首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Submarine groundwater discharge (SGD) is now recognized as an important pathway for water and chemical species fluxes to the coastal ocean. In order to determinate SGD to the Gulf of Lion (France), we measured the activities of 226Ra and 228Ra by thermal ionization mass spectrometry (TIMS) in coastal waters and in the deep aquifer waters of the Rhone deltaic plain after pre-concentration of radium by MnO2. Compared to conventional counting techniques, TIMS requires lower quantities of water for the analyses, and leads to higher analytical precision. Radium isotopes were thus measured on 0.25–2 L water samples containing as little as 20 fg of 226Ra and 0.2–0.4 fg of 228Ra with precision equal to 2%. We demonstrate that coastal surface waters samples are enriched in 226Ra and 228Ra compared to the samples further offshore. The high precision radium measurements display a small but significant 226Ra and 228Ra enrichment within a strip of circa 30 km from the coast. Radium activities decrease beyond this region, entrained in the northern current along the shelf break or controlled by eddy diffusion. The radium excess in the first 30 km cannot be accounted for by the river nor by the early diagenesis. The primary source of the radium enrichment must therefore be ascribed to the discharge of submarine groundwater. Using a mass-balance model, we estimated the advective fluxes of 226Ra and 228Ra through SGD to be 5.2 × 1010 and 21 × 1010 dpm/d respectively. The 226Ra activities measured in the groundwater from the Rhone deltaic plain aquifer are comparable to those from other coastal groundwater studies throughout the world. By contrast, 228Ra activities are higher by up to one order of magnitude. Taking those groundwater radium activities as typical of the submarine groundwater end-member, a minimum volume of 0.24–4.5 × 1010 l/d is required to support the excess radium isotopes on the inner shelf. This has to be compared with the average rivers water runoff of 15.4 × 1010 l/d during the study period (1.6 to 29% of the river flow).  相似文献   

2.
A total of 21 surface water samples were collected on the east side of the East China Sea (ECS) (3 sites) and at the Tsushima Strait (1 site), and 226Ra and 228Ra activities were measured using low-background γ-spectrometry. The 228Ra/226Ra ratios among the samples exhibited notable seasonal variation (228Ra/226Ra = 0.2–2.6) accompanying changes of salinity (31.7–34.7). Seasonal water circulation within the ECS is hypothesized to cause the change by altering the mixing ratio of 228Ra-rich continental shelf water and 228Ra-poor Kuroshio water.  相似文献   

3.
白令海峡水团来源的镭同位素示踪   总被引:4,自引:3,他引:1       下载免费PDF全文
对白令海峡64.3°N纬向断面镭同位素的研究表明,水体中226Ra比活度、228Ra比活度和228Ra/226Ra)A.R.存在明显的纬向变化,反映出太平洋与北冰洋水体交换的多种路径.根据温度、盐度和镭同位素的水平与垂直分布,太平洋水进入北冰洋的路径可能主要有3支,分别为白令海峡西侧的阿拉德水、白令海峡东侧的阿拉斯加沿...  相似文献   

4.
226Ra and 228Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226Ra to increase with increasing salinities up to 20‰. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228Ra measured in the Yangtse River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228Ra is added to the water column by diffusion from bottom sediments, while 226Ra concentrations decrease from dilution. Diffusion of 228Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay (< 22‰ water) where fine grained sediments predominate. A diffusive flux for 228Ra of 0·33 dpm cm−2 year was determined for Delaware Bay.  相似文献   

5.
In the framework of the KEOPS project (KErguelen: compared study of the Ocean and the Plateau in Surface water), we aimed to provide information on the water mass pathways and vertical mixing on the Kerguelen Plateau, Southern Ocean, based on 228Ra profiles. Because 228Ra activities are extremely low in this area (~ 0.1 dpm/100 kg or ~ 2.10− 18 g kg− 1), the filtration of large volumes of seawater was required in order to be able to detect it with minimal uncertainty. This challenging study was an opportunity for us to test and compare methods aimed at removing efficiently radium isotopes from seawater. We used Mn-fiber that retains radium and that allows the measurement of all four radium isotopes (226Ra, 228Ra, 223Ra, 224Ra). First, we used Niskin bottles or the ship's seawater intake to collect large volumes of seawater that were passed onto Mn-fiber in the laboratory. Second, we filled cartridges with Mn-fiber that we placed in tandem on in situ pumps. Finally, we fixed nylon nets filled with Mn-fiber on the frame of in situ pumps to allow the passive filtration of seawater during the pump deployment.Yields of radium fixation on the cartridges filled with Mn-fiber and placed on in situ pumps are ca. 30% when combining the two cartridges. Because large volumes of seawater can be filtered with these pumps, this yields to effective volumes of 177–280 kg (that is, higher than that recovered from fourteen 12-l Niskin bottles). Finally, the effective volume of seawater that passed through Mn-fiber placed in nylon nets and deployed during 4 h ranged between 125 and 364 kg. Consequently, the two techniques that separate Ra isotopes in situ are good alternatives for pre-concentrating radium from seawater. They can save ship-time by avoiding repeated CTD casts to obtain the large volumes of seawater. This is especially true when in situ pumps are deployed to collect suspended particles. However, both methods only provide 228Ra/226Ra ratios. The determination of the 228Ra specific activity is obtained by multiplying this ratio by the 226Ra activity measured in a discrete sample collected at the same water depth.  相似文献   

6.
北黄海水体的226Ra和228Ra   总被引:1,自引:0,他引:1  
王芬芬  门武  刘广山 《台湾海峡》2010,29(2):265-276
用锰纤维富集-射气法测定了北黄海海水中的镭同位素226Ra和228Ra,研究了该海域水体中镭同位素的含量和分布.研究结果表明北黄海水体夏季226Ra的比活度为1.80~4.35 Bq/m3,平均值为3.06 Bq/m3;冬季226Ra的比活度为2.08~5.20 Bq/m3,平均值为3.28 Bq/m3.北黄海夏季228Ra的比活度为3.85~25.60 Bq/m3,平均值为10.60 Bq/m3;冬季228Ra的比活度为3.14~15.60Bq/m3,平均值为7.66 Bq/m3.该数据范围和中国近海其他海域、孟加拉湾、泰国昭披耶河口、濑户内海等海域相近.北黄海东北部海域,渤海海峡靠近山东半岛的海区和中北部海区表层镭同位素活度较高.C1断面镭同位素的分布特征从镭同位素的方面证实了渤海海峡水交换表现为北进南出特征这一结论的正确性.226Ra和228Ra的垂直分布较为复杂,大部分站位呈现出底层活度变高的趋势,其他少数站位呈现出中间层活度高的分布特征,不同来源的镭同位素输入至该海域形成了这样的分布特征.  相似文献   

7.
In the current study, low-background γ-spectrometry was employed to determine the 228Ra/226Ra activity ratio and 137Cs activity of 84 coastal water samples collected at six sites along the main island of Japan (Honshu Island) within the Sea of Japan, including the Tsushima Strait, and two other representative sites on Honshu Island (a Pacific shore and the Tsugaru Strait) at 1-month intervals in 2006.The 228Ra/226Ra ratio of coastal waters in the Sea of Japan exhibited similar patterns of seasonal variation, with minimum values during early summer (228Ra/226Ra = 0.6–0.8), maximum values during autumn (228Ra/226Ra = 1.5–3), and a time lag in their temporal changes ( 2.5 months and over  1300 km distance). However, the 2 other sites represented no clear periodic variation.In contrast to the positive correlation between 137Cs activity (0.6–1.7 mBq/L) and salinity (15–35), the 228Ra/226Ra ratio of coastal water samples from the Sea of Japan was not observed to correlate with salinity, and the increase in the 228Ra/226Ra ratio was not as marked (0.5–1; May–June 2004 and 2005) during the migration along Honshu Island. The input of land-derived water and/or the diffusion of radium from coastal sediments is unlikely to have affected the wide seasonal variation in the 228Ra/226Ra ratio observed in these water samples.The seasonal variation in the 228Ra/226Ra ratio recorded for the coastal waters of the Sea of Japan is considered to be mainly controlled by the remarkable changes in the mixing ratio of the 228Ra-poor Kuroshio and the 228Ra-rich continental shelf waters within the East China Sea (ECS). After passing through the Tsushima Strait, this water mass moves northeast along the coastline of the Sea of Japan as the Tsushima Coastal Branch Current (TCBC).  相似文献   

8.
Activities of the naturally occurring radium nuclides 228Ra, 226Ra, 224Ra and 223Ra were determined in waters of the open German Bight and adjacent nearshore areas in the North Sea, in order to explore the potential use of radium isotopes as natural tracers of land–ocean interaction in an environment characterised by extensive tidal flats, as well as riverine and groundwater influx. Data collected at various tidal phases from the Weser Estuary (228Ra: 46.3 ± 4.6; 226Ra: 17.1 ± 1.1; 224Ra: 26.1 ± 8.2 to 36.5 ± 6.1; 223Ra: 1.8 ± 0.1 to 4.0 ± 0.4), tidal flats near Sahlenburg (228Ra: 39.3 ± 3.8 to 46.0 ± 4.5; 226Ra: 15.5 ± 1.5 to 16.5 ± 1.7; 224Ra: 34.3 ± 2.2 to 85.3 ± 6.3; 223Ra: 3.6 ± 0.5 to 8.0 ± 1.2), freshwater seeps on tidal flats near Sahlenburg (228Ra: 42.1 ± 4.1; 226Ra: 21.3 ± 2.2; 224Ra: 5.1 ± 0.9; 223Ra: 2.6 ± 1.3) and also in permanently inundated parts of the North Sea (228Ra: 23.0 ± 2.3 to 28.2 ± 2.8; 226Ra: 8.2 ± 0.8 to 11.8 ± 1.2; 224Ra: 3.1 ± 1.0 to 10.1 ± 0.9; 223Ra: 0.1 ± 0.02 to 0.9 ± 0.05; units: disintegrations per minute per 100 kg water sample) reveal that, except for the fresh groundwater, the potential end-members of nearshore water mass mixing have quite similar radium signatures, excluding a simple discrimination between the sources. However, the decreasing activities of the short-lived 224Ra and 223Ra isotopes recorded towards the island of Helgoland in the central German Bight show a potential to constrain fluxes of land-derived material to the open North Sea. The largest source for all radium isotopes is generally found on the vast tidal flats and in the Weser Estuary. Future work could meaningfully combine this so-called radium quartet approach with investigations of radon activity. Indeed, preliminary data from a tidal flat site with fresh groundwater seepage reveal a 222Rn signal that is clearly lower in seawater.  相似文献   

9.
The short-lived radium isotopes, 223Ra (T1/2 = 11.4 days) and 224Ra (T1/2 = 3.66 days), have been successfully used as tracers of several environmental processes, e.g., submarine groundwater discharge, coastal mixing processes, and water residence times. In this paper, the uncertainties associated with 223Ra and 224Ra measurements using a Radium Delayed Coincidence Counter are determined on a detailed error propagation basis with a confidence interval of 1σ. From the data analyses of several groups of coastal water samples, the calculated relative uncertainties averaged 12% for the 223Ra and 7% for the 224Ra. These uncertainties can decrease for radium-enriched groundwater samples although asymptotic limits have been found at 7% relative uncertainty for 223Ra and 4% for 224Ra. In this paper, the influence of sampling and measurement parameters on the final radium uncertainties is evaluated in order to provide guidance to optimize these factors and obtain more reliable results.  相似文献   

10.
226Ra and 228Ra have non-conservative excess concentrations in the mixing zones of the Pee Dee River-Winyah Bay estuary, the Yangtze River estuary, and the Delaware Bay estuary. Laboratory experiments, using Pee Dee River sediment, indicate desorption of 226Ra to increase with increasing salinities up to 20‰. In Winyah Bay desorption from river-borne sediments could contribute almost all of the increases for both isotopes. Desorption adds only a portion of the excess 228Ra measured in the Yangtse River and adjacent Shelf waters and Delaware Bay. In the Yangtze River the mixing zone extends over a considerable portion of the Continental Shelf where 228Ra is added to the water column by diffusion from bottom sediments, while 226Ra concentrations decrease from dilution. Diffusion of 228Ra from bottom sediments in Delaware Bay primarily occurs in the upper part of the bay (< 22‰ water) where fine grained sediments predominate. A diffusive flux for 228Ra of 0·33 dpm cm?2 year was determined for Delaware Bay.  相似文献   

11.
盐度对镭同位素在海南红树林沉积物解吸行为的影响   总被引:1,自引:0,他引:1  
天然放射性镭同位素在沉积物上的解吸行为是影响其在陆-海交换过程中的关键所在。采用沉积物室内解吸实验和现场采集间隙水测量224Ra含量两种方法,对水体盐度梯度控制镭在海南八门湾红树林沉积物的解吸行为进行了讨论。结果表明:沉积物上可交换态224Ra的最大量为0.44dpm/g,解吸比为35%。利用间隙水的224Ra含量确定镭的分配比Kd与水体盐度S呈反比例函数:Kd=8.4×102/S,与室内解吸实验的结果相比更能代表镭在沉积物上的真实解吸行为。在深度25—40cm内,湿地沉积物的224Ra处于与其母体228Th的平衡状态,但223Ra很可能处于相对其母体227Th亏损状态。  相似文献   

12.
The input of groundwater-borne nutrients to Adelaide's (South Australia) coastal zone is not well known but could contribute to the ongoing decline of seagrass in the area. As a component of the Adelaide Coastal Waters Study (ACWS), the potential for using the radium quartet (223Ra, 224Ra, 226Ra and 228Ra) and 222Rn to evaluate submarine groundwater discharge (SGD) was evaluated. Potential isotopic signatures for SGD were assessed by sampling groundwater from three regional aquifers potentially contributing SGD to the ACWS area. In addition, intertidal groundwater was sampled at two sand beach sites. In general, the regional groundwaters were enriched in long-lived Ra isotopes (226Ra and 228Ra) and in 222Rn relative to intertidal groundwater. Radium activity (but not 222Rn activity) was positively correlated to salinity in groundwater from one of the regional aquifers and in intertidal groundwater. Radium isotope ratios (223Ra/226Ra, 224Ra/226Ra and 228Ra/226Ra) were less variable than individual Ra isotope activities within potential SGD sources. Recirculated seawater (estimated from the intertidal groundwater samples with seawater-like salinities) also had distinctly higher Ra isotope ratios than the regional groundwaters. The activities for all radioisotopes were relatively low in seawater. The activity of the short-lived 223Ra and 224Ra were highest at the shoreline and declined exponentially with distance offshore. In contrast, 228Ra and 226Ra activities had a weak linear declining trend with distance offshore. Rn-222 activity was at or near background in all seawater samples. The pattern of enrichment in short-lived Ra isotopes and the lack of 222Rn in seawater suggest that seawater recirculation is the main contributor to SGD in the ACWS area. Preliminary modeling of the offshore flux of 228Ra and 226Ra suggest that the SGD flux to the ACWS area ranges between 0.2 and 3 · 10− 3 m3 (m of shoreline)− 1 s− 1.  相似文献   

13.
Shelf–basin exchange in the western Arctic was evaluated by use of water-column analyses of 228Ra/226Ra ratios and the first measurements of the short-lived 224Ra (T1/2=3.64 d) in the Arctic. During the 2002 shelf–basin interaction (SBI) program, excess 224Ra was detected over the shelf but was not found seaward of the shelf-break. Similarly, the 228Ra/226Ra ratio dropped rapidly from the shelf across the shelf-break. Consequently, the model age gradient (elapsed time since shelf residence) northward across the Chukchi Shelf increased from 1–5 years nearshore to approximately 14 years in surface waters sampled off shelf at the southern margin of the Beaufort Gyre. This steep gradient is consistent with very slow exchange between the Chukchi Shelf and the Beaufort Gyre, whereby Bering Strait inflow is constrained by the Earth's rotation to follow local isobaths and does not easily move into deeper water. The strong dynamic control inhibiting water that enters the system through Bering Strait from flowing north across isobaths also would lead to a long recirculation time of river water emptied into the Beaufort Gyre. Possible mechanisms that can generate cross-shelf currents that break the topographic constraint to follow isobaths, and thereby transport water (and associated properties) off the shelves include wind-induced upwelling/downwelling, meandering jets, and eddies. Evidence of such a process was found during the ICEX project in the Beaufort Sea in April 2003 when excess 224Ra was measured over 200 km from any shelf source. This required an NE offshore flow of 40 cm s−1 assuming that the source water derives from the mouth of Barrow Canyon. A weak northeastward flow was measured using an LADCP within the upper 300 m of the ocean, but was of lower speed than required by the 224Raxs at the time of the ICEX occupation.  相似文献   

14.
Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600 y) and 228Ra (t1/2 = 5.75 y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith–Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12–83 dpm 100 L− 1 (60 dpm = 1 Bq) and 21–256 dpm 100 L− 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16–736 dpm 100 L− 1 (2002–2003) and 95–815 dpm 100 L− 1 (2005), while porewater 228Ra activities ranged from 23–1265 dpm 100 L− 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11–159 L m− 2 d− 1 and average 228Ra-derived fluxes of 15–259 L m− 2 d− 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30–472 L m− 2 d− 1 (Winnapaug Pond), 6–20 L m− 2 d− 1 (Quonochontaug Pond), 36–273 L m− 2 d− 1 (Ninigret Pond), 29–76 L m− 2 d− 1 (Green Hill Pond), and 19–83 L m− 2 d− 1 (Pt. Judith–Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity.  相似文献   

15.
钦州湾河流沉积物中镭的解吸行为   总被引:1,自引:0,他引:1  
放射性镭同位素在海底地下水排放(SGD)等海洋物质变化过程的研究中具有优良的示踪作用,估算SGD通量时需要计算河流悬浮颗粒物的解吸通量。因此,对河流沉积物/悬浮颗粒物中镭同位素解吸行为的研究不可或缺,而目前对于粒度较小范围内镭同位素的解吸特征及其机理的研究依然不足。本文选用钦州湾河流沉积物,通过室内实验探究粒度和盐度对沉积物中镭同位素解吸行为的影响。结果表明,在沉积物平均粒径0.9~136.0 μm范围内,随着粒径增大,沉积物中镭同位素在海水(盐度为33.9)中解吸活度逐渐减小,且变化趋势也逐渐变缓,平均粒径大于43.7 μm后,解吸量几乎不变;在海水盐度4.9~33.9范围内,随着盐度增大,沉积物中镭同位素解吸活度逐渐增大,盐度大于24.9后,解吸量趋于不变。本文创新性地建立了沉积物表面分形结构的镭解吸理论模型,拟合得到钦州湾河流沉积物表面最大可交换态224Ra、226Ra和228Ra活度分别为1.13 dpm/g、0.17 dpm/g和0.85 dpm/g,以干重计;沉积物中224Ra、226Ra和228Ra最大解吸比分别为30%、7%和18%。钦州湾河流沉积物颗粒表面最大可交换态224Ra和226Ra活度分别处于全球中等水平和较低水平,而其最大解吸比分别处于全球较高水平和较低水平。本研究结果有助于更好地理解镭同位素的解吸行为,以帮助更准确地估算SGD通量。  相似文献   

16.
A system capable of oceanic 226Ra measurements with a precision of ±1% is described, which represents an improvement of approximately a factor of three over existing techniques. 222Rn grown-in from 226Ra decay in 14-l seawater samples is quantitatively transferred to, and measured in, proportional gas counters. Errors other than counting statistics are estimated not to exceed ±0.5%, which is consistent with repeated 226Ra measurements on the same samples. A NE Atlantic 226Ra depth profile (2000–5000 m) is reported as an example. It is found that with the precision reported here, certain hitherto unresolved features of the 226Ra distribution in deep water become apparent.  相似文献   

17.
《Marine Chemistry》2002,78(1):1-8
The activities of naturally occurring radium isotopes (226Ra and 228Ra) in estuarine water were measured downstream of the dam constructed in the Nakdong River, Korea. The sampling of surface waters for radium, silicate, and suspended solid (SS) analyses was conducted at 18 stations during three periods (July 1997, April 1998, and June 1999). In general, radium activities exceeded the value expected from the mixing of two freshwater and seawater endmembers. We characterized the responses of Ra and Si according to three different conditions: (1) when the freshwater discharge and the water level of the dam relative to the sea level at low tide were lower (April 1998), the excess Ra and Si contents were lower in the estuary; (2) when the fresh water discharge was larger following heavy precipitation (July 1997), both excess Ra and Si contents were higher in the estuary with conservative mixing of Si; and (3) when the water level of the dam relative to the sea level at low tide was highest under low freshwater discharge (June 1999), high excess Ra but low Si levels were observed. The occurrence of high Ra activity in June 1999 was likely due to the large submarine brackish groundwater discharge downstream of the estuary. Since brackish groundwater in general contains high concentrations of nutrients, Ba, Ra, etc, our result suggests an important role for the submarine groundwater discharge on the biogeochemistry of estuarine/coastal waters, especially when the water level of the dam (hydraulic head) is high.  相似文献   

18.
The distribution of the natural radionuclide 210Po in the water column along a horizontal transect of the continental shelf, slope and deep basin regions of the East Sea (Sea of Japan), a marginal sea of the Northwest Pacific Ocean, was investigated, and its behavior is described here. The settling fluxes of particulate 210Po in the deep basin along with 210Pb, 234Th and biogenic matter were also determined. 210Po inventories in the water column were observed to decrease from winter to summer in all stations, probably due to increased influx of 210Po-poor Kuroshio Water of the Northwest Pacific Ocean during summer. Vertical profiles of dissolved and particulate 210Po along with the settling fluxes of particulate 210Po in the deep basin station have enabled us to evaluate temporal variations and residence times of 210Po. In the slope and basin, activities of dissolved 210Po generally decreased from the surface to the bottom water, with maximum activity just below the subsurface chlorophyll a maximum at 50–75 m depth in spring and summer. These subsurface peaks of dissolved 210Po activity were attributed to the release of 210Po from the decomposition of 210Po-laden biogenic particulate organic matter. In the deep basin, despite the decrease in total mass flux, the sinking flux of particulate 210Po was higher in the deeper trap (2000 m) than in the shallower one (1000 m), probably due to scavenging of dissolved 210Po from the water column during particle descent and/or break-down of 210Po-depleted particulate matter between 1,000 m and 2,000 m depths. In general, the ratios of the particulate phase to the dissolved phase of 210Po (Kd) increased with depth in the slope and basin stations. 210Po removal from the water column appears to depend on the primary productivity in the upper waters. There is an inverse relationship between Kd and suspended particulate matter (SPM) concentration in the water column. From the 210Po activity/chlorophyll a concentration ratios, it appears that sinking particles arriving at 1000 m depth were similar to those in the surface waters.  相似文献   

19.
The concentrations of228Ra in surface waters of the Seto Inland Sea were determined. Surface waters from the central region of the Seto Inland Sea, Hiuchi Nada and Bingo Nada, contained concentrations of228Ra of 655–811 dpm/1000 l which were 100 times higher than those obtained in the Pacific Ocean. These high concentrations of228Ra must be supported by a228Ra flux from the bottom sediment. The lower limit of this flux was estimated to be more than 0.16 dpm cm–2 y–1. The228Ra concentrations decreased markedly from central regions of the Seto Inland Sea to about 18 dpm/1000 l in the Kii and the Bungo Channels as salinity increased. Using a box model and the228Ra data, the mean residence time of sea water in the Seto Inland Sea with respect to the exchange with the open ocean water was estimated to be less than 10 y, and the most probable value is the order of several years.  相似文献   

20.
Delayed coincidence counters (RaDeCC), used for measuring 223Ra and 224Ra preconcentrated from water onto MnO2-impregnated acrylic fiber (“Mn-fiber”), require a standard Mn-fiber column that has a precisely known activity of 224Ra for calibration. This may be done by adding an aged 228Th standard solution to adsorb both 228Th and its daughter 224Ra quantitatively onto a Mn fiber. We used both seawater and deionized water (DIW) for testing the adsorption efficiency of Th and Ra onto Mn fibers. Our experimental results show that more than 50% of thorium (232Th and 228Th) breaks through the Mn-fiber column when DIW is used as a medium. However, near quantitative recoveries are obtained if filtered (0.45 μm) seawater is used to prepare the standard. In the case of pure DIW, the pH (initial pH  5.3) rises to > 10 after passing through the column while seawater (initial pH  7.8) changes to  7.2. Thus, the lack of thorium adsorption in DIW may be attributed to this huge increase of pH and the consequent formation of Th(OH)4 and polyhydroxyl colloids. Based on these observations, we recommend that one should use either artificial seawater or natural seawater (which has negligible 224Ra and 228Th) as a loading solution after 0.45 μm filtration. In addition, the thorium adsorption efficiency should be confirmed either by thorium analysis of the effluent solution or long-term monitoring of the supported 224Ra on the Mn fiber using the RaDeCC. Similar cautions are likely necessary for making 223Ra standards by adsorption of 227Ac onto Mn fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号