首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Zhenhua Huang   《Ocean Engineering》2007,34(11-12):1584-1591
Experimental results are reported on the wave reflection from and transmission through one row or two rows of closely spaced rectangular cylinders. An empirical expression is proposed for the friction factor which models the head loss due to closely spaced rectangular cylinders. Algebraic expressions are presented to calculate the reflection and transmission coefficients of regular waves for a single slotted wall or double slotted walls. The model is validated by the published and present experimental results. The proposed method can be used for the preliminary design of slotted-wall breakwaters.  相似文献   

2.
The adoption of slotted breakwaters can be an ideal option in the protection of very large near-shore floating struc-trees that may extend offshore to a considerable water depth. In this paper, we experimently investigated the behaviour of wave transmission and reflection coefficients of double slotted barriers in the presence of a steady opposing current. The experimental results show that opposing currents have only minor effects on wave reflection, but can significantly reduce the wave transmission through double slotted barriers. The experimental results suggest that coastal currents should be taken into consideration for an economical design of slotted breakwaters.  相似文献   

3.
Bragg reflection of water waves by multiple floating horizontal flexible membranes is investigated based on the linear wave theory and the assumption of small membrane response. Under the floating horizontal membranes, periodical submerged rectangular bars are arranged on the flat seabed. The total reflection and transmission coefficients are obtained by using the eigenfunction expansion method and the wide spacing approximation. The calculated coefficients are validated with the results available in the literature, which shows that the present method is applicable. The characteristics of Bragg reflection are systematically investigated by changing various parameters including the height of the rectangular bars, the number, the tension, the spacing, and the length of the flexible membranes. The results can help designing multiple floating horizontal flexible membranes as effective floating breakwaters by taking advantage of Bragg reflection.  相似文献   

4.
The overall performance of pile-restrained flexible floating breakwaters is investigated under the action of linear monochromatic incident waves in the frequency domain. The aforementioned floating breakwaters undergo only vertical structural deflections along their length and are held in place by means of vertical piles. The total number of degrees of freedom equals the six conventional body modes, when the breakwater moves as a rigid body, plus the extra bending modes. These bending modes are introduced to represent the structural deflections of the floating breakwater and are described by the Bernoulli–Euler flexible beam equation. The number of bending modes introduced is determined through an appropriate iterative procedure. The hydrostatic coefficients corresponding to the bending modes are also derived. The numerical analysis of the flexible floating breakwaters is based on a three-dimensional hydrodynamic formulation of the floating body. A parametric study is carried out for a wide range of structural stiffness parameters and wave headings, to investigate their effect on the performance of flexible floating breakwaters. Moreover, this performance is compared with that of the corresponding pile-restrained rigid floating breakwater. Results indicated that the degree of structural stiffness and the wave heading strongly affect the performance of flexible floating breakwaters. The existence of an “optimum” value of structural stiffness is demonstrated for the entire wave frequency range.  相似文献   

5.
Floating pontoon breakwaters   总被引:1,自引:0,他引:1  
The hydrodynamic properties of a pair of long floating pontoon breakwaters of rectangular section are investigated theoretically. The structures are partially restrained by linear symmetric moorings fore and aft. The fluid motion is idealized as linearized, two-dimensional potential flow. The breakwater motions are assumed to be two-dimensional, in surge, heave and pitch. The solution for the fluid motion is obtained by the boundary integral equation method using an appropriate Green's function. Numerical results are presented that illustrate the effects of the various wave and structural parameters on the efficiency of the breakwaters as barriers to wave action. It is found that the wave reflection properties of the structures depend strongly on their width, draft and spacing and the mooring line stiffnesses, while their excess buoyancy is of lesser importance.  相似文献   

6.
The wave transmission, reflection and energy dissipation characteristics of ‘’-type breakwaters were studied using physical models. Regular and random waves in a wide range of wave heights and periods and a constant water depth were used. Five different depths of immersion (two emerged, one surface flushing and two submerged conditions) of this breakwater were selected. The coefficient of transmission, Kt, and coefficient of reflection, Kr, were obtained from the measurements, and the coefficient of energy loss, Kl was calculated using the law of balance of energy. It was found that the wave transmission is significantly reduced with increased relative water depth, d/L, whether the vertical barrier of the breakwater is surface piercing or submerged, where ‘d’ is the water depth and ‘L’ is the wave length. The wave reflection decreases and energy loss increases with increased wave steepness, especially when the top tip of the vertical barrier of this breakwater is kept at still water level (SWL). For any incident wave climate (moderate or storm waves), the wave transmission consistently decreases and the reflection increases with increased relative depth of immersion, Δ/d from −0.142 to 0.142. Kt values less than 0.3 can be easily obtained for the case of Δ/d=+0.071 and 0.142, where Δ is the height of exposure (+ve) or depth of immersion (−ve) of the top tip of the vertical barrier. This breakwater is capable of dissipating wave energy to an extent of 50–80%. The overall performance of this breakwater was found to be better in the random wave fields than in the regular waves. A comparison of the hydrodynamic performance of ‘’-type and ‘T’-type shows that ‘T’-type breakwater is better than ‘’-type by about 20–30% under identical conditions.  相似文献   

7.
This study examines the Bragg reflection of water waves by multiple submerged semi-circular breakwaters. The multipole expansions combined with the shift of polar coordinates are used to develop full linear potential solutions of the problem. In the full solutions, the obliquely and normally incident waves are independently considered. Experimental tests are carried out to measure the reflection and transmission coefficients of the breakwaters at different wave periods and body spacings. The analytical results are in reasonable agreement with the experimental data. The peak reflection coefficient of multiple submerged semi-circular breakwaters and the bandwidth of Bragg reflection are carefully examined by numerical examples. Some significant results for practical application are discussed.  相似文献   

8.
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties. In this paper, the SBFEM is used for computing wave passing submerged breakwaters, and the reflection coeffcient and transmission coefficient are given for the case of wave passing by a rectangular submerged breakwater, a rigid submerged barrier breakwater and a trapezium submerged breakwater in a constant water depth. The results are compared with the analytical solution and experimental results. Good agreement is obtained. Through comparison with the results using the dual boundary element method (DBEM), it is found that the SBFEM can obtain higher accuracy with fewer elements. Many submerged breakwaters with different dimensions are computed by the SBFEM, and the changing character of the reflection coeffcient and the transmission coefficient are given in the current study.  相似文献   

9.
Fifteen formulae of wave transmission coefficient for submerged breakwaters obtained during last 3 decades are presented,compared,and analyzed in this paper.The dimensionless parameters mainly involved in this discussion are the relative submerged depth Rc/h,relative wave height Rc/Hi,relative rubble size B/D50,relative breakwater width B/HiL0 and wave breaker index ξ.It indicates that there exist notable differences among the computed results,which mainly originate from the limited experimental conditions and different analytical methods,even though the major tendency keeps similar.It is necessary to conduct more systematic studies to obtain better understanding about the mechanism of wave transmission over submerged breakwaters.  相似文献   

10.
结合物理模型试验,分析斜坡坡度、波陡、相对水深、护面类型和破波参数等因素对堆石防波堤不规则波浪反射系数的影响规律。将常用的Van der Meer公式,Seelig公式,Postma公式和Davison公式计算值和实测值进行比较,并结合试验数据,基于有效波高和平均周期定义的Iribarren数,得出堆石防波堤不规则波浪反射系数经验公式。结果表明,该公式能较好地计算不规则波作用下块石和扭王块体护面堆石防波堤波浪反射系数。  相似文献   

11.
Over the last 15 years improved awareness of wave impact induced failures has focused attention on the need to account for the dynamic response of maritime structures to wave impact load. In this work a non-linear model is introduced that allows evaluating the effective design load and the potential sliding of caisson breakwater subject to both pulsating and impulsive wave loads. The caisson dynamics is modelled using a time-step numerical method to solve numerically the equations of motion for a rigid body founded on multiple non-linear springs having both horizontal and vertical stiffness. The model is first shown to correctly describe the dynamics of caisson breakwaters subject to wave attack, including nonlinear features of wave–structure–soil interaction. Predictions of sliding distances by the new method are then compared with measurements from physical model tests, showing very good agreement with observations. The model succeeds in describing the physics that stands behind the process and is fast, accurate and flexible enough to be suitable for performance design of caisson breakwaters.  相似文献   

12.
Interaction of surface gravity waves with multiple vertically moored surface-piercing membrane breakwaters in finite water depth is analyzed based on the linearized theory of water waves. The study is carried out using least square approximation method to understand the effect of the vertical membrane as effective breakwater. Initially the problem is studied for a single membrane wave barrier but for the case of multiple membrane breakwaters the study is carried out using the method of wide-spacing approximation. In the present study, it is observed that the deflection of the membrane is reduced with the increase in the stiffness parameter of the mooring lines attached to the membrane. In the case of single surface-piercing membrane with moored and fixed edge conditions, the reflection and transmission coefficients are compared and analyzed in detail. The resonating pattern in the reflection coefficients are also observed for multiple floating membrane which can also be referred as Bragg's resonance. In the presence of the porosity constant the wave reflection is also observed to be decreasing and the change in the distance between the vertical floating breakwaters also helps in the attenuation of wave height. It is observed that the presence of multiple floating breakwater helps in the reduction of wave height in the transmitted region.  相似文献   

13.
柔性水囊潜堤由橡胶制成,内部充水,具有结构简单、造价低廉等优点,能较好满足人工岛、跨海桥梁、海洋平台等基础设施建设工程对简单便携、拆装方便的临时防波堤的需求。为了探究柔性水囊潜堤的消波特性,在溃坝水槽内开展溃坝波与半圆柱形柔性水囊潜堤相互作用的试验研究,重点探究柔性水囊潜堤与溃坝波相互作用过程中水位变化特性,并与半圆柱刚性潜堤的性能进行比较;同时分析柔性水囊潜堤内部初始水压和浸没深度等参数对其消波性能的影响。结果表明:柔性水囊潜堤能够用作临时防波堤来衰减波浪;与半圆柱刚性潜堤相比,柔性水囊潜堤在降低溃坝波无量纲最大水位、提高消波性能方面更具优势;内部初始水压是影响柔性水囊潜堤消波性能的重要因素,适当降低内部初始水压,有利于增强柔性潜堤的变形程度,进而增加波能耗散,可获得更好的消波效果;而增加浸没深度即潜深,会使得柔性水囊潜堤对溃坝波的影响程度降低,消波效果减弱。  相似文献   

14.
The performance of the new wave diffraction feature of the shallow-water spectral model SWAN, particularly its ability to predict the multidirectional wave transformation around shore-parallel emerged breakwaters is examined using laboratory and field data. Comparison between model predictions and field measurements of directional spectra was used to identify the importance of various wave transformation processes in the evolution of the directional wave field. First, the model was evaluated against laboratory measurements of diffracted multidirectional waves around a breakwater shoulder. Excellent agreement between the model predictions and measurements was found for broad frequency and directional spectra. The performance of the model worsened with decreasing frequency and directional spread. Next, the performance of the model with regard to diffraction–refraction was assessed for directional wave spectra around detached breakwaters. Seven different field cases were considered: three wind–sea spectra with broad frequency and directional distributions, each coming from a different direction; two swell–sea bimodal spectra; and two swell spectra with narrow frequency and directional distributions. The new diffraction functionality in SWAN improved the prediction of wave heights around shore-parallel breakwaters. Processes such as beach reflection and wave transmission through breakwaters seem to have a significant role on transformation of swell waves behind the breakwaters. Bottom friction and wave–current interactions were less important, while the difference in frequency and directional distribution might be associated with seiching.  相似文献   

15.
This study investigated how the porosity of submerged breakwaters affects non-breaking wave transformations. Eight model geometries each with six different porosities, from 0.421 to 0.912, were also considered. Experimental results reveal that the model width has little effect on wave reflection and transmission when the model heights are fixed. The transmission coefficient is maximum at a kh in the range from 1.3 to 2.0 and minimum at a kh around 0.7. The wave reflection maximum is at kh of near 0.5. The energy loss of the primary waves is maximum near kh=0.81 and minimum when the porosity of the model is large. Porosity does affect wave transformation and its influence becomes significant as the heights of the models increase. For the range of porosities tested, wave energy loss from the primary harmonic was found to be almost constant at around 0.4 when kh >1.3, decreasing slowly when kh <1.3; wave energy loss decreases for porosities above 0.75.  相似文献   

16.
The characteristics of wave damping for the vertically stratified porous breakwaters are investigated under oblique wave action. It is found that for common angles of incidence, the wave damping efficiency of a vertically stratified porous structure behaves very similar to a simple structure. The reflection coefficient decreases with increasing angle of incidence while the transmission coefficient only slightly increases as the angle of incidence increases. It is shown that the wave energy loss is in direct proportional to the structure thickness and its porosity regardless of the angle of incidence. Considering small transmission coefficient as a basic requirement and if a moderate reflection coefficient is accepted, a structure thickness of b/h=1 is proposed. In this situation, since the structure does not have a very large thickness, adopting a vertically stratified structure is not an effective way to improve its wave damping efficiency.  相似文献   

17.
A numerical model is developed that can predict the interaction of regular waves normally incident upon a curtainwall-pile breakwater; the upper part of which is a vertical wall and the lower part consists of an array of vertical piles. The numerical model is based on an eigenfunction expansion method, and utilizes a boundary condition nearby the vertical piles that accounts for wave energy dissipation. Numerical solution comprises a finite number of terms, which is a superposition of propagating waves and a series of evanescent waves. The modeling is validated by comparison with previous experimental studies and overall agreement between measurement and calculation is fairly good. The numerical results are related to reflection, transmission, and dissipation coefficient; wave run-up, wave force, and wave overturning moment are also presented. Effect of porosity, relative draft, and relative water depth are discussed; the choice of suitable range of them is described. The relative draft is more effective for shallow water waves. Model shows decrease in relative draft and leads to reduction of relative wave force, overturning moment, and runup. It is shown that curtainwall-pile breakwaters can operate both effectively and efficiently in the range of relative draft between 0.15 and 0.75. The range 0.5 to 0.2 is also recommended for porosity.  相似文献   

18.
Based on the linear potential flow theory and matching eigen-function expansion technique, an analytical model is developed to investigate the hydrodynamics of two-dimensional dual-pontoon floating breakwaters that also work as oscillating buoy wave energy converters (referred to as the integrated system hereafter). The pontoons are constrained to heave motion independently and the linear power take-off damping is used to calculate the absorbed power. The proposed model is verified by using the energy conservation principle. The effects of the geometrical parameters on the hydrodynamic properties of the integrated system, including the reflection and transmission coefficients and CWR (capture width ratio, which is defined as the ratio of absorbed wave power to the incident wave power in the device width). It is found that the natural frequency of the heave motion and the spacing of the two pontoons are the critical factors affecting the performance of the integrated system. The comparison between the results of the dual-pontoon breakwater and those of the single-pontoon breakwater shows that the effective frequency range (for condition of transmission coefficient KT < 0.5 and the total capture width ratio ηtotal > 20%) of the dual-pontoon system is broader than that of the single-pontoon system with the same total volume. For the two-pontoon system, the effective frequency range can be broadened by decreasing the draft of the front pontoon within certain range.  相似文献   

19.
倪云林  龚倩  沈梦佳 《海洋学报》2022,44(9):124-131
与海床不可渗透的情况相比,波浪在可渗透海床上传播时会发生波能衰减。本文将基于可渗透海床上一维修正型缓坡方程,建立方程求解的有限差分模型。将通过与不可渗透海床上矩形Bragg防波堤对波浪反射系数解析解的对比,验证有限差分模型的正确性和适用性。将进一步研究海床可渗透情况下,海床的渗透性参数、坝体的相对宽度、数量、浸没度对波浪反射系数的影响及其与海床不可渗透情况下的差异。本文研究发现,Bragg共振发生时的反射系数随坝体数量的增多而增大,随海床渗透性参数和坝体浸没度的增大而减小,并且存在一个坝体相对宽度值会使Bragg共振反射达到最大。相较于海床不可渗透的情况,发生Bragg共振反射的波浪频率几乎相同,但反射系数减小,而且零反射(或全透射)现象不再存在。  相似文献   

20.
Breakwaters are often built in coastal waters to facilitate navigation and recreation, both inside and outside regions of the breakwater. This requires that the reflection and transmission characteristics of the structure be both minimized at the same time. This is achieved by a design that will allow dissipation of wave energy by multiple reflection. Such structures will need the knowledge of these characteristics in their design. Model tests were performed on a shallow water breakwater concept of this type to determine the reflection and transmission coefficients. The concept of the breakwater was to reduce both the reflection and transmission of waves. It was found that the breakwater design was effective at certain wave characteristics. Nondimensional loads and local pressures on the breakwater panels are also reported which will facilitate the structural design of such breakwaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号