首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
吕宋海峡西部深海盆内孤立波潜标观测研究   总被引:6,自引:2,他引:4  
Mesoscale eddies have been suggested to have an impact on biological carbon fixation in the South China Sea (SCS). However, their overall contribution to primary production during the spring inter-monsoon pe riod is still unknown. Based on large-scale biological and environmental in situ observations and synchro nous remote sensing data, the distribution patterns of phytoplankton biomass and the primary production, and the role of mesoscale eddies in regulating primary production in different eddy-controlled waters were investigated. The results suggested that the surface chlorophyll a concentrations and water column inte grated primary production (IPP) are significantly higher in cyclonic eddies and lower in the anticyclonic eddies as compared to that in non-eddy waters. Although eddies could affect various environmental factors, such as nutrients, temperature and light availability, nutrient supply is suggested to be the most important one through which mesoscale eddies regulated the distribution patterns of phytoplankton biomass and pri mary production. The estimated IPP in cyclonic and anticyclonic eddies are about 29.5% higher and 16.6% lower than the total average in the whole study area, respectively, indicating that the promotion effect of mesoscale cold eddies on the primary production was much stronger than the inhibition effect of the warm eddies per unit area. Overall, mesoscale eddies are crucial physical processes that affect the biological car bon fixation and the distribution pattern of primary production in the SCS open sea, especially during the spring inter-monsoon period.  相似文献   

2.
Mesoscale eddies dominate surface phytoplankton in northern Gulf of Alaska   总被引:1,自引:0,他引:1  
The HNLC waters of the Gulf of Alaska normally receive too little iron for primary productivity to draw down silicate and nitrate in surface waters, even in spring and summer. Our observations of chlorophyll sensed by SeaWiFS north of 54°N in pelagic waters (>500 m depth) of the gulf found that, on average, more than half of all surface chlorophyll was inside the 4 cm contours of anticyclonic mesoscale eddies (the ratio approaches 80% in spring months), yet these contours enclosed only 10% of the total surface area of pelagic waters in the gulf. Therefore, eddies dominate the chlorophyll and phytoplankton distribution in surface pelagic waters. We outline several eddy processes that enhance primary productivity. Eddies near the continental margin entrain nutrient - (and Fe) - rich and chlorophyll-rich coastal waters into their outer rings, advecting these waters into the basin interior to directly increase phytoplankton populations there. In addition, eddies carry excess nutrients and iron in their core waters into pelagic regions as they propagate away from the continental margin. As these anticyclonic eddies decay, their depressed isopycnals relax upward, injecting nutrients up toward the surface layer. We propose that this transport brings iron and macro-nutrients toward the surface mixed layer, where they are available for wind-forced mixing to bring them to surface. These mesoscale eddies decay slowly, but steadily, perhaps providing a relatively regular upward supply of macro-nutrients and iron toward euphotic layers. They might behave as isolated oases of enhanced marine productivity in an otherwise iron-poor basin. We note that much of this productivity might be near or just below the base of the surface mixed layer, and therefore poorly sampled by colour-sensing satellites. It is possible, then, that eddies enrich phytoplankton populations to a greater extent than noted from satellite surface observations only.  相似文献   

3.
The relationship between island-induced cyclonic eddies and chlorophyll a (chl-a) was investigated using field data and satellite images in the eastern channel of the Tsushima Straits. The maximum chl-a concentration around the leeward eddy of the Tsushima Islands was two or three times greater than that of outside the eddy. Two different mechanisms of chl-a enhancement associated with island-induced cyclonic eddies were found in the post-bloom periods. In summer, when nutrients were depleted in the surface layer, eddy pumping increased the nutrient supply in the euphotic zone, resulting in enhanced chl-a around the shallow thermocline near the eddy core. In late autumn, when the mixed layer deepened over the euphotic zone, the mixed layer depth became shallow due to the doming effect of the cyclonic eddy, therefore, the improved irradiance condition led to an increase in the chl-a concentration in the surface mixed layer. Nighttime satellite visible images showed a number of fishing vessels in the lee region of the Tsushima Islands, implying that the enhanced phytoplankton biomass may have resulted in good feeding conditions for fishes and squids in the Tsushima Straits.  相似文献   

4.
The physical background to a suite of biological studies carried out in the Canary Islands upwelling region is presented. The area is unique in that the coastal transition zone is spanned by an archipelago of islands that shed mesoscale eddies of diameter 50–100 km into the alongshore flow. A recurrent filament and eddy system was sampled intensively to study the changing properties of waters as they are advected towards the open ocean in the filament and to investigate the exchanges between filament and eddies. The system was more complex than previously revealed. In early August, a single filament extended offshore from near Cape Juby. Two weeks later, a second filament had developed slightly farther north and extended offshore to merge with the first at 100 km offshore. The merged filament was entrained around a recurrent, topographically trapped cyclonic eddy and interacted with transient cyclonic and anticyclonic eddies shed from the island of Gran Canaria. Between the two filaments and the coast, a pair of counter-rotating eddies re-circulated water parcels for several weeks. Surface layer drifters cycled around this near-shore re-circulation several times before following convoluted paths that demonstrate significant exchange between continental shelf and open ocean waters.  相似文献   

5.
Distributions of mixed layer depths around the centers of anti-cyclonic and cyclonic eddies in the North Pacific Ocean were composited by using satellite-derived sea surface height anomaly data and Argo profiling float data. The composite distributions showed that in late winter, deeper mixed layers were more (less) frequently observed inside the cores of the anti-cyclonic (cyclonic) eddies than outside. This relationship was the clearest in the region of 140°E–160°W and 35°N–40°N, where the temperature and salinity of the deep mixed layers were similar to those of the lighter variety of central mode water (L-CMW). A simple one-dimensional bulk mixed layer model showed that both strong sea-surface heat and momentum fluxes and weak preexisting stratification contributed to formation of the deep mixed layer. These conditions were associated with the anti-cyclonic eddies, suggesting that these eddies are important in the formation of mode waters, particularly L-CMW.  相似文献   

6.
三维斜压陆架海模式的应用: 南海上混合层的季节变化   总被引:6,自引:0,他引:6  
从一个三维斜压陆架海模式的数值模拟结果来揭示南海上混合层的季节变化规律,结果表明:(1)在南海北部上混合层的厚度(即混合层的下界深度)具有明显的季节性变化,与在南海南部上混合层的变化明显不同,前者的混合强度的变化幅度远比后者的要大得多.(2)在中南半岛中部东岸外海的西边界区域内,由于经常受冷涡控制,下层冷水涌升,上层水体层化显着,使得该海区垂直混合减弱.(3)在一些气旋(反气旋)涡的边缘,混合层厚度等值线分布密集,且水平梯度较大.(4)南海上混合层的厚度分布特征与上层环流的分布格局之间存在着较好的地转调整关系.  相似文献   

7.
自黑潮脱落并由吕宋海峡进入中国南海的中尺度涡(简称脱落涡旋)对黑潮与南海的水体交换、热量及物质输送等过程均有十分重要的作用。基于1993—2013年OFES(OGCM for the Earth Simulator)模式数据产品,分析研究了脱落涡旋的统计特征及其温盐流三维结构,并与卫星观测结果进行对比分析。OFES模式的海表面高度数据和卫星高度计数据的统计结果都表明气旋式脱落涡旋(脱落冷涡)绝大部分在黑潮西侧边缘生成,反气旋式脱落涡旋(脱落暖涡)则大部分在黑潮控制区(包括黑潮流套区)生成,脱落暖涡的数量远多于脱落冷涡的。OFES模式数据得到的脱落涡旋个数和出现频率较卫星观测结果要明显偏低。此外,由OFES模式数据得到的脱落涡旋三维结构表明,黑潮控制区和黑潮西侧边缘生成的脱落冷涡的流场垂向影响深度差异较大,而脱落暖涡的流场垂向影响深度一般达水深1000 m以深,脱落涡旋的位势温度的垂向影响深度与该涡的流场垂向影响深度相当,其盐度的垂向影响深度则较浅;脱落涡旋的温盐结构受黑潮的影响较大。  相似文献   

8.
A near-surface satellite-tracked drifter launched off the east coast of the Kuril Islands on September 4,1993 began a 2.5-year Odyssey across the North Pacific Ocean. During its travels, the drifter encountered numerous energetic oceanographic regimes as it moved from the region of the Kuril-Kamchatka Trench to the continental margin of the Kuril Islands, through Friza Strait into the Sea of Okhotsk, seaward again through Bussol’ Strait, and then eastward across the North Pacific. Oceanic features detected along the basin-wide trajectory include a quasi-permanent anticyclonic eddy over the Kuril-Kamchatka Trench, open-ocean wind-driven inertial oscillations, coastal-trapped diurnal shelf waves, semidiurnal tidal currents, transient cyclonic and anticyclonic eddies, through-strait flows, and wave-like mesoscale meanders. The single drifter track delineates the dynamically-rich variability of upper ocean currents, emphasizes the marked difference in flow dynamics between boundary and open ocean regions, and provides a time-scale for the movement of surface waters across the entire North Pacific.  相似文献   

9.
Surface distribution (0–100 m) of zooplankton biomass and specific aminoacyl-tRNA synthetases (AARS) activity, as a proxy of structural growth, were assessed during winter 2002 and spring 2004 in the Labrador Sea. Two fronts formed by strong boundary currents, several anticyclonic eddies and a cyclonic eddy were studied. The spatial contrasts observed in seawater temperature, salinity and fluorescence, associated with those mesoscale structures, affected the distributions of both zooplankton biomass and specific AARS activity, particularly those of the smaller individuals. Production rates of large organisms (200–1000 μm) were significantly related to microzooplankton biomass (63–200 μm), suggesting a cascade effect from hydrography through microzooplankton to large zooplankton. Water masses defined the biomass distribution of the three dominant species: Calanus glacialis was restricted to cold waters on the shelves while Calanus hyperboreus and Calanus finmarchicus were widespread from Canada to Greenland. Zooplankton production was up to ten-fold higher inside anticyclonic eddies than in the surrounding waters. The recent warming tendency observed in the Labrador Sea will likely generate weaker convection and less energetic mesoscale eddies. This may lead to a decrease in zooplankton growth and production in the Labrador basin.  相似文献   

10.
The winter water mass distributions in the western Gulf of Mexico, affected by the collision of a Loop Current anticyclonic ring, during January 1984 are analyzed. Two principal modes of Gulf Common Water (GCW) formation, arising from the dilution of the Caribbean Subtropical Underwater (SUW), are identified. Within the western gulf continental slope to the east of Tamiahua, the GCW is formed by the collision of anticyclonic rings. During these collision events, the SUW, entrapped at the core (200 m depth) of these features, is diluted by low salinity (36.1S36.3) water from the uppermost layer of the main thermocline. The end product of this mixture is GCW, which is further diluted by low salinity coastal water within the western gulf continental shelf. The second GCW formation mode is associated to the northerly wind stress which propagates over the western gulf during winter. During January, 1984, this wind stress gave rise to a 175 m mixed layer. This convective mixing destroyed the static stability of the summer thermocline and allowed for the partial dilution of the SUW with low salinity (S36.3) water from the western gulf continental shelf. Within the western gulf's upper 2000 m, the following water masses were identified to be present: GCW, SUW, Tropical Atlantic Central Water and associated dissolved oxygen minimum stratum, Antarctic Intermediate Water remnant, a mixture of the Caribbean Intermediate Water and the upper portion of North Atlantic Deep Water (NADW), and the NADW itself. The topographic distribution of these water masses' strata was dictated by the cyclonic-anticyclonic baroclinic circulation that evolved from the anticyclone's collision to the east of Tamiahua. Between the cyclonic and anticyclonic domains, the maximum pressure differential of these water masses' core occurrences was 150 to 280 dbar. The topographic transition zone defined by these strata occurred between the cyclonic and anticyclonic domains and coincided unambiguously with the anticyclone's collision zone. Within the continental shelf, we identified low temperature (12°C) and low salinity (31) coastal waters contributed by river runoff. Driven by the northerly wind stress, these coastal waters were advected toward the south hugging the coastline. The coastal and continental shelf waters demarcated a sea surface temperature, salinity, and dissolved oxygen discontinuity region that coincided with the horizontal baroclinic flow transition zone associated to the anticyclone's collision.  相似文献   

11.
南海冬、夏季环流的三维数值模拟   总被引:6,自引:0,他引:6  
本文利用一个斜压三维陆架海模式——HAMSOM模式对12月份和8月份的南海环流进行数值模拟,结果为:对上层流场,在12月份,在西沙群岛-中沙群岛海区间呈现一个气旋式环流,在越南中部东岸存在一支南向西边界流,在金兰湾的远海为一局地反气旋涡,在南海南部,主要表现为万安滩的气旋式大弯曲(气旋涡)及在北康暗沙北侧的反气旋涡;在8月份,在东沙群岛-中沙群岛-吕宋岛西侧海域间存在一大尺度的气旋涡,在南海西部主要表现为以西沙群岛南部的气旋涡与金兰湾-礼乐滩间的反气旋式大环流相对峙的局面,同时在万安滩东侧有-气旋涡.由于斜压效应、底形效应的作用,使冬、夏季的南海南部中层流场几乎与上层流场相反.  相似文献   

12.
Data on ocean temperature, currents, salinity and nutrients were obtained in an area off Algoa Bay on the south-east coast of South Africa during a ship's cruise in early November 1986. Satellite imagery provided information on the position of the Agulhas Current during the cruise period, while wind data were available from weather stations on the eastern and western sides of Algoa Bay. It is surmised that wind-forcing plays a major role in water circulation in the Bay and over the inshore continental shelf remote from the influence of the open ocean. The predominantly barotropic current flow, of the order of 0,5 m·s?1, was downwind and influenced by topographic features and coastline shape. The Agulhas Current influences the ocean structures by long-term (large episodic meanders) and short-term (upwelling forced by the Current, core upwelling in frontal eddies and warm frontal plumes at the surface) fluctuations. Temperature structures showed well mixed water in Algoa Bay and a strong thermocline over the continental shelf, and were typical of a western boundary current in the Agulhas Current itself. The presence of a thermocline at 30–50 m over the shelf prevented upward mixing of nutrients. The Current exerted a dominant effect on shelf waters north of Algoa Bay.  相似文献   

13.
Mesoscale eddies in the Kuroshio recirculation region south of Japan have been investigated by using surface current data measured by an Acoustic Doppler Current Profiler (ADCP) installed on a regular ferry shuttling between Tokyo and Chichijima, Bonin Islands, and sea surface height anomaly derived from the TOPEX/POSEIDON altimeter. Many cyclonic and anticyclonic eddies were observed in the region. Spatial and temporal scales of the eddies were determined by lag-correlation analyses in space and time. The eddies are circular in shape with a diameter of 500 km and a temporal scale of 80 days. Typical maximum surface velocity and sea surface height anomaly associated with the eddies are 15–20 cm s–1 and 15 cm, respectively. The frequency of occurrence, temporal and spatial scales, and intensity are all nearly the same for the cyclonic and anticyclonic eddies, which are considered to be successive wave-like disturbances rather than solitary eddies. Phase speed of westward propagation of the eddies is estimated as 6.8 cm s–1, which is faster than a theoretical estimate based on the baroclinic first-mode Rossby wave with or without a mean current. The spatial distribution of sea surface height variations suggests that these eddies may be generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region, though further studies are needed to clarify the generation processes.  相似文献   

14.
Various kinds of datasets, such as satellite-derived sea surface temperature (SST), sea surface height, surface velocity produced by combining surface drifter and satellite altimeter data, and hydrographic data, led to the discovery of an anticyclonic eddy with lower SST than those of surrounding waters in the Kuroshio recirculation region south of Shikoku, as if the eddy were cyclonic. This anticyclonic eddy was formed east of Kyushu in late August to early September 1999 from the merger of two anticyclonic eddies which had migrated in the recirculation region to the sea south of Japan from the east. After the merger, the anticyclonic eddy strengthened abruptly and began to exhibit the low SST. In October, this eddy coalesced with the Kuroshio and moved swiftly eastward, accompanied by an amplitude growth of the Kuroshio meander. In mid November, off the Kii Peninsula, the eddy detached from the meandering Kuroshio. It then moved southwestward and again slowly propagated westward along the 30°N line. During this period, at least from late October 1999 to January 2000, SSTs over the anticyclonic eddy were found to be continuously lower than those of surrounding waters. This case tells us that we have to pay careful attention to the interpretation of mesoscale SST distributions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We present the results of numerical prognostic experiments performed with a resolution of 1.64 km in the horizontal coordinates. Unlike the calculations performed with coarser resolution, we reveal the following dynamic specific features: The Rim Current is traced down to 400 m as a continuous jet directed along the continental slope. Mesoscale anticyclonic eddies are regularly formed along the east part of the Anatolian coast and affect the formation of the Batumi anticyclone. The Sevastopol, Sinop, Kizilirmak, and Caucasian anticyclonic eddies are quasiperiodic. A region of cyclonic rotation of waters is formed between the newly formed Sevastopol anticyclone and the previous eddy.  相似文献   

16.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Lagrangian time series of dimethylsulfide (DMS) concentrations from a cyclonic and an anticyclonic eddy in the Sargasso Sea were used in conjunction with measured DMS loss rates and a model of vertical mixing to estimate gross DMS production in the upper 60 m during summer 2004. Loss terms included biological consumption, photolysis, and ventilation to the atmosphere. The time- and depth (0–60 m)-averaged gross DMS production was estimated to be 0.73±0.09 nM d−1 in the cyclonic eddy and 0.90±0.15 nM d−1 in the anticyclonic eddy, with respective DMS replacement times of 5±1 and 6±1 d. The higher estimated rate of gross production and lower measured loss rate constants in the anticyclonic eddy were equally responsible for this eddy's 50% higher DMS inventory (0–60 m). When normalized to chlorophyll and total dimethylsulfoniopropionate (DMSP), estimated gross production in the anticyclonic eddy was about twice that in the cyclonic eddy, consistent with the greater fraction of phytoplankton that were DMSP producers in the anticyclonic eddy. Higher rates of gross production were estimated below the mixed layer, contributing to the subsurface DMS maximum found in both eddies. In both eddies, gas exchange, microbial consumption, and photolysis were roughly equal DMS loss terms in the surface mixed layer (0.2–0.4 nM d−1). Vertical mixing was a substantial source of DMS to the surface mixed layer in both eddies (0.2–0.3 nM d−1) owing to the relatively high DMS concentrations below the mixed layer. Estimated net biological DMS production rates (gross production minus microbial consumption) in the mixed layer were substantially lower (by almost a factor of 3) than those estimated in a previous study of the Sargasso Sea, which may explain the relatively low mixed-layer DMS concentrations found here during July 2004 (3 nM) compared to previous summers (4–6 nM).  相似文献   

18.
The south-flowing waters of the Kamchatka and Oyashio Currents and west-flowing waters of the Alaskan Stream are key components of the western sub-Arctic Pacific circulation. We use CTD data, Argo buoys, WOCE surface drifters, and satellite-derived sea-level observations to investigate the structure and interannual changes in this system that arise from interactions among anticyclonic eddies and the mean flow. Variability in the temperature of the upstream Oyashio and Kamchatka Currents is evident by warming in mesothermal layer in 1994–2005 compared to 1990–1991. A major fraction of the water in these currents is derived directly from the Alaskan Stream. The stream also sheds large anticyclonic (Aleutian) eddies, averaging approximately 300 km in diameter with a volume transport significant in comparison with that of the Kamchatka Current itself. These eddies enclose pools of relatively warm and saline water whose temperature is typically 4 °C warmer and salinity is 0.4 greater than that of cold-core Kamchatka eddies in the same density range. Aleutian eddies drift at approximately 1.2 km d−1 and retain their distinctive warm and salty characteristics for at least 2 years. Selected westward pathways during 1990–2004 are identified. If the shorter northern route is followed, Aleutian eddies remain close to the stream and persist sufficiently long to carry warm and saline water directly to the Kamchatka Current. This was observed during 1994–1997 with substantial warming of the waters in the Kamchatka Current and upstream Oyashio. If the eddies take a more southern route they detach from the stream but can still contribute significant quantities of warm and saline water to the upstream Oyashio, as in 2004–2005. However, the eddies following this southern route may dissipate before reaching the western boundary current region.  相似文献   

19.
A reduced-gravity primitive equation eddy resolving model has been used to study the decay of a mesoscale eddy as it migrates toward a western boundary current (WBC) region. The model results indicated that the gradient of the relative vorticity to the east of the WBC is an important factor in the interaction between an eddy and a WBC. A circular eddy is deformed into an elliptical form during the eddy–WBC interaction with the major axis of a cyclonic/anticyclonic eddy aligning in the NW/NNE direction, respectively. Because of the difference in the major axes orientations for the cyclonic and anticyclonic eddies, the kinetic energy transfer between a WBC and a particular eddy has very different behavior. A cyclonic eddy loses its energy to the mean field, whereas an anticyclonic eddy can obtain energy from the mean flow during the WBC–eddy interaction. An anticyclonic eddy, however, still decayed from losing its water and friction dissipation during the interaction period.  相似文献   

20.
The biomass and production of phytoplankton and bacterioplankton was investigated in relation to the mesoscale structures found in the Algerian Current during the ALGERS'96 cruise (October 1996). Biological determinations were carried out in three transects between 0° and 2°E aimed at crossing a so-called event, formed by a coastal anticyclonic eddy associated with an offshore cyclonic eddy to the west. The concentration of chlorophyll a (Chl) was maximum (>1.2 mg m−3) within the cyclonic eddy and at the frontal zones between the Modified Atlantic Water (MAW) of the Algerian Current and the Mediterranean waters further north. Chl (total and >2 μm) was significantly correlated with proxies of nutrient flux into the upper layers. Autotrophic picoplankton and heterotrophic bacterial abundance and production presented clear differences between MAW and Mediterranean water, with higher values at those stations under the influence of the Algerian Current. In general, greater differences were observed in production than in biomass variables. The photosynthetic parameters (derived from P–E relationships) and integrated primary production (range 189–645 mg m−2 d−1) responded greatly to the different hydrological conditions. The mesoscale phenomena inducing fertilization caused a 2 to 3-fold increase in primary production rates. The relatively high values found within the cyclonic eddy suggest that, although short-lived in comparison with anticyclonic eddies, these eddies may produce episodic increases of biological production not accounted for in previous surveys in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号