitrogen (N) uptake experiments in the Southern California Bight (SCB), it has been suggested that a significant portion of dissolved inorganic N (DIN) uptake results in the production of dissolved organic N (DON). To investigate this process, the fate of ammonium (NH4+) and nitrate (NO3) uptake was quantified within the euphotic zone at three coastal stations in the SCB using 15N tracer techniques. Several trends in the fate of DIN and the production of DON were observed. First, production of particulate N (PN), from both NH4+ and NO3, was quantitatively more important in near surface waters, while DON release dominated within the nitracline. Second, the percentage of gross N uptake released as DON was generally higher when NO3, rather than NH4+, was the substrate. Third, the percentage of N released as DON was higher at night, relative to the day. Fourth, rates of DON release were significantly correlated to NH4+ regeneration, suggesting that similar mechanisms are responsible for both processes—presumably grazing. The results of this study indicate that the DON pool is a sink for DIN uptake on the time scale of hours. One implication of this finding is that new production estimates based on 15NO3 uptake rates will likely underestimate particle flux out of the surface layer because the rate of NO3 uptake is underestimated due to loss of DO15N during the incubation. On time scales of months to years, however, the N that is taken up as NO3 and released as DON will likely contribute to export flux via incorporation of the dissolved phase during seasonal mixing into sinking particles or transport. The export of DON on these time scales argues for the use of gross uptake rates to calculate f-ratios.  相似文献   

10.
Benthic fluxes of dissolved inorganic nitrogen (NO3 and NH4+), dissolved organic nitrogen (DON), N2 (denitrification), O2 and TCO2 were measured in the tidal reaches of the Bremer River, south east Queensland, Australia. Measurements were made at three sites during summer and winter. Fluxes of NO3 were generally directed into the sediments at rates of up to −225 μmol N m−2 h−1. NH4+ was mostly taken up by the sediments at rates of up to −52 μmol N m−2 h−1, its ultimate fate probably being denitrification. DON fluxes were not significant during winter. During summer, fluxes of DON were observed both into (−105 μmol m−2 h−1) and out of (39 μmol m−2 h−1) the sediments. Average N2 fluxes at all sampling sites were similar during summer (162 μmol N m−2 h−1) and winter (153 μmol N m−2 h−1). Denitrification was fed both by nitrification within the sediment and NO3 from the water column. Sediment respiration rates played an important role in the dynamics of nitrification and denitrification. NO3 fluxes were significantly related to TCO2 fluxes (p<0.01), with a release of NO3 from the sediment only occurring at respiration rates below 1000 μmol C m−2 h−1. Rates of denitrification increased with respiration up to TCO2 fluxes of 1000 μmol C m−2 h−1. At sediment respiration rates above 1000 μmol C m−2 h−1, denitrification rates increased less rapidly with respiration in winter and declined during summer. On a monthly basis denitrification removed about 9% of the total nitrogen and 16% of NO3 entering the Bremer River system from known point sources. This is a similar magnitude to that estimated in other tidal river systems and estuaries receiving similar nitrogen loads. During flood events the amount of NO3 denitrified dropped to about 6% of the total river NO3 load.  相似文献   

11.
We determined the range of the tidal variations in nutrient flux across the sediment–water interface and elucidated mechanisms of the flux variation in two estuarine intertidal flats (one sand, one mud) in northeastern Japan. Nutrient flux was measured using in situ light and dark chambers, which were incubated for 2 h, 2–6 times per day. Results showed that nutrient concentration in overlying water varied by tide and was also affected by sewage-treated water inflow. The nutrient fluxes responded quickly to the tidal variation in overlying water chemistry and the range of the variation in flux was as large as the seasonal-scale variation reported in previous studies. In the sand flat, salinity increase likely enhanced benthos respiration and led to increases in both O2 consumption and PO43− regeneration under low illumination, while benthic microalgae were likely to actively generate O2, uptake PO43− and suppress PO43− release under high illumination (>900 μmol photons m−2 s−1). Also in the mud flat, PO43− flux was related with O2 flux, although the range of temporal variation in PO43− flux was small. In both the flats, NH4+ flux was always governed by NH4+ concentration in the overlying water; either an increase in NH4+ uptake or a decrease in NH4+ release was observed as the NH4+ concentration rose due to inflow of river water or input of sewage-treated water. Although NO3 tended to be released in both tidal flats when low NO3 concentration seawater dominated, their relationship was likely to be weakened under conditions of low oxygen consumption and suppressed denitrification. It is likely that tidal variation in nutrient flux is governed more by the nutrient concentration than other factors, such as benthic biological processes, particularly in the case where nutrient concentration in the overlying water is relatively high and with wide amplitude.  相似文献   

12.
Primary production was measured during two Lagrangian experiments in the Iberian upwelling. The first experiment, in a body of upwelled water, measured day-to-day changes in phytoplankton activity as the water mass moved south along the shelf break. Nutrient concentrations decreased over a five day period, with concomitant increases in phytoplankton biomass. Initially the maximum phytoplankton biomass was in the upper 10m but after four days, a sub-surface chlorophyll maximum was present at 30m. Depth-integrated primary production at the beginning of the experiment was 70mmolC.m−2.d−1 (838mgC.m−2.d−1) and reached a maximum of 88mmolC.m−2.d−1 (1053mgC.m−2.d−1) on day 3. On day 1, the picoplankton fraction (<2μm) was slightly more productive than larger (>5μm) phytoplankton, but the increase in overall production during the drift experiment was by these larger cells. Nitrate was the dominant nitrogen source. As nutrient concentrations declined, ammonium became increasingly more important as a nitrogen source and the f-ratio decreased from 0.7 to 0.5. Picoplankton cells (<2μm) were responsible for most (65–80%) of the ammonium uptake. The C:N:P uptake ratios were very close to the Redfield ratio for the first four days but as nutrients became depleted high C:N uptake ratios (11 to 43) were measured. Over the period of the experiment, nitrate concentration within the upper 40m decreased by 47.91mmolN.m−2. In vitro estimates, based on 15N nitrate uptake, accounted for 56% of the decrease in nitrate concentration observed in the drifting water mass. Ammonium uptake over the same four day period was 16.28mmolN.m−2, giving a total nitrogen uptake of 43.18mmolN.m−2.In the second experiment, an offshore filament was the focus and a water mass was sampled as it moved offshore. Nutrient concentrations were very low (nitrate was <10nmol l−1 and ammonium was 20–40nmol l−1). Primary production rate varied between 36mmolC.m−2.d−1 (436mgC.m−2.d−1) and 21mmolC.m−2.d−1 (249mgC.m−2.d−1). Picophytoplankton was the most productive fraction and was responsible for a constant proportion (ca 0.65) of the total carbon fixation. Uptake rates of both nitrate and ammonium were between 10 and 20% of those measured in the upwelling region. Urea could be a very significant nitrogen source in these waters with much higher uptake rates than nitrate or ammonium; urea turnover times were ca. one day but the source of the urea remains unknown. Urea uptake had a profound effect on calculated f ratios. If only nitrate and ammonium uptake was considered, f ratios were calculated to be 0.42–0.46 but inclusion of urea uptake reduced the f ratio to <0.1. The primary production of this oligotrophic off-shore filament was driven by regenerated nitrogen.  相似文献   

13.
The seasonal dynamics of inorganic nutrients and phytoplankton biomass (chlorophyll a), and its relation with hydrological features, was studied in the NW Alboran Sea during four cruises conducted in February, April, July and October 2002. In the upper layers, the seasonal pattern of nutrient concentrations and their molar ratios (N:Si:P) was greatly influenced by hydrological conditions. The higher nutrient concentrations were observed during the spring cruise (2.54 μM NO3, 0.21 μM PO43− and 1.55 μM Si(OH)4, on average), coinciding with the increase of salinity due to upwelling induced by westerlies. The lowest nutrient concentrations were observed during summer (<0.54 μM NO3, 0.13 μM PO43− and 0.75 μM Si(OH)4, on average), when the lower salinities were detected. Nutrient molar ratios (N:Si:P) followed the same seasonal pattern as nutrient distribution. During all the cruises, the ratio N:P in the top 20 m was lower than 16:1, indicating a NO3 deficiency relative to PO43−. The N:P ratio increased with depth, reaching values higher than 16:1 in the deeper layers (200–300 m). The N:Si ratio in the top 20 m was lower than 1:1, excepting during spring when N:Si ratios higher than 1:1 were observed in some stations due to the upwelling event. The N:Si ratio increased with depth, showing a maximum at 50–100 m (>1.5:1), which indicates a shift towards Si-deficiency in these layers. The Si:P ratio was much lower than 16:1 throughout the water column during the four cruises. In general, the spatial and seasonal variation of phytoplankton biomass showed a strong coupling with hydrological and chemical fields. The higher chlorophyll a concentrations at the depth of the chlorophyll maximum were found in April (2.57 mg m−3 on average), while the lowest phytoplankton biomass corresponded to the winter cruise (0.74 mg m−3 on average). The low nitrate concentrations together with the low N:P ratios found in the upper layers (top 20 m) during the winter, summer and autumn cruises suggest that N-limitation could occur in these layers during great part of the year. However, N-limitation during the spring cruise was temporally overcome by nutrient enrichment caused by an intense wind-driven upwelling event.  相似文献   

14.
Rates of net nitrification were calculated for four large (13 m3) estuarine-based microcosms that had been subjected to inorganic nutrient enrichment. Calculated rates were based on two years of weekly nitrate and nitrite measurements and ranged from a maximum of 0·55 μmol NO2+3 produced l−1 day−1 in the control tank (no enrichment) to over 13 μmol NO2+3 produced l−1 day−1 in the most enriched tank (receiving 18·6 μmol NH4 l−1 day−1). Almost all NO2+3 production was pelagic, little was benthic. Net NO3 production or net NO2 production dominated the net nitrification rates during different seasons. Good correlations were found between various oxidation rates and substrate concentrations. The calculated net nitrite production rates were 10 to 1000 times higher than previously reported rates for open ocean systems, demonstrating the potential importance of nitrification to estuarine systems.  相似文献   

15.
We analysed mixed-layer seasonal and interannual variability in phytoplankton biomass and macronutrient (NO3 and Si(OH)4) concentrations from three decades of observations, and nitrogen uptake rates from the 1990s along Line P in the NE subarctic Pacific. Chlorophyll a concentrations near 0.35 mg m−3 were observed year-round along Line P except at the nearshore station (P4) where chlorophyll a concentrations in spring were on average 2.4 times the winter values. In contrast, the temporal variability in carbon-to-chlorophyll ratios at the two main end members of Line P (P4 and OSP) was high. Large seasonal and interannual variability in NO3 and Si(OH)4 concentration were observed along Line P. Highest upper mixed-layer (top 15 m) nutrient concentrations occurred on the continental shelf in late summer and early fall due to seasonal coastal upwelling. Beyond the shelf, maximum nutrient concentrations increased gradually offshore, and were highest in late winter and early spring due to mixing by winter storms. Interannual variations in upper mixed-layer nutrient concentrations beyond the shelf (>128°W) were correlated with E-W winds and the PDO since 1988 but were not correlated with either climate index between 1973 and 1981. Despite differences in nutrient concentration, nutrient utilization (ΔNO3 and ΔSi(OH)4) during the growing season were about 7.5 μM at all offshore stations. Variations in ΔNO3 were correlated with those of ΔSi(OH)4. The annual cycle of absolute NO3 uptake (ρNO3) and NH4 uptake (ρNH4) rates by phytoplankton in the upper mixed-layer showed a weak increasing trend from winter to spring/summer for the period 1992-1997. Rates were more variable at the nearshore station (P4). Rates of ρNO3 were low along the entire line despite abundant NO3 and low iron (Fe), at the offshore portion of Line P and sufficient Fe at the nearshore station (P4). As a result, new production contributed on average to only 32 ± 15% of the total nitrogen (N) uptake along Line P. NO3 utilization in the NE subarctic Pacific is probably controlled by a combination of environmental variables, including Fe, light and ambient NH4 levels. Elevated ambient NH4 concentrations seem to decrease the rates of new production (and f-ratios) in surface waters of the oceanic subarctic NE Pacific. Contrary to expectation, phytoplankton biomass, nutrient utilization (ΔNO3 and ΔSi(OH)4), and nitrogen uptake (ρNO3 + ρNH4) varied relatively little along Line P, despite significant differences in the factors controlling phytoplankton composition assemblages and production. Future studies would benefit from including other variables, especially light limitation, to improve our understanding of the seasonal and interannual variability in phytoplankton biomass and nutrients in this region.  相似文献   

16.
Nitrogen uptake rates, and physical, chemical and biological characteristics of the euphotic zone were studied in winter, spring and late summer during the period 1992–1994 along a transect (Line P) extending from the continental slope off the southwest corner of Vancouver Island (British Columbia, Canada; station P4; 49°N, 127°W) to open waters in the NE Pacific (OSP; 50°N, 145°W). Nitrate (NO3) and silicic acid (Si(OH)4) concentrations increased offshore during every season. Lowest NO3 and Si(OH)4 values were observed during late summer and spring, and highest during winter throughout the euphotic zone. For spring and late summer, surface depletion of NO3 was observed at the inshore end of the transect, while offshore concentrations were never limiting for phytoplankton growth. Silicic acid was never depleted at any depth or station during the period covered by this study. Ammonium (NH4+) and urea concentrations exhibited a patchy distribution along the transect, with no seasonal variations. Chlorophyll a and particulate nitrogen did not show a consistent longitudinal pattern from year to year. In general, the highest concentrations of chlorophyll a and particulate nitrogen were measured during the late summer cruises, with lower values in spring and lowest in winter. Phytoplankton assemblages were numerically dominated by flagellates <5 μm throughout the water column on each cruise transect. Ammonium, urea and NO3 uptake rates represented on average 55, 24 and 21% of the depth-integrated total nitrogen uptake, both longitudinally and seasonally; hence, phytoplankton utilized nitrogen in the following order: NH4+>urea>NO3 along Line P. Ammonium may have inhibited the uptake rates of NO3 and urea. Urea uptake rates were lower than those of NH4+, but higher values were occasionally observed at a few depths along the transect, particularly during the spring of 1993. Depth-integrated NH4+ uptake rates were generally higher inshore, while NO3 uptake rates showed higher values offshore during most seasons. In contrast, urea uptake rates did not exhibit a consistent longitudinal trend. The depth-integrated f-ratio ranged from 0.05 to 0.37 with an average of 0.21 for all stations and cruises, and was overestimated on average by 36% when urea was excluded from the calculation. On a yearly basis, primary productivity in the NE subarctic Pacific was based on regenerated nitrogen.  相似文献   

17.
The microscale (1 and 4 cm sampling resolution) distributions of chemical (O2, NH3, NO3, NO2, PO43−) and biological (Chl a, phytoplankton, bacterioplankton, viruses) parameters were measured in the 16 cm of water immediately overlaying the sediment-water interface (SWI) within a temperate mangrove estuary in South Australia during December 2003 and March 2004. Shear velocities (u*) during the time of sampling were very low (<0.1 cm s−1), and we consequently predict that resuspension of organisms and materials was negligible. In December 2003, profiles were often characterised by strong gradients in nutrients and organisms, with the highest concentrations often observed within 0.5 cm of the SWI. Microscale patterns in O2, NH3, NO3 and NO2 indicated that a variety of anaerobic and aerobic transformation processes probably occurred at the SWI and within profiles. Strong gradients in PO43− were indicative of nutrient flux across the SWI as a consequence of degradation processes in the sediments. Pico- and nanophytoplankton concentrations were strongly correlated (p < 0.01) to PO43−, and exhibited 12- and 68-fold changes in abundance, respectively, with highest concentrations observed nearest to the SWI. Several bacterial subpopulations were discriminated using flow cytometry and significant shifts in the ‘cytometric structure’ of the bacterial community were observed within microscale profiles. Two populations of viruses were correlated to the phytoplankton and low DNA (LDNA) bacteria, and each exhibited elevated concentrations within 0.5 cm of the SWI. In March 2004, microscale distributions of O2 and nutrients were more homogenous than in December 2003, and dissimilar microbial community structure and patterns were observed above the SWI. The patterns observed here support the prediction that benthic processes can strongly influence the ecology of planktonic communities in the overlaying water, and provide further evidence for the existence of microscale variability amongst communities of aquatic microorganisms.  相似文献   

18.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

19.
Nutrient fluxes were measured between Fourleague Bay, a shallow Louisiana estuary, and the Gulf of Mexico every 3 h between February 1 and April 30, 1994 to determine how high velocity winds associated with cold fronts and peak Atchafalaya River discharge influenced transport. Net water fluxes were ebb-dominated throughout the study because of wind forcing and high volumes of water entering the northern Bay from the Atchafalaya River. Flushing time of the Bay averaged <8 days; however, more rapid flushing occurred in response to northerly winds with approximately 56% of the volume of the Bay exported to the Gulf in 1 day during the strongest flushing event. Higher nitrate+nitrite (NO2+NO3), total nitrogen (TN), and total phosphorus (TP) concentrations were indicative of Atchafalaya River input and fluxes were greater when influenced by high velocity northerly winds associated with frontal passage. Net exports of NO2+NO3, TN, and TP were 43.5, 98.5, and 13.6 g s−1, respectively, for the 89-day study. An average of 10.6 g s−1 of ammonium (NH4) was exported to the Gulf over the study; however, concentrations were lower when associated with riverine influence and wind-driven exports suggesting the importance of biological processes. Phosphate (PO4) fluxes were nearly balanced over the study with fairly stable concentrations indicating a well-buffered system. The results indicate that the high energy subsidy provided by natural pulsing events such as atmospheric cold fronts and seasonal river discharge are efficient mechanisms of nutrient delivery to adjacent wetlands and nearshore coastal ecosystems and are important in maintaining coastal sustainability.  相似文献   

20.
The release of ammonium from the photochemical degradation of dissolved organic matter (DOM) has been proposed by earlier studies as a potentially important remineralisation pathway for refractory organic nitrogen. In this study the photochemical production of ammonium from Baltic Sea DOM was assessed in the laboratory. Filtered samples from the Bothnian Bay, the Gulf of Finland and the Arkona Sea were exposed to UVA light at environmentally relevant levels, and the developments in ammonium concentrations, light absorption, fluorescence and molecular size distribution were followed. The exposures resulted in a decrease in DOM absorption and loss of the larger sized fraction of DOM. Analysis of the fluorescence properties of DOM using parallel factor analysis (PARAFAC) identified 6 independent components. Five components decreased in intensity as a result of the UVA exposures. One component was produced as a result of the exposures and represents labile photoproducts derived from terrestrial DOM. The characteristics of DOM in samples from the Bothnian Bay and Gulf of Finland were similar and dominated by terrestrially derived material. The DOM from the Arkona Sea was more autochthonous in character. Photoammonification differed depending on the composition of DOM. Calculated photoammonification rates in surface waters varied between 121 and 382 μmol NH4+ L− 1 d− 1. Estimated areal daily production rates ranged between 37 and 237 μmol NH4+ m− 2 d− 1, which are comparable to atmospheric deposition rates and suggest that photochemical remineralisation of organic nitrogen may be a significant source of bioavailable nitrogen to surface waters during summer months with high irradiance and low inorganic nitrogen concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号