首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A numerical time simulation method is described to solve fluid flow problems including unsteady free surface motion. The method is based on potential flow theory. At every time step, the problem is solved using a boundary integral formulation of the fluid domain. The linearized free surface conditions are integrated in time and the solution is marched forward. Computational results simulating the free surface motion for the cases of a linear progressive wave, wave propagating into a region of calm water and the wave maker motion are presented. Comparison with theoretical results demonstrate the feasibility of the proposed simulation scheme.  相似文献   

2.
A fast time-domain method is developed in this paper for the real-time prediction of the six degree of freedom motions of a vessel traveling in an irregular seaway in infinitely deep water. The fully coupled unsteady ship motion problem is solved by time-stepping the linearized boundary conditions on both the free surface and body surface. A velocity-based boundary integral method is then used to solve the Laplace equation at every time step for the fluid kinematics, while a scalar integral equation is solved for the total fluid pressure. The boundary integral equations are applied to both the physical fluid domain outside the body and a fictitious fluid region inside the body, enabling use of the fast Fourier transform method to evaluate the free surface integrals. The computational efficiency of the scheme is further improved through use of the method of images to eliminate source singularities on the free surface while retaining vortex/dipole singularities that decay more rapidly in space. The resulting numerical algorithm runs 2–3 times faster than real time on a standard desktop computer. Numerical predictions are compared to prior published results for the transient motions of a hemisphere and laboratory measurements of the motions of a free running vessel in oblique waves with good agreement.  相似文献   

3.
The hydrodynamic problem of a hydrofoil travelling at constant speed in water waves has been investigated through velocity potential theory. The boundary conditions on the free surface have been linearized, and the effects are accounted for through the Green function. The overall problem is decomposed into the steady forward speed problem and periodic wave radiation and diffraction problems. Each of these problems is solved using the boundary integral equation over the hydrofoil surface together with a vortex sheet behind the trailing edge. The body surface boundary condition is imposed on its mean position. As a result the steady potential will contribute a well-known mj term to the body surface boundary condition on the radiation problem. The numerical difficulty in dealing with this term is effectively resolved through a difference method. The effects of the thickness on the wave radiation and diffraction are investigated. The applicability of various reciprocity relationships in this problem is discussed.  相似文献   

4.
A three-dimensional numerical model for determination of the interaction between non-linear water waves and a structure is developed. The model is based on a boundary integral equation method for the spatial solution of a potential theory problem, combined with a time-stepping method based on the fully non-linear free surface conditions for temporal updating of moments on a structure in the fluid domain. Comparison with experimental results shows good agreement. The present model is considered to be one of the steps towards a three-dimensional numerical model in which the wave-structure interaction in a wave tank can be simulated.  相似文献   

5.
The boundary integral element method based on Green's formula is applied to the analysis of transient flow problem in corrugated bottom tanks. The problem is formulated as a two-dimensional linear, initial boundary value problem in terms of a velocity potential. The Laplace equation and the boundary conditions, except the dynamic boundary condition on the free surface, are transformed into an integral equation by the application of Green's formula. Finite Difference discretization is applied timewise. Initially a triangular wave on the free surface is assumed to be formed. The height of the triangular corrugated bottom is varied between 1/10 and 1/5 of the tank depth. The form of the free surface and the equipotential lines for the flow in the tank are presented at different time steps. An accuracy analysis is performed and distortion in time is considered. Proper coefficients for solutions are derived and presented. The results show that utilization of triangular corrugated bottoms may help to regulate the flow in tanks.  相似文献   

6.
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence.  相似文献   

7.
《Ocean Engineering》1999,26(4):343-361
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence.  相似文献   

8.
Numerical solutions for the hydroelastic problems of bodies are studied directly in the time domain using Neumann–Kelvin formulation. In the hydrodynamic part of problem, the exact initial boundary value problem is linearized using the free stream as a basis flow, replaced by the boundary integral equation applying Green theorem over the transient free surface Green function. The resultant boundary integral equation is discretized using quadrilateral elements over which the value of the potential is assumed to be constant and solved using the trapezoidal rule to integrate the memory or convolution part in time. In the structure part of the problem, the finite element method is used to solve the hydroelastic problem. The Mindlin plate as a bending element, which includes transverse shear effect and rotary inertia effect are used. The present numerical results show acceptable agreement with experimental, analytical, and other published numerical results.  相似文献   

9.
A numerical algorithm based on the boundary element method (BEM) is presented for predicting the hydrodynamic characteristics of the various planing hull forms. The boundary integral equation is derived using Green's theorem on the wetted body surface and the free surface. The ventilation function at the transom is estimated with Doctor's empirical formula. This function is defined as the transom zone free surface boundary condition. The combined boundary integral equation and modified free surface boundary condition are simultaneously solved to determine the dipole on the wetted hull surface and the source on the free surface. The method is applied to investigate three examples of planing hulls, which include flat-plates, as well as wedge-shaped and variable deadrise planing hulls. Their hydrodynamic characteristics are calculated for different speeds. Computational results are presented and compared with existing theories and experiments. On the whole, the agreement between the present method and the selected experimental and numerical data is satisfactory.  相似文献   

10.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2006,33(17-18):2310-2331
The problem of wave propagation in a fully nonlinear numerical wave tank is studied using desingularized boundary integral equation method coupled with mixed Eulerian–Lagrangian formulation. The present method is employed to solve the potential flow boundary value problem at each time step. The fourth-order predictor–corrector Adams–Bashforth–Moulton scheme is used for the time-stepping integration of the free surface boundary conditions. A damping layer near the end-wall of wave tank is added to absorb the outgoing waves with as little wave reflection back into the wave tank as possible. The saw-tooth instability is overcome via a five-point Chebyshev smoothing scheme. The model is applied to several wave propagations including solitary, irregular and random incident waves.  相似文献   

11.
非线性波浪波面追踪的一种新模式   总被引:1,自引:0,他引:1  
基于Laplace方程的Green积分表达式和波面BemouUi方程所建立的非线性波动数学模型,是一个时域上具有初始值的边值问题,而精确地追踪自由表面的波动位置,给出波面运动瞬时的波面高度和波面势函数,是建立时域内非线性波浪数值模式的基础。本文采用0-1混合型边界元剖分计算域边界并离散Laplace方程的Green积分表达式,采用有限元剖分自由水面并推导满足自由表面非线性边界条件的波面有限元方程,联立计算域内以节点波势函数和波面位置高度的时间增量为未知量的线性方程组,通过时步内的循环迭代,给出每个时步上的波面位置和波面势函数,从而建立了一种新的非线性波浪波面追踪模式。数值造波水槽内的波浪试验表明,其数值模拟结果具有良好的计算精度。  相似文献   

12.
The quasi-steady resonant vibration of a flexible seagoing vessel under resonant wave excitation force, called springing, is studied in this paper. A higher-order B-spline Rankine panel method is used to represent the effects of the fluid motion surrounding this flexible seagoing vessel, and a finite element formulation based on Vlasov beam is employed for structural response. The boundary integral equation and finite element equation, both for fluid and structural domains, are fully coupled with each other using an iterative implicit method in the time domain. Coupling between the two field equations is achieved by relying on fixed-point iteration with relaxation aided by Aitken's δ2 process to maximize convergence speed. The steady-unsteady coupling term or m-term in the linearized body boundary condition derived by Timman and Newman is taken into account for accurate prediction of flexible body motion when forward speed is present. The 2nd derivative of basis potential in the m-term is obtained by modifying Nakos approach, which was originally developed using the Stokes theorem for rigid body ship motion problem. For the solution of the FE equation, instead of conventionally used modal superposition method, a direct integration scheme based on Newmark method is employed. It is believed that this technique is more attractive in the sense that it allows us free from the selection of optimum number of mode-shapes in the computation.  相似文献   

13.
章旭  勾莹  倪云林  滕斌  刘珍 《海洋学报》2016,38(1):133-142
基于线性势流理论,利用高阶边界元法研究了规则波在三维局部渗透海床上的传播。根据Darcy渗透定律推导出渗透海床的控制方程,利用渗透海床顶部和海底处法向速度和压强连续条件得到渗透海床顶部满足的边界条件。根据绕射理论,利用满足自由水面条件的格林函数建立了求解渗透海床绕射势的边界积分方程,采用高阶边界元方法求解边界积分方程进而得到自由水面的绕射势和波浪在局部渗透海床上传播过程中幅值的变化情况。通过与已发表的波浪对圆柱形暗礁的时域全绕射结果对比,证明了本文建立的频域方法计算波幅的正确性和有效性。利用这一模型研究了三维矩形渗透海床区域上波浪的传播特性,并分析了入射波波长、海床渗透特性系数等参数对波浪传播的影响。  相似文献   

14.
A two-dimensional finite wedge entering water obliquely in freefall with three degrees of freedom is considered through the velocity potential theory for the incompressible liquid. The problem is solved by using the boundary element method in the time domain. The scheme of the stretched coordinate system is adopted at the initial stages when only a small part of the wedge near its tip has entered water. The auxiliary function method is adopted to decouple the nonlinear mutual dependence between the body motions in three degrees of freedom and the fluid flow. When the liquid has detached from the knuckle of the wedge, the free jet is treated through the momentum equation. The developed method is verified through existing results for one degree of freedom in vertical motion. Various case studies are undertaken for a wedge entering water vertically, obliquely and with rotational angles. Results are provided the accelerations, velocities, pressure distribution and free surface deformation, and the physical implications are discussed.  相似文献   

15.
Zhiliang Gao  Zaojian Zou   《Ocean Engineering》2008,35(11-12):1271-1282
A high-order Rankine panel method based on Non-Uniform Rational B-Spline (NURBS) is developed for solving the three-dimensional radiation and diffraction problems with forward speed. A NURBS surface is used to precisely represent the body geometry. Velocity potential on the body surface is described by B-spline after the source density distribution on the boundary surface is determined. A collocation approach is applied to numerical computation and the integral equations are evaluated by applying Gauss–Legendre quadrature. The mj-terms are evaluated by a desingularized method which utilizes NURBS technique. In order to verify the method proposed, it is firstly applied to the unbounded flow problem of a sphere and spheroids. The numerical results are found to be in good agreement with analytical solutions. Then the method is used to solve the radiation and diffraction problems of a sphere and the diffraction problem of a spheroid moving with a forward speed beneath the free surface in frequency domain. The numerical results are satisfactory in comparison with the published analytical results and experimental results.  相似文献   

16.
The problem of a two-dimensional finite-width wedge entering water near a freely floating body is considered through the velocity potential theory for the incompressible liquid with the fully nonlinear boundary conditions on the free surface. The problem is solved by using the boundary element method in the time domain. The numerical process is divided into two phases based on whether the interaction between the wedge and floating body is significant. In the first phase, when the single wedge enters water at initial stage, only a small part near its tip is in the fluid, the problem is studied in a stretched coordinate system and the presence of the floating body has no major effect. In the second phase, the disturbance by water entry of the wedge has reached the floating body, and both are considered together in the physical system. The auxiliary function method is adopted to decouple the nonlinear mutual dependence between the motions of the wedge and floating body, both in three degrees of freedom, and the fluid flow, as well as the interaction effects between them. Case studies are undertaken for a wedge entering water in forced or free fall motion, vertically or obliquely. Results are provided for the accelerations, velocities, pressure distribution and free surface deformation, and the interaction effects are discussed.  相似文献   

17.
Based on the Rankine source, this paper proposed a time-domain method for analyzing the three-dimensional wave–structure interaction problem in irregular wave. A stable integral form of the free-surface boundary condition (IFBC) is employed to update the velocity potential on the free surface. A multi-transmitting formula, with an artificial wave speed, is used to eliminate the wave reflection for radiation condition on the artificial boundary. An effective multi-transmitting formula, coupled with damping zone method, is further used to analyze the irregular wave diffraction at the artificial boundary. We investigate hydrodynamic forces on floating structure and compare our solution to the frequency-domain solution. It is shown that long time simulation can be done with high stability and the numerical results agree well with the solution obtained under the frequency domain. The efficiency of the proposed multi-transmitting formula and the coupled methods for radiation boundary make them promising candidates in studying the irregular water wave problem in time domain.  相似文献   

18.
A numerical method, based on a boundary integral equation combined with a non-linear time stepping procedure for the free water surface, is developed for simulations of the interaction between highly non-linear water waves and submerged horizontal cylinders. The method is based on potential theory, and the omission of viscous effects restricts the wave-structure interaction computations to low Keulegan-Carpenter numbers where inertia forces are dominant. The numerical scheme is verified by computations with a steep wave of exact form during several wave periods, and by computations of a breaking wave. A new method for tracing the orbits of water particles in the fluid domain is developed, and the influence from submerged structures on the orbits is visualized through several computational examples. The wave forces on submerged structures are computed and are found to correspond well with other computed results for low Keulegan-Carpenter numbers.  相似文献   

19.
This paper presents a potential based boundary element method for solving a nonlinear free surface flow problem for a ship moving with a uniform speed in finite depth of water. The free surface boundary condition is linearized by the systematic method of perturbation in terms of a small parameter up to third order. The surfaces are discretized into flat quadrilateral elements and the influence coefficients are calculated by Morino's analytical formula. Dawson's upstream finite difference operator is used in order to satisfy the radiation condition. The second order solution gives better result than the first or third order solution. So the present method with the second order solution can be adopted as a powerful tool for the hydrodynamic analysis of the thin ship in finite depth of water.  相似文献   

20.
稳恒水波的Fourier近似解研究   总被引:1,自引:0,他引:1  
A computational method for steady water waves is presented on the basis of potential theory in the physical plane with spatial variables as independent quantities. The finite Fourier series are applied to approximating the free surface and potential function. A set of nonlinear algebraic equations for the Fourier coefficients are derived from the free surface kinetic and dynamic boundary conditions. These algebraic equations are numerically solved through Newton's iterative method, and the iterative stability is further improved by a relaxation technology. The integral properties of steady water waves are numerically analyzed, showing that (1) the set-up and the set-down are both non-monotonic quantities with the wave steepness, and (2) the Fourier spectrum of the free surface is broader than that of the potential function. The latter further leads us to explore a modification for the present method by approximating the free surface and potential function through different Fourier series, with the truncation of the former higher than that of the latter. Numerical tests show that this modification is effective, and can notably reduce the errors of the free surface boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号