首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ocean Engineering》1999,26(4):343-361
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence.  相似文献   

2.
In this paper, the hydrodynamic characteristics and flow field around rectangular and delta hydrofoils, moving with a constant speed beneath the free surface are numerically studied by means of isoparametric boundary element method (IBEM). The quantities (source and dipole strengths) and the geometry of the elements are represented by a linear distribution. Two types of three-dimensional hydrofoils (rectangular and delta) are selected with NACA4412 and symmetric Joukowski sections. Some numerical results of pressure distribution, lift, wave-making drag coefficients and velocity field around the hydrofoils are presented. Also, the wave pattern due to moving hydrofoil is predicted at different operational conditions. Comparisons are made between computational results obtained through this method and those from the experimental measurements and other numerical results which reveal good agreement.  相似文献   

3.
Nan Xie  Dracos Vassalos   《Ocean Engineering》2007,34(8-9):1257-1264
The purpose of the present paper is to develop a potential-based panel method for determining the steady potential flow about three-dimensional hydrofoil under free surface. The method uses constant-strength doublets and source density distribution over the foil body surface and thereby Dirichlet-type boundary condition is used instead of Neumann-type condition. On the undisturbed free surface source density is used to meet the free surface condition that is linearised in terms of double-body model approach and is discretised by a one-side, upstream, four-point finite difference operator. After solving the doublets on the foil and sources on the free surface, the numerical results of pressure, lift and resistance coefficients and also wave profiles can then be calculated for different Froude number and depth of submergence to demonstrate the influence of free surface and aspect ratio effects on performance of the hydrofoil.  相似文献   

4.
Sakir Bal   《Ocean Engineering》2007,34(14-15):1935-1946
The iterative method that is originally developed before both for two- and three-dimensional single cavitating hydrofoils moving with a constant speed under free surface is applied to the case of high-speed (Froude number up to 6.5) and some figures are given. The method is also extended to include the surface piercing hydrofoils (vertical struts) and the case of tandem hydrofoils into the calculations. The iterative nonlinear method based on the Green's theorem allows separating the cavitating hydrofoil problem(s) and the free surface problem. These two (or three in the case of tandem hydrofoil) problems are solved separately, with the effects of one on the other being accounted for in an iterative manner. The cavitating hydrofoil surface(s) and the free surface are modeled with constant strength dipole and constant strength source panels. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream and transverse boundaries. The cavitation number is expressed in terms of Froude number and the submergence depth of the hydrofoil from the free surface. An algebraic grid on the free surface has been described to get a smooth transition between the panels along the direction of uniform inflow and to have a long distance in the downstream direction depending on the wave-length (or Froude number) while keeping the number of panels fixed. First, the method is validated in the case of surface piercing hydrofoil. Then, the effects of high Froude number and the submergence depth of the hydrofoil from free surface on the results are discussed and some figures are given for interested engineers and designers. The method is later applied to the case of tandem hydrofoils and the effects of one hydrofoil on the other are discussed.  相似文献   

5.
为了降低空化造成的水动力性能损失,基于仿生学原理,参考座头鲸鳍肢剖面形状,将前缘波浪构型引入到水翼设计中,研究波状前缘水翼的非定常空化特性,并探究前缘参数改变对空化控制的效果和规律。选用NACA634-021水翼为基准模型,进行前缘参数化重构,设计出3种不同的波状水翼进行对比研究。采用大涡模拟(LES)方法对空化流场进行精细化数值模拟,针对基准水翼和不同波幅与波长参数下的波状水翼开展了空化周期、升阻力系数、压力脉动以及流向涡结构的对比分析。结果发现,波状水翼在抑制空化和降低压力脉动方面都取得了显著效果。其中,3种不同的波状水翼空化抑制率分别为15.7%、18.6%和27.9%,压力脉动幅值分别降低了55.3%、67.3%和74.6%。分析表明,波浪前缘的引入使得空化的分区效应更加凸显,空化从波谷处初生,增大波幅或减小波长都可以加强对空化的抑制效果,并可以提高升力系数以及显著降低水翼表面的压力脉动。前缘波浪构型还将诱发向下游发展的对转涡结构,不同前缘参数的波状水翼涡结构的演化是相似的,空泡发展与溃灭的整个过程对涡结构的发展也具有显著影响。  相似文献   

6.
The hydrodynamic problem of a hydrofoil travelling at constant speed in water waves has been investigated through velocity potential theory. The boundary conditions on the free surface have been linearized, and the effects are accounted for through the Green function. The overall problem is decomposed into the steady forward speed problem and periodic wave radiation and diffraction problems. Each of these problems is solved using the boundary integral equation over the hydrofoil surface together with a vortex sheet behind the trailing edge. The body surface boundary condition is imposed on its mean position. As a result the steady potential will contribute a well-known mj term to the body surface boundary condition on the radiation problem. The numerical difficulty in dealing with this term is effectively resolved through a difference method. The effects of the thickness on the wave radiation and diffraction are investigated. The applicability of various reciprocity relationships in this problem is discussed.  相似文献   

7.
为了改善潮流能水轮机叶片表面流动分离问题,提高其升阻比,本文通过在潮流能水轮机叶片表面加装涡流发生器,来研究涡流发生器对潮流能水轮机水动力学性能的影响。本文以NACA4418翼型为研究对象,分别建立了含VGs和不含VGs的三维模型,利用CFD方法研究了VGs的高度、长度以及相邻一对VGs之间的间距等多个方面对该翼型性能的影响。结果表明:VGs可以有效地提高翼型的最大升力系数;相邻VGs间距的增加对流动分离的抑制有积极影响。此外,通过对尾迹区流线和旋涡的分析,进一步揭示了尾迹区的流场特征。  相似文献   

8.
Results of an experimental study of the effect of surface proximity on hydrofoil lift are presented. The biplane image theory, a horseshoe vortex model and momentum theory are described in relation to the effect of surface proximity on hydrofoil lift and drag. The biplane image theory and the horseshoe vortex model are shown to predict the same effect on lift, and are seen to be in good agreement with the experimental data. The Payne momentum theory is seen to differ significantly from the measured results. The data indicate a significant reduction in lift at depths less than two chords with very little effect at greater depth.  相似文献   

9.
A technique for predicting the bubble growth along a two-dimensional hydrofoil with traveling bubble cavitation is presented. The method is based on the dynamic response of ambient microbubbles to the flow field and the subsequent diffusion of dissolved air into the flow field cavities. The bubble growth model is divided into three components, including the prediction of 1) the hydrofoil surface pressure distribution, 2) the ambient microbubble response to the pressure distribution, and 3) the diffusive mass flow rate. The hydrofoil velocity and pressure field is determined by two-dimensional thin airfoil theory. The microbubble response to the pressure field is given by the Rayleigh-Plesset equation with the addition of a mass diffusion term. The diffusion of dissolved gasses into the cavitation bubbles is determined by a solution to the steady-state diffusion equation under spherically symmetric convective flow. Results are given for the bubble wake of a NACA 66-006 (a = 0.8meanline) hydrofoil with traveling bubble cavitation. The effect of the relative velocity of the cavitation bubbles with respect to the surrounding water is investigated as well as the significance of the mass diffusion term in the Rayleigh-Plesset equation.  相似文献   

10.
Traditionally autonomous underwater vehicles (AUVs) have been built with a torpedo-like shape. This common shaping is hydrodynamically suboptimal for those AUVs required to operate at snorkeling condition near the free surface. In this case, the wave resistance associated to the wavy deformation of the sea surface induced by the motion of the platform is an important component of the drag. This work has investigated the optimum hull shape of an underwater vehicle moving near the free surface. Specifically a first-order Rankine panel method has been implemented to compute the wave resistance on a body of revolution moving close to the free surface. A simulated annealing algorithm was then employed to search those set of parameters defining the hull shape that minimize the wave resistance. The optimization was constrained to keep constant the total volume of the vehicle. The total drag of scaled models of the torpedo-like and resulting optimum shapes was measured in the naval tank of the University of Trieste. Measurements showed a smaller resistance of the optimized shape in the range of the considered Froude numbers.  相似文献   

11.
A semi-analytical approach to free dry and wet vibration of a trapezoidal, 2-way tapered, pivoted hollow spade rudder is presented. The rudder is modeled as a hollow Kirchhoff’s plate, with a NACA0018 profile chord section. The rudder pivot is modeled as a combination of a translational spring and a rotational spring. The span-wise and chord-wise non-uniform beam vibration is first analyzed by the Rayleigh-Ritz method, to establish the non-uniform beam modeshapes, which act as admissible functions to the Galerkin’s method for plate vibration. Eigenvalue analysis generates the plate natural frequencies and the plate modeshapes. Alternately, uniform beam modeshapes themselves are used as admissible functions into the Galerkin’s method. Frequencies are analyzed for various pivot positions, taper ratios, and NACA sections. For the wet vibration, constant strength source distribution technique is used to generate the added mass of a 2D aerofoil. Also, 3D panel method is used to generate the modal added masses, and hence the wet natural frequencies. The added mass coefficient is generated for various aerofoil fineness ratios, pivot fixities, taper ratios, aspect ratios.  相似文献   

12.
Animals display a variety of control surfaces that can be used for propulsion and maneuvering devises. For nonpiscine vertebrates, these control surfaces are primarily evolutionary modifications of the paired appendages (i.e., legs). The diversity of control surfaces can be classified with regard to the forces used for stability and maneuverability. For animals, the pertinent forces are pressure drag, acceleration reaction, and lift. These forces can be generated actively by motion of the control surfaces or passively from flows produced by movements of the body or external flow fields. Drag-based control surfaces are associated with paddling and rowing movements, where the limbs are oriented either in the vertical parasagittal plane or horizontal plane, respectively. The paddle is unstreamlined and has a triangular design with a broad distal end, thereby affecting a large mass of water. Appendages, which are used to generate lift-based forces, are relatively stiff hydrofoils. To maximize lift, the hydrofoil should have a crescent wing-like design with high aspect ratio. This shape provides the hydrofoil with a high lift-to-drag ratio and high propulsive efficiency. The tail flukes of cetaceans are streamlined control surfaces with a wing-like design. The flukes of cetaceans function in the hydrodynamic generation of forces for thrust, stability, and maneuverability. The three-dimensional geometry of flukes is associated with the production of lift and drag. Previous studies of fluke geometry have been limited in the number of species examined and the resolution of measurements.  相似文献   

13.
章旭  勾莹  倪云林  滕斌  刘珍 《海洋学报》2016,38(1):133-142
基于线性势流理论,利用高阶边界元法研究了规则波在三维局部渗透海床上的传播。根据Darcy渗透定律推导出渗透海床的控制方程,利用渗透海床顶部和海底处法向速度和压强连续条件得到渗透海床顶部满足的边界条件。根据绕射理论,利用满足自由水面条件的格林函数建立了求解渗透海床绕射势的边界积分方程,采用高阶边界元方法求解边界积分方程进而得到自由水面的绕射势和波浪在局部渗透海床上传播过程中幅值的变化情况。通过与已发表的波浪对圆柱形暗礁的时域全绕射结果对比,证明了本文建立的频域方法计算波幅的正确性和有效性。利用这一模型研究了三维矩形渗透海床区域上波浪的传播特性,并分析了入射波波长、海床渗透特性系数等参数对波浪传播的影响。  相似文献   

14.
A nonlinear analysis is made for determining the two-dimensional unsteady potential-flow characteristics about a wing subject to wing-in-ground effect (WIG) operating above progressive water waves. The dynamic boundary condition requiring the constant pressure and the kinematic boundary condition prescribing the continuity in the vertical velocity are satisfied on the undisturbed free surface. The boundary conditions imposed on the free surface are linear, but the kinematic boundary condition satisfied on the foil surface is nonlinear. Through the derivation and evaluation of the time-domain Green's functions for two-dimensional singularities above a free surface, the influence of water waves on the lift performance of the two-dimensional WIG is addressed using the discrete vortex method. Furthermore, the roll-up of the wake vorticity is considered. The comparison of present work with other numerical results available in the literature shows the validation of the present approach.  相似文献   

15.
Second-Order Wave Diffraction Around 3-D Bodies by A Time-Domain Method   总被引:1,自引:1,他引:1  
BAI  Wei 《中国海洋工程》2001,(1):73-84
A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedure to establish the corresponding boundary value problems with respect to a time-independent fluid domain. A boundary element method based on B-spline expansion is used to calculate the wave field at each time step, and the free surface boundary condition is satisfied to the second order of wave steepness by a numerical integration in time. An artificial damping layer is adopted on the free surface for the removal of wave reflection from the outer boundary. As an illustration, the method is used to compute the second-order wave forces and run-up on a surface-piercing circular cylinder. The present method is found to be accurate, computationally efficient, and numerically stable.  相似文献   

16.
Vortex generators are used extensively as a passive flow control devices to delay or remove the boundary layer separation, which affects the hydrodynamic performance of the hydrofoil. In this paper, a new approach is introduced to overcome the boundary layer separation on the NACA S1210 hydrofoil. The outcome of tube slots combination in the S1210 hydrofoil on the boundary layer separation are numerically investigated. The performance is compared with respect to the force coefficients and glide ratio. The effects of tube slot inlet positions with different diameters on S1210 hydrofoil are presented here. The results show that the smaller diameter tube slots starting near the leading edge improves the hydrodynamics performance of the hydrofoil.  相似文献   

17.
The problem of a uniform current passing through a circular cylinder submerged below an ice sheet is considered. The fluid flow is described by the linearized velocity potential theory, while the ice sheet is modelled through a thin elastic plate floating on the water surface. The Green function due to a source is first derived, which satisfies all the boundary conditions apart from that on the body surface. Through differentiating the Green function with respect to the source position, the multipoles are obtained. This allows the disturbed velocity potential to be constructed in the form of an infinite series with unknown coefficients which are obtained from the boundary condition. The result shows that there is a critical Froude number which depends on the physical properties of the ice sheet. Below this number there will be no flexural waves propagating to infinity and above this number there will be two waves, one on each side of the body. When the depth based Froude number is larger than 1, there will always be a wave at far upstream of the body. This is similar to those noticed in the related problem and is different from that in the free surface problem without ice sheet. Various results are provided, including the properties of the dispersion equation, resistance and lift, ice sheet deflection, and their physical features are discussed.  相似文献   

18.
A modified source-and-dipole type singularity panel method is proposed to calculate the flow properties for an oscillating arbitrary body in the presence of a free surface. The technique is based on Green's identity whereby the boundary value problem is expressed as a boundary integral equation which is solved numerically. The free-space Green function is used in the integral equation. To demonstrate the feasibility of the method, the problem of a pulsating submerged line source under a free surface is treated and results are compared with the exact solution.An excellent agreement with the theory is obtained for panel density of about ten panels per wavelength and paneled water surface length of two wavelengths with very low computing times, indicating the feasibility of the method for unsteady water wave problems.  相似文献   

19.
This paper discusses the numerical prediction of the induced pressure and lift of the planing surfaces in a steady motion based on the potential flow solver as well as the spray drag by use of the practical method.The numerical method for computation of the induced pressure and lift is potential-based boundary element method.Special technique is identified to present upwash geometry and to determine the spray drag.Numerical results of a planing flat plate and planing craft model 4666 are presented.It is shown that the method is robust and efficient and the results agree well with the experimental measurements with various Froude humors.  相似文献   

20.
A combined method for the hydrodynamic characteristics of planing crafts   总被引:1,自引:0,他引:1  
The prediction of the total resistance of planing crafts at high speeds is very important. In this paper, a combined method is investigated for determining the hydrodynamic characteristics of planing crafts in the calm water. The study consists of a potential-based boundary element method (BEM) for the induced pressure resistance, the boundary layer theory for the frictional resistance and practical method for the spray resistance. The planing surface is represented by a number of elements with constant velocity potential at each element. The unknown-induced pressure is obtained by using the free surface elevation condition and the Kutta condition at the transom stern. Hydrodynamic-induced resistance and lift are determined by the calculated dynamic pressure distributions. The boundary layer analysis method is based on calculations of the momentum integral equation applied to obtain the frictional resistance. A particular practical approach is introduced to present the region of the upwash geometry for the spray. A numerical program has been developed for the present research and applied to the hull form of the craft. Four different hull forms of Series 62 model 4666 planing craft are presented. It is shown that the present combined method is efficient and the results are in good agreement with the experimental measurements over a wide range of volumetric Froude numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号