首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A simplified box model of the cooling of a salt-stratified ocean is analyzed analytically and numerically. A large isothermal basin of salt water has a layer of fresh water at the surface. Beside this is a small basin, cooled from above and connected to the large basin by horizontal tubes at the top, middle and bottom. For small cooling rate, fresh water enters the small basin, is cooled and leaves through the middle tube. For greater cooling rate, the fresh water leaves the small basin through the middle and bottom tube. If the top tube is smaller than the deeper tubes and the fresh water layer is sufficiently shallow, flow in the middle tube reverses at a critical cooling rate. In this case, a mixture of salt and fresh water is cooled and leaves the bottom tube. Increased cooling produces much greater flow rate; consequentially temperature increases rather than decreases in the small basin. A relaxation heat flow condition results in multiple equilibria. One of the stable modes has fresh surface water descending in the small basin and flowing out through the middle and bottom tube. The other has a greater rate of flow of both fresh and salty water (through the middle tube) into the basin with the flow of mixed salty water out of the bottom tube. Implications for deep convection in the ocean are discussed.  相似文献   

2.
The circulation and distribution of water properties in the water column of the Gulf of Mexico influence the flux of carbon to the benthic environment. The eddy field of the upper 1000 m creates environmental conditions that are favorable for biological productivity in an otherwise oligotrophic subtropical ocean. This eddy field results in the transport of nutrients and organic matter into the photic zone through cross-margin flow of shelf waters, upwelling in cyclones, and uplift from the interaction of anticyclones with bathymetry. These conditions then allow the productivity that becomes a possible source of carbon to the benthos.Data from four cruises during summers of 2000–2002 are used to describe the currents and water property distributions in the deepwater Gulf of Mexico, which consists of water depths greater than 400 m. Comparisons are made to historical data sets to provide an understanding of the persistence of the characteristics of the Gulf and the processes that occur there.The currents in the Gulf are surface intensified, have minimum in 800–1000 m depths, and also exhibit bottom intensification, especially near sloping topography. Historical time series records show current speeds near-bottom reach 50–100 cm s−1. At basin scales, these currents tend to flow cyclonically (counter-clockwise) along the bathymetry. These near-bottom, episodic, high-speed currents provide a mechanism for the transport of organic material, in both large and small particle sizes, from one benthic area to another.The distributions of temperature, salinity, nutrients, and dissolved oxygen during the study appear to be unchanged from historical findings. The source waters for the deep Gulf are the water masses brought into the Gulf by the Loop Current system. The properties in the upper 100–200 m are the most variable of the water column, consistent with their proximity to wind mixing, river discharge mixing, and atmospheric influences. Below 1500 m, there are no major horizontal variations in these water properties.  相似文献   

3.
We measured potential temperature, salinity, and dissolved oxygen profiles from the surface to the bottom at two locations in the north Ross Sea (65.2°S, 174.2°E and 67.2°S, 172.7°W) in December 2004. Comparison of our data with previous results from the same region reveals an increase in potential temperature and decreases in salinity and dissolved oxygen concentration in the bottom layer (deeper than 3000 m) over the past four decades. The changes were significantly different from the analytical precisions. Detailed investigation of the temperature, salinity, dissolved oxygen and σ 3 value distributions and the bottom water flow in the north Ross Sea suggests a long-term change in water mass mixing balance. That is to say, it is speculated that the influence of cool, saline, high-oxygen bottom water (high-salinity Ross Sea Bottom Water) formed in the southwestern Ross Sea has possibly been decreased, while the influences of relatively warmer and fresher bottom water (low-salinity Ross Sea Bottom Water) and the Adélie Land Bottom Water coming from the Australia-Antarctic Basin have increased. The possible impact of global warming on ocean circulation needs much more investigation.  相似文献   

4.
海床基自动监测平台技术的研究应用   总被引:2,自引:1,他引:2  
介绍了海床基自动监测技术国内外进展,就海床基自动监测平台系统的关键技术进行了论述。海床基自动监测平台系统是携带众多海洋环境观测传感器在海底工作的、自容式综合测量装置。它可布设于河口、港湾或者近海海底,对悬浮泥沙参数、海洋动力参数、温、盐和水质进行长期、同步、自动测量;系统回收后,通过系统软件建立各种海洋动力条件下特别是大风浪条件下悬浮泥沙的运移规律;建立温、盐、水位、流速剖面和通量、水质的时空变化规律。将多个站点的监测数据进行综合处理建立起海洋水体交换生态环境的时空联系,为科学地管理、治理和利用海洋自然环境造福人们提供决策依据。  相似文献   

5.
The ratio of oxygen-18 to oxygen-16 (expressed as per mille deviations from Vienna Standard Mean Ocean Water, δ18O) is reported for seawater samples collected from seven full-depth CTD casts in the northern North Atlantic between 20° and 41°W, 52° and 60°N. Water masses in the study region are distinguished by their δ18O composition, as are the processes involved in their formation. The isotopically heaviest surface waters occur in the eastern region where values of δ18O and salinity (S) lie on an evaporation–precipitation line with slope of 0.6 in δ18O–S space. Surface isotopic values become progressively lighter to the west of the region due to the addition of 18O-depleted precipitation. This appears to be mainly the meteoric water outflow from the Arctic rather than local precipitation. Surface samples near the southwest of the survey area (close to the Charlie Gibbs Fracture Zone) show a deviation in δ18O–S space from the precipitation mixing line due to the influence of sea ice meltwater. We speculate that this is the effect of the sea ice meltwater efflux from the Labrador Sea. Subpolar Mode Water (SPMW) is modified en route to the Labrador Sea where it forms Labrador Sea Water (LSW). LSW lies to the right (saline) side of the precipitation mixing line, indicating that there is a positive net sea ice formation from its source waters. We estimate that a sea ice deficit of ≈250 km3 is incorporated annually into LSW. This ice forms further north from the Labrador Sea, but its effect is transferred to the Labrador Sea via, e.g. the East Greenland Current. East Greenland Current waters are relatively fresh due to dilution with a large amount of meteoric water, but also contain waters that have had a significant amount of sea ice formed from them. The Northeast Atlantic Deep Water (NEADW, δ18O=0.22‰) and Northwest Atlantic Bottom Waters (NWABW, δ18O=0.13‰) are isotopically distinct reflecting different formation and mixing processes. NEADW lies on the North Atlantic precipitation mixing line in δ18O–salinity space, whereas NWABW lies between NEADW and LSW on δ18O–salinity plots. The offset of NWABW relative to the North Atlantic precipitation mixing line is partially due to entrainment of LSW by the Denmark Strait overflow water during its overflow of the Denmark Strait sill. In the eastern basin, lower deep water (LDW, modified Antarctic bottom water) is identified as far north as 55°N. This LDW has δ18O of 0.13‰, making it quite distinct from NEADW. It is also warmer than NWABW, despite having a similar isotopic composition to this latter water mass.  相似文献   

6.
The physical structures of snow and sea ice in the Arctic section of 150°-180°W were observed on the basis of snow-pit, ice-core, and drill-hole measurements from late July to late August 2010. Almost all the investigated floes were first-year ice, except for one located north of Alaska, which was probably multi-year ice transported from north of the Canadian Arctic Archipelago during early summer. The snow covers over all the investigated floes were in the melting phase, with temperatures approaching 0℃ and densities of 295-398 kg/m3 . The snow covers can be divided into two to five layers of different textures, with most cases having a top layer of fresh snow, a round-grain layer in the middle, and slush and/or thin icing layers at the bottom. The first-year sea ice contained about 7%-17% granular ice at the top. There was no granular ice in the lower layers. The interior melting and desalination of sea ice introduced strong stratifications of temperature, salinity, density, and gas and brine volume fractions. The sea ice temperature exhibited linear cooling with depth, while the salinity and the density increased linearly with normalized depth from 0.2 to 0.9 and from 0 to 0.65, respectively. The top layer, especially the freeboard layer, had the lowest salinity and density, and consequently the largest gas content and the smallest brine content. Both the salinity and density in the ice basal layer were highly scattered due to large differences in ice porosity among the samples. The bulk average sea ice temperature, salinity, density, and gas and brine volume fractions were-0.8℃, 1.8, 837 kg/m3 , 9.3% and 10.4%, respectively. The snow cover, sea ice bottom, and sea ice interior show evidences of melting during mid-August in the investigated floe located at about 87°N, 175°W.  相似文献   

7.
Regime transitions in the meridional overturning circulation (MOC) and the rate of formation of deep and bottom waters are thought to be sensitive to changes in the freshwater flux at high latitudes. We model convective overturning in the presence of a surface freshwater input using laboratory experiments that are inverted relative to the ocean: we establish an equilibrium circulation forced by differential heating and cooling along the base of a box and perturb this flow by adding a stabilizing saltwater input at the ‘polar’ end of the box. An initially stable layer forms near the source of the salinity anomaly as a ‘polar halocline’. The subsequent circulation is governed largely by the ratio of salinity and thermal buoyancy supply. For small values of this ratio we observe periodic formation and breakdown of the halocline. Larger values of the flux ratio lead to subthermocline intrusions and stable layering laterally throughout the basin, isolating the bulk of the water column from the forcing boundary. The shutdown of deep overturning and formation of a shallow circulation occurs at a salinity buoyancy input of order 0.1 times the rate of loss of thermal buoyancy. This salinity buoyancy is then comparable to the buoyancy that forces the deep sinking plume below the thermocline in steady-state overturning. When the salinity buoyancy flux is removed, the circulation slowly returns to its original state.  相似文献   

8.
As a key structure to understand the role of the ocean on the sea ice mass balance, the Arctic Ocean halocline and its spatiotemporal variability require serious attention. In this paper, we are proposing a new definition of the halocline, which is based on the salinity gradient structure, taking into account both the salinity amplitude and the thickness of the halocline. The Brunt Vaisala frequency is used as the halocline stratification index. CTD data collected from 1997 to 2008 and coming from various sources (icebreaker cruises, drifting buoys, etc.) are used to determine the halocline, and its time and space variability during three time periods, with a special focus on three main regions of the Arctic Ocean: the Canada basin, the Makarov basin and the Amundsen basin. Observations reveal that the halocline in the Amundsen basin was always present and rather stable over the three time periods. In contrast, the Canada and Makarov basins' halocline became more stratified during the IPY than before, mainly because of surface water freshening. In addition, observations also confirmed the importance of the halocline thickness for controlling the stratification variability. Observations suggest that both large scale and small scale processes affect the halocline. Changes in surface salinity observed in the Makarov basin are more likely due to atmospheric variability (AO, Dipole Anomaly), as previously observed. More locally, some observations point out that salt/heat diffusion from the Atlantic water underneath and brine rejection during sea ice formation from above could be responsible for salt content variability within the halocline and, as a consequence, being influential for the variability of the halocline. In spite of the existence of interannual variability, the Arctic Ocean main stratification, characterized by a stable and robust halocline until now, suggested that the deep ocean had a limited impact on the mixed layer and on sea ice in actual conditions. The drastic changes observed in Arctic sea ice during this period (1997-2008) cannot be attributed to a weakening of the halocline that could trigger an enhanced vertical heat flux from the deep ocean.  相似文献   

9.
完善莱州湾三维环流结构,对进一步认识莱州湾海域的物质输运和生态环境保护具有重要科学意义,但前人对于莱州湾环流三维结构的研究相对较少。本文基于一套高分辨率的海洋数值模式,从三维角度研究了莱州湾夏季8月份环流的气候态特征及其影响机制。数值研究表明,莱州湾夏季环流垂向结构呈现双层环流特征,其中在跨等深线方向,环流的双层结构环流特征比较显著且存在显著的密度锋面结构。动量诊断的结果进一步表明,这种双层结构环流的形成与底层密度锋面所导致的斜压梯度力密切相关。此外,通过量化温盐场对于密度锋面的贡献,本文证实了温度梯度是莱州湾顶的密度锋面的主要影响因素,其对斜压梯度力的贡献占比达到99%,而盐度梯度对于莱州湾中部区域的密度锋面十分重要,对斜压梯度力的贡献占比达到58%,这与夏季黄河所带来的淡水通量密切相关。  相似文献   

10.
秋季湛江港和入海口温盐结构及生态特征   总被引:2,自引:1,他引:1  
采用2015年10月采集的湛江港海域水体叶绿素a浓度、温度、盐度等参数,分析了秋季湛江港和入海口温盐结构及生态特征。研究结果表明,湛江港海域盐度的水平分布上由湾内往湾外逐渐递增,叶绿素a浓度由湾内往湾外逐渐递减,水深比较浅的区域水温较高,同时在航道入海口底层存在着“高盐低温低叶绿素”的相对稳定的冷水团结构。该水团的形成是由于湛江港出海口独特的地形构造促进区域性水体层化,同时底部水体透明度低,限制航道入海口区域底层的浮游植物的生长等因素所致。  相似文献   

11.
A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below 2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.  相似文献   

12.
CTD, vessel-mounted ADCP and LADCP measurements in the Caribbean passages south of Guadeloupe (three repeats) and along 16°N (five repeats) were carried out between December 2000 and July 2004. The CTD data were used to calculate the contribution of South Atlantic water (SAW) in the upper 1200 m between the isopycnals σθ=24.5 and 27.6. Northern and southern source water masses are defined and an isopycnal mixing approach is applied. The SAW fractions are then combined with the ADCP flow field to calculate the transport of SAW into the Caribbean and across 16°N. The SAW inflow into the Caribbean through the passages south of Guadeloupe ranges from 7.6 to 11.6 Sv, which is 50–75% of the total inflow. The mean (9.1±2.2 Sv) is in the range of previous estimates. Ambiguities in the northern and southern source water masses of the salinity maximum water permitted us only to calculate the contribution of SAW from the eastern source in this water mass. We estimated the additional SAW transport by the western source to be of the order of 1.9±0.7 Sv. The calculation of the SAW transport across 16°N was hampered by the presence of several anticyclonic rings from the North Brazil Current (NBC) retroflection region, some of the rings were subsurface intensified. Provided that the rings observed at 16°N are typical rings and that all rings which are annually produced in the NBC retroflection area (6.5–8.5 per year) reach 16°N, the SAW ring transport across 16°N is calculated to 5.3±0.7 Sv. From the 5 repeats at 16°N, only two showed a net northward flow, suggesting that the mean northward SAW transport is dominated by ring advection. The joint SAW transports of the Caribbean inflow (9.1 Sv) and the flow across 16°N (5.3 Sv) sum up to 14.4 Sv. The transport increases to 16.3 Sv if the additional SAW transport from the western source of SMW (1.9±0.7 Sv) is included. These transport estimates and the following implications depend strongly on the assumption that the surface water in the Caribbean inflow is of South Atlantic origin. The transport estimates are, however, in the range of the inverse model calculations for the net cross-hemispheric flow. About 30–40% of this transport is intermediate water from the South Atlantic, presumably supporting studies which found the contributions of intermediate and upper warm water to be of a comparable magnitude. For the upper warm water (σθ<27.1), the Caribbean inflow seems to be the major path (7.9±1.6 Sv), the ring induced transport across 16°N is about 30% of that value. The intermediate water transport across 16°N was calculated to be 2.3–3.6 Sv, the inflow into the Caribbean is slightly smaller (1.5–2.4 Sv).  相似文献   

13.
14.
太平洋悬浮体特征及近底雾状层(雾浊层)探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
2005年在太平洋12个测站分层采集了悬浮体水样及连续的水体温度、盐度、深度等数据.利用水体悬浮体含量在垂向上的分布特征初步分析了大洋雾状层的特点,并讨论了水体中悬浮体颗粒物质的来源,对不同海洋环境中悬浮体分布进行了对比,发现大洋水体中悬浮体含量总体很小,一般不超过0.30mg/dm3,但在一定水层内悬浮体含量相对较高,形成雾状层.雾状层在大洋内广泛分布,一般以表层雾状层和近底雾状层形式存在.大洋水体中悬浮体颗粒物来源广泛.表层雾状层的形成主要受透光层内生物作用的影响,而底质沉积物的再悬浮是影响底部雾状层形成的重要因素.因受水体物理海洋环境和物质来源的影响,不同区域水体中悬浮体含量不同,雾状层的分布不同.海山顶部受水流及岩石基底影响雾状层分布不明显,海山底部与开辟区洋盆海域雾状层更普遍.开辟区东西区由于物源差异水体中悬浮体含量差别明显,靠近火山喷口的西区水体中悬浮体含量明显高于东区的.  相似文献   

15.
Dense water formation and circulation in the Barents Sea   总被引:1,自引:0,他引:1  
Dense water masses from Arctic shelf seas are an important part of the Arctic thermohaline system. We present previously unpublished observations from shallow banks in the Barents Sea, which reveal large interannual variability in dense water temperature and salinity. To examine the formation and circulation of dense water, and the processes governing interannual variability, a regional coupled ice-ocean model is applied to the Barents Sea for the period 1948-2007. Volume and characteristics of dense water are investigated with respect to the initial autumn surface salinity, atmospheric cooling, and sea-ice growth (salt flux). In the southern Barents Sea (Spitsbergen Bank and Central Bank) dense water formation is associated with advection of Atlantic Water into the Barents Sea and corresponding variations in initial salinities and heat loss at the air-sea interface. The characteristics of the dense water on the Spitsbergen Bank and Central Bank are thus determined by the regional climate of the Barents Sea. Preconditioning is also important to dense water variability on the northern banks, and can be related to local ice melt (Great Bank) and properties of the Novaya Zemlya Coastal Current (Novaya Zemlya Bank). The dense water mainly exits the Barents Sea between Frans Josef Land and Novaya Zemlya, where it constitutes 63% (1.2 Sv) of the net outflow and has an average density of 1028.07 kg m−3. An amount of 0.4 Sv enters the Arctic Ocean between Svalbard and Frans Josef Land. Covering 9% of the ocean area, the banks contribute with approximately 1/3 of the exported dense water. Formation on the banks is more important when the Barents Sea is in a cold state (less Atlantic Water inflow, more sea-ice). During warm periods with high throughflow more dense water is produced broadly over the shelf by general cooling of the northward flowing Atlantic Water. However, our results indicate that during extremely warm periods (1950s and late 2000s) the total export of dense water to the Arctic Ocean becomes strongly reduced.  相似文献   

16.
The monthly water mass variations in the Yellow Sea and the East China Sea are investigated using over 40 years of historical temperature and salinity observations via a cluster analysis that incorporates geographical distance and depth separation in addition to the temperature and salinity. Results delineate monthly variations in the major water masses and provide some insight into formation mechanisms and intermixing. The major water masses include the Kuroshio-East China Sea water (KE), the Yellow Sea surface water (YSS) and bottom cold water (YSB), mixed water (MW), and coastal water (CW). The distribution of the KE water mass reveals the intrusion pattern into the area west of Cheju. A separate mixed water type appears between the KE water mass and the Yellow Sea water masses during winter. The formation mechanism of the YSB appears to be the surface cooling and active mixing in winter. In the East China Sea, during summer, surface water is differentiated from the subsurface water while there is no differentiation during winter. In the Yellow Sea, a three layer system exists in the summer and fall (May–November) while a two layer system exists during the rest of the year. A fresh water mass generated by Yangtze River discharge (YD) is present over the northern East China Sea and the southern Yellow Sea during summer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The variability of two modes of Labrador Sea Water (LSW) (upper and deep Labrador Sea Water) and their respective spreading in the interior North Atlantic Ocean are investigated by means of repeated ship surveys carried out along the zonal WOCE line A2/AR19 located at 43–48°N (1993–2007) and along the GOOS line at about 48–51°N (1997–2002). Hydrographic section data are complemented by temperature, salinity, and velocity time series recorded by two moorings. They have been deployed at the western flank of the Mid-Atlantic Ridge (MAR) in the Newfoundland Basin during 1996–2004. The analysis of hydrographic anomalies at various longitudes points to a gradual eastward propagation of LSW-related signals, which happens on time scales of 3–6 years from the formation region towards the MAR. Interactions of the North Atlantic Current (NAC) with the Deep Western Boundary Current (DWBC) close to Flemish Cap point to the NAC being the main distributor of the different types of LSW into the interior of the Newfoundland Basin. Comparisons between the ship data and the mooring records revealed that the mooring sites are located in a region affected by highly variable flow. The mooring time series demonstrate an elevated level of variability with eddy activity and variability associated with the NAC considerably influencing the LSW signals in this region. Hydrographic data taken from Argo profiles from the vicinity of the mooring sites turned out to mimic quite well the temporal evolution captured by the moorings. There is some indication of occasional southward flow in the LSW layer near the MAR. If this can be considered as a hint to an interior LSW-route, it is at least of minor importance in comparison to the DWBC. It acts as an important supplier for the interior North Atlantic, distributing older and recently formed LSW modes southward along the MAR.  相似文献   

18.
The cold bottom water, formed in the previous winter on the eastern Bering Sea shelf, remains throughout the summer. in order to examine the mechanism for the formation of the cold bottom water, we used minimum water temperature in the cold bottom water observed over the eastern Bering Sea shelf for 30 years. The interannual variation in the minimum water temperature of the cold bottom water was closely related to that of mean air temperature during cooling period at St. Paul Island. The air temperature in previous winter primarily affects the cold bottom water. We estimated decrement of the water temperature due to ice melting with simple box model. It was found with the box model that decreasing of the water temperature and lowering of the salinity depend on ice melting. To investigate the cause of interannual variation in air temperature in winter, we applied EOF analysis to the 500 hPa height. The Pacific/North American pattern (PNA) was related to mean air temperature at St. Paul Island in cooling season and the cold bottom water temperature. These results suggest the connection between ENSO events and warming or cooling in the Bering Sea shelf in winter.  相似文献   

19.
A 3D,time-dependent,baroclinic,hydrodynamic and salinity model was implemented and applied to the Oujiang River estuarine system in the East China Sea.The model was driven by the forcing of tidal elevations along the open boundaries and freshwater inflows from the Oujiang River.The bottom friction coefficient and vertical eddy viscosity were adjusted to complete model calibration and verification in simulations.It is demonstrated that the model is capable of reproducing observed temporal variability in the water surface elevation and longitudinal velocity,presenting skill coefficient higher than 0.82.This model was then used to investigate the influence of freshwater discharge on residual current and salinity intrusion under different freshwater inflow conditions in the Oujiang River estuary.The model results reveal that the river channel presents a two-layer structure with flood currents near the bottom and ebb currents at the top layer in the region of seawater influenced on north shore under high river flow condition.The river discharge is a major factor affecting the salinity stratification in the estuarine system.The water exchange is mainly driven by the tidal forcing at the estuary mouth,except under high river flow conditions when the freshwater extends its influence from the river’s head to its mouth.  相似文献   

20.
Year-long time-series of temperature, salinity and velocity from 12 locations throughout the Chukchi Sea from September 1990 to October 1991 document physical transformations and significant seasonal changes in the throughflow from the Pacific to the Arctic Ocean for one year. In most of the Chukchi, the flow field responds rapidly to the local wind, with high spatial coherence over the basin scale—effectively the ocean takes on the lengthscales of the wind forcing. Although weekly transport variability is very large (ca. -2 to ), the mean flow is northwards, opposed by the mean wind (which is southward), but presumably forced by a sea-level slope between the Pacific and the Arctic, which these data suggest may have significant variability on long (order a year) timescales. The high flow variability yields a significant range of residence times for waters in the Chukchi (i.e. one to six months for half the transit) with the larger values applicable in winter.Temperature and salinity (TS) records show a strong annual cycle of freezing, salinization, freshening and warming, with sizable interannual variability. The largest seasonal variability is seen in the east, where warm, fresh waters escape from the buoyant, coastally trapped Alaskan Coastal Current into the interior Chukchi. In the west, the seasonally present Siberian Coastal Current provides a source of cold, fresh waters and a flow field less linked to the local wind. Cold, dense polynya waters are observed near Cape Lisburne and occasional upwelling events bring lower Arctic Ocean halocline waters to the head of Barrow Canyon. For about half the year, at least at depth, the entire Chukchi is condensed into a small region of TS-space at the freezing temperature, suggesting ventilation occurs to near-bottom, driven by cooling and brine rejection in autumn/winter and by storm-mixing all year.In 1990–1991, the ca. 0.8 Sv annual mean inflow through Bering Strait exits the Chukchi in four outflows—via Long Strait, Herald Valley, the Central Channel, and Barrow Canyon—each outflow being comparable (order 0.1–0.3 Sv) and showing significant changes in volume and water properties (and hence equilibrium depth in the Arctic Ocean) throughout the year. The clearest seasonal cycle in properties and flow is in Herald Valley, where the outflow is only weakly related to the local wind. In this one year, the outflows ventilate above and below (but not in) the Arctic halocline mode of 33.1 psu. A volumetric comparison with Bering Strait indicates significant cooling during transit through the Chukchi, but remarkably little change in salinity, at least in the denser waters. This suggests that, with the exception of (in this year small) polynya events, the salinity cycle in the Chukchi can be considered as being set by the input through Bering Strait and thus, since density is dominated by salinity at these temperatures, Bering Strait salinities are a reasonable predictor of ventilation of the Arctic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号