首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
箱式超大型浮体结构在规则波中的水弹性响应研究   总被引:3,自引:5,他引:3  
利用三维线性水弹性理论研究了箱式超大型浮体结构在正弦规则波中的动力响应,用Bernoulli-Euler梁解析解计算结构在真空中的动力特性,用弹性体三维势流理论计算结构的水动力系数,浮体结构在单位波幅规则波中的刚体运动幅值与DNV/WADAM程序的计算结果进行了比较,并给出了垂向弯曲模态的位移,弯矩随波浪频率的变化规律,由于箱式浮体结构的低阶固有频率很低,相应的弹性振型的响应与刚体运动耦合,结构在波浪中没有发现明显的低阶弹性模态谐振。  相似文献   

2.
不同干结构模型对箱式超大型浮体结构水弹性响应的影响   总被引:1,自引:7,他引:1  
三维线性水弹性力学利用结构在真空中弹性振型的正交性 ,对结构振动进行模态分析 ,用弹性体三维势流理论计算结构的水动力系数。因此 ,结构的干模态计算是十分重要的。应用三维线性水弹性理论研究箱式超大型浮体结构在波浪中的动力响应时 ,分别采用梁模型和三维空间有限元模型计算结构的干模态 ,并且采用同样的水动力模型 (弹性体三维势流理论 )研究了不同干结构模型对结构水弹性响应的影响  相似文献   

3.
用直接法分析超大型浮体的水弹性响应   总被引:2,自引:2,他引:2  
探讨了浮舟桥型超大型浮体结构的水弹性响应分析问题。将超大型浮体结构简化成弹性平板模型,用压力分布法计算流体压力,用直接法计算流体-结构系统,给出了它们的数学计算模型。计算表明本计算方法和程序是正确的,并能保证充分的精度,进而计算了更大尺度的超大型浮体,分析了波长、波向等对响应振幅的影响。  相似文献   

4.
为了探究钻井支持平台及生产平台组成的复杂多浮体耦合系统在近距离靠泊状态下的相对运动情况,基于多浮体三维势流理论及时域耦合分析方法,计算了半潜式钻井支持平台和张力腿(TLP)生产平台耦合系统在三种不同环境方向,即迎浪、斜浪、横浪下两平台的相对运动和平台间连接栈桥的运动响应,为平台运动分析和栈桥设计提供指导。并将计算结果与水池模型试验结果进行对比,验证了数值方法的可靠性。为进一步了解多浮体间耦合水动力的影响,计算了该近距离靠泊系统在不考虑浮体间水动力相互干扰下的运动响应。研究表明除在横浪作用外,其他环境条件下的多浮体水动力干扰作用明显,对浮体运动响应的影响不可忽略,且有效波高在小范围内变化时,平台间的相对运动幅值基本与其呈线性关系。  相似文献   

5.
在工程设计中,通常采用模块化方式制造超大型浮式结构物,将巨大的单体结构分割成多个较小模块,后期通过合适的连接器拼装形成。为了明确多模块超大浮体在波浪作用下的水弹性响应,以两个相邻层合浮体(高刚度面板和低密度芯材)为研究对象,建立波浪作用下铰接层合浮体水弹性响应的高阶势流模型。采用匹配特征函数展开法求解流体运动的速度势,探讨了铰接处弹簧刚度对浮体的反射系数、透射系数、挠度、弯矩和剪力的影响规律。研究结果表明:迎浪侧浮体的存在可以有效降低背浪侧浮体的挠度、弯矩和剪力幅值;与垂直弹簧相比,扭转弹簧刚度的增加可以更加有效抑制铰接层合浮体的水弹性响应;当扭转弹簧刚度大于一定值时,继续增大弹簧刚度对浮体的动力响应不产生影响。  相似文献   

6.
人工浮鱼礁型式多样,适应水深范围广,优化锚泊方式可规模化建设浮鱼礁群,是海洋中上层生境构建的重要手段。中上层浮鱼礁投放于近海,属于海岸工程范畴,抗浪性能是其结构设计的关键。根据有限单元法和集中质量点法,详细阐述和推导了中上层浮鱼礁各构成组件连接位置处点或单元的相互耦合受力和运动处理方法,以及浮鱼礁出水条件的判别方法和水质点速度、加速度的修正方法。建立的波浪作用下三维浮鱼礁动力响应数值模型与其在波浪水槽中的物理模型试验对比,验证了数值模型的正确性。最后建立了一种新型锚泊方式的浮鱼礁动力响应数值模型,分析了浮鱼礁摆动角度、锚绳拉力、网衣系缚点总拉力的历时变化。研究结果可为中上层浮鱼礁优化结构形状和搭配浮体、配重提供判断依据。  相似文献   

7.
J型铺管法是深海管线铺设安装最先进的方法之一,研究铺设过程中管线受浮体运动和海洋环境载荷的动力响应影响,有助于认识和提高J型铺管法管线铺设的安全性。通过管线的静态整体构型分析得出其力学关键位置,并对其做时域动力响应计算,着重探讨了不同波浪情况、浮体垂荡和纵荡运动幅值,以及顶部张力参数对管线应力水平动力响应的影响。研究表明:触地区域是深海J型铺管法管线的应力响应最大位置;波浪水动力载荷对管线的直接影响作用较小;铺管船等浮体的垂荡运动对管线触地区域的力学影响显著,纵荡运动的影响略低于垂荡运动;管线顶部施加的张力越大,触地区域动力响应减小,但减小有限。  相似文献   

8.
基于三维势流理论,建立筏式波浪发电装置多浮体水动力模型。利用AQWA水动力软件研究多浮体水动力相互作用对发电装置浮体单元水动力系数的影响;将能量转换系统等效成刚度-阻尼模型后,对其进行不规则波时域模拟,对比分析方向谱和频率谱波浪模型对波浪发电装置能量吸收的影响。结果表明:浮体之间的水动力相互作用对浮体单元纵荡方向上的附加质量与辐射阻尼系数有明显的影响,对垂荡和纵摇方向上的水动力系数影响较小;不同的波浪模型下,能量俘获功率有着较大的差别,特别是在迎浪状态下。  相似文献   

9.
本文基于前期对振荡浮子式波能发电装置的研究,提出一种与采油平台结合的新型波浪能发电装置,并采用水动力学软件Ansys-AQWA进行数值模拟,计算了不同波况条件下的发电装置受力与运动响应。分析发电装置稳定性和输出功率表明:在振荡浮子与采油平台导管架相结合的状态下,装置运行正常,平台稳定,波能利用率并未受到显著影响,初步验证了设计的可行性。通过频域计算,发现装置发电理想波频区间为1.2~2.0Hz;通过时域计算,发现浮子垂向平均最大位移、最大速度、最大加速度与波浪波高成正相关,垂向平均最大加速度与波浪周期成负相关,垂向平均最大波浪力与波浪周期成正相关,上述成果将为后续研究与试验提供一定的数据支持。  相似文献   

10.
由若干独立摇板组成的多单元造波机是实验室研究波浪及其与海洋工程结构物相互作用的重要设备。由于单元摇板宽度和波浪周期对斜向波浪模拟方向角的限制、斜向波浪模拟引起的杂波和三维短峰波浪模拟的有效实验区范围等,是影响多单元造波机波浪模拟质量的关键问题。通过对海洋深水池双边多单元造波机性能的分析,获得了波向角与规则波浪周期的关系,避免杂波产生的波浪周期范围和三维短峰波浪有效实验区的范围。分析结果对于海洋深水池高质量模拟波浪并为海洋工程结构物模型试验提供良好的波浪环境条件具有重要意义。  相似文献   

11.
A three-dimensional general mathematical hydroelastic model dealing with the problem of wave interaction with a floating and a submerged flexible structure is developed based on small amplitude wave theory and linear structural response. The horizontal floating and submerged flexible structures are modelled with a thin plate theory. The linearized long wave equations based on shallow water approximations are derived and results are compared. Three-dimensional Green’s functions are derived using fundamental source potentials in water of finite and infinite depths. The expansion formulae associated with orthogonal mode-coupling relations are derived based on the application of Fourier transform in finite and infinite depths in case of finite width in three-dimensions. The usefulness of the expansion formula is demonstrated by analysing a physical problem of surface gravity wave interaction with a moored finite floating elastic plate in the presence of a finite submerged flexible membrane in three-dimensions. The numerical accuracy of the method is demonstrated by computing the complex values of reflected wave amplitudes for different modes of oscillation and mooring stiffness. Further, the effect of compressive force and modes of oscillations on a free oscillation hydroelastic waves in a closed channel of finite width and length for floating and submerged elastic plate system is analysed.  相似文献   

12.
The hydroelastic response of a circular, very large floating structure (VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interfacial wave modes, of a given wave frequency, on a two-layer fluid of finite and constant depth. In linear potential-flow theory, with the aid of angular eigenfunction expansions, the diffraction potentials can be expressed by the Bessel functions. A system of simultaneous equations is derived by matching the velocity and the pressure between the open-water and the plate-covered regions, while incorporating the edge conditions of the plate. Then the complex nested series are simplified by utilizing the orthogonality of the vertical eigenfunctions in the open-water region. Numerical computations are presentedto investigate the effects of different physical quantities, such as the thickness of the plate, Young's modulus, the ratios ofthe densities and of the layer depths, on the dispersion relations of the flexural-gravity waves for the two-layer fluid.Rapid convergence of the method is observed, but is slower at higher wave frequency. At high frequency, it is found that there is some energy transferred from the interfacial mode to the surface mode.  相似文献   

13.
1 .IntroductionRecentlygreatinteresthasbeenshowninthedevelopmentofverylargefloatingstructuressuchasMegaFloatofJapan (Isobe ,1 999)andMOBofUSA (Remmers ,1 999) .Owingtotheirextremelargesizeandgreatflexibility ,thecouplingbetweenthestructuraldeformationandfluidmotionissignifi cant.Thisisatypicalproblemofhydroelasticity .Efficientandaccurateestimationofthehydroelasticresponseofverylargefloatingstructuresinwavesisveryimportantfordesign .Manymethodshavebeenproposedinliteratureforthepredictiono…  相似文献   

14.
The hydroelastic response of a semi-infinite thin elastic plate floating on a two-layer fluid of finite depth due to obliquely incident waves is investigated. The upper and lower fluids with different densities separated by a sharp and stable interface are assumed to be inviscid and incompressible and the motion to be irrotational. Simply time-harmonic incident waves of the surface and interfacial wave modes with a given angular frequency are considered within the framework of linear potential flow theory. With the aid of the methods of matched eigenfunction expansion and the inner product of the two-layer fluid, a closed system of simultaneous linear equations is derived for the reflection and transmission coefficients of the series solutions. Based on the dispersion relations for the gravity waves and the flexural–gravity waves in a two-layer fluid and Snell’s law for refraction, we obtain a critical angle for the incident waves of the surface wave mode and three critical angles for the incident waves of the interfacial wave mode, which are related to the existence of the propagating waves. Graphical representations of the series solutions show the interaction between the water waves and the plate. The effects of several physical parameters, including the density and depth ratios of the fluid and the thickness of the plate, on the wave scattering and the hydroelastic response of the plate are studied. It is found that the variation of the thickness of the plate may change the wave numbers and the critical angles. The density ratio is the main factor to influence the wave numbers of the interfacial wave modes. Finally, the stress state is considered.  相似文献   

15.
The membrane forces are included in the hydroelastic analysis of a floating plate undergoing large vertical deflections in regular monochromatic multidirectional waves. The first-order vertical displacements induced by the linear wave exciting forces are calculated by the mode expansion method in the frequency domain. The second-order vertical displacements induced by the membrane forces are calculated by the von Karman plate theory. The results show that the membrane contribution both in terms of the axial stresses and the effect on the bending stresses can be important.  相似文献   

16.
An influence of sea-bottom topography on the hydroelastic response of a Very Large Floating Structure (VLFS) is considered. When the floating structure is constructed near the shore, the sea-bottom topographical effect should be considered. In this study, the effect of sea-bottom topography is investigated for four different bottom cases. To calculate the sea-bottom effects rigorously, the finite-element method based on the variational formulation is used in the fluid domain. The pontoon-type floating structure is modeled as the Kirchhoff plate. The mode superposition method is adopted for the hydroelastic behavior of the floating structure.  相似文献   

17.
The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS) under wave action has been investigated in the context of linear water wave theory. Darcy's law is adopted to represent energy dissipation in pores. It is assumed that the porous plates are made of material with very fine pores so that the normal velocity across the perforated porous is linearly associated with the pressure drop. In the analytic method, the eigenfunction expansion-matching method(EEMM) for multiple domains is applied to solve the hydrodynamic problem and the elastic equation of motion is solved by the modal expansion method. The performance of the proposed submerged horizontal solid/porous plate can be significantly enhanced by selecting optimal design parameters, such as plate length, horizontal position, submerged depth and porosity. It is concluded that good damping effect can be achieved through installation of solid and porous plate.Porous plate has better damping effect at low frequencies, while solid plate has better damping effect at high frequencies. The optimal ratio of plate length to water depth is 0.25-0.375, and the optimal ratio of submerged depth to water depth is 0.09-0.181.  相似文献   

18.
Hydroelastic analysis of flexible floating interconnected structures   总被引:3,自引:0,他引:3  
Three-dimensional hydroelasticity theory is used to predict the hydroelastic response of flexible floating interconnected structures. The theory is extended to take into account hinge rigid modes, which are calculated from a numerical analysis of the structure based on the finite element method. The modules and connectors are all considered to be flexible, with variable translational and rotational connector stiffness. As a special case, the response of a two-module interconnected structure with very high connector stiffness is found to compare well to experimental results for an otherwise equivalent continuous structure. This model is used to study the general characteristics of hydroelastic response in flexible floating interconnected structures, including their displacement and bending moments under various conditions. The effects of connector and module stiffness on the hydroelastic response are also studied, to provide information regarding the optimal design of such structures.  相似文献   

19.
In the present paper, a hydroelastic model is developed to deal with surface gravity wave interaction with an elastic bed based on the small amplitude water wave theory and plate deflection in finite water depth. The elastic bottom bed is modelled as a thin elastic plate and is based on the Euler-Bernoulli beam equation. The wave characteristics in the presence of the elastic bed is analyzed in both the cases of deep and shallow water waves. Further, the linearized long wave equation is generalized to include bottom flexibility. A generalized expansion formula for the velocity potential is derived to deal with the boundary value problems associated with surface gravity waves having an elastic bed. The utility of the expansion formula is illustrated by demonstrating specific physical problems which will play significant role in the analysis of wave structure interaction problems. Behavior of the wave spectra are discussed in the case of closed basin having a free surface and an elastic bottom topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号