首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hydrographic surveys and satellite imaging reveal that mesoscale anticyclonic (AC) eddies are common features of the area south of Bussol' Strait, the deepest of the Kuril straits connecting the western North Pacific and Sea of Okhotsk. To examine the velocity structure of these eddies, we deployed groups of 15-m drogued satellite-tracked surface drifters over the Kuril-Kamchatka Trench in the fall of 1990 and late summer of 1993. Drifters in both groups entered large AC eddies centered over the axis of the trench seaward of Bussol' Strait and subsequently underwent a slow northeastward translation. One drifter (Drifter 1315) deployed near the center of the “Bussol' eddy” in 1990, remained in the eddy for roughly 45 days and made five loops at successively greater distances from the eddy center. Large-amplitude (80–100 cm/s) storm-generated inertial oscillations were observed during the first two loops. The vorticity field associated with the eddy resulted in a Doppler “red-shift” of inertial frequency motions such that the “effective” inertial period of 21 hours was roughly 4 hours greater than the nominal inertial period for the drifter latitude (45°N). In 1993, a second drifter (Drifter 15371) was retained in the Bussol' eddy for about 40 days. This eddy had characteristics similar to those of the 1990 eddy but was devoid of significant high-frequency motions until the drifter's final half loop. The observed spatial scales, persistence, and slow poleward translation of the eddies suggests that they play an important role in the dynamics of the East Kamchatka and Oyashio current systems. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Sources of water in the Taiwan Strait   总被引:5,自引:0,他引:5  
The conveyor of the source water that feeds into the Taiwan Strait (TS), particularly from the south, is investigated using historical CTD (Conductivity-Temperature-Depth) data and a North Pacific Ocean and East Asian seas coupled model. The modeled currents and drifter trajectories suggest that the Kuroshio Branch Water (KBW) rarely flows directly into the TS from the Luzon Strait (LS) in winter; instead the massive westward movement of the Kuroshio conveys high salinity water to the southeastern TS through a loop-like route. In summer, the modeled flow fields suggest that the Kuroshio surface currents hardly intrude into the TS directly from the LS. Observations and model results show that the monsoon-driven northeastwardflowing currents in the northern South China Sea transport relatively low salinity water through the entire TS.  相似文献   

3.
The outflow from the Sea of Okhotsk to the North Pacific is important in characterising the surface-to-intermediate-depth water masses in the Pacific Ocean. The two basins are separated by the Kuril Islands with numerous straits, among which the Bussol and the Kruzenshterna Straits are deeper than 1000 m. The physics governing the transport between the two basins is complicated, but when the semidiurnal and diurnal tides are subtracted, the observed density and velocity structures across the Bussol Strait suggest a significant contribution from geostrophic balance. Using a two-layer model with the interface at 27.5σ θ , part of the upper layer transport that is not driven by tides is estimated using two previously unexplored data sets: outputs from the Ocean General Circulation Model for Earth Simulator (OFES), and historical hydrographic data. The Pacific water flows into the Sea of Okhotsk through the northeastern straits. The greatest inflow is through the Kruzenshtern Strait, but the OFES results show that the contributions from other shallower straits are almost half of the Kruzenshtern inflow. Similarly, the outflow from the Sea of Okhotsk is through the southwestern straits of the Kuril Islands with the largest Bussol Strait contributing 60% of the total outflow. The OFES and hydrographic estimates agree that the exchange is strongest in February to March, with an inflow of about −6 to −12 Sv (negative indicates the flow from the North Pacific, 1 Sv = 106 m3s−1), and an outflow from the Sea of Okhotsk of about +8 to +9 Sv (positive indicates the flow from the Sea of Okhotsk), which is weakest in summer (−3 to +1 Sv through the northeastern straits and +0 to +3 Sv through the southwestern straits). The estimated seasonal variation is consistent with a simple analytic model driven by the difference in sea surface height between the two basins.  相似文献   

4.
The autonomous drifting buoys equipped with satellite link turn into one of the most important components of the global system of operative observations of the ocean and the surface layer of the atmosphere. However, on the regional level, the problem of analysis of the surface circulation of waters in the coastal zone and sea straits remains quite urgent because the available drifters cannot be used in this case due to their sizes and long intervals between measurements. We present the results of development and testing of a new drifter system aimed at measuring currents. The system is based on the use of buoys operating at depths less than 1 m. To improve the space-and-time resolution of measurements, the buoys are equipped with receivers of the global positioning system (GPS) and GSM modems for the data transfer via cellular communication networks. The drifter system guarantees the possibility of determination of the coordinates of buoys with a resolution of 3 min in time and 14 m in space. We describe the specific features of the design of the proposed information-and-measuring drifter system and present the first results of application of new buoys called “minidrifters” for the pilot monitoring of currents in the Kerch Strait.  相似文献   

5.
The muhiyear averaged surface current field and seasonal variability in the Kuroshio and adjacent regions are studied. The data used are trajectories and (1/4) ° latitude by (1/4) ° longitude mean currents derived from 323 Argos drifters deployed by Chinese institutions and world ocean circulation experiment from 1979 to 2003. The results show that the Kuroshio surface path adapts well to the western boundary topography and exhibits six great turnings. The branching occurs frequently near anticyclonic turnings rather than near cyclonic ones. In the Luzon Strait, the surface water intrusion into the South China Sea occurs only in fall and winter. The Kuroshio surface path east of Taiwan, China appears nearly as straight lines in summer, fall, and winter, when anticyclonic eddies coexist on its right side; while the path may cyclonically turning in spring when no eddy exists. The Kuroshio intrusion northeast of Taiwan often occurs in fall and winter, but not in summer. The running direction, width and velocity of the middle segment of the Kuroshio surface currents in the East China Sea vary seasonally. The northward intrusion of the Kuroshio surface water southwest of Kyushu occurs in spring and fall, but not in summer. The northmost position of the Kuroshio surface path southwest of Kyushu occurs in fall, but never goes beyond 31 °N. The northward surface current east of the Ryukyu Islands exists only along Okinawa-Amami Islands from spring to fall. In particular, it appears as an arm of an anti- cyclonic eddy in fall.  相似文献   

6.
MODIS (Aqua and Terra) space images of the northwest part of the Pacific Ocean at instants of considerable tsunamis in 2009–2011 have been analyzed. Periodic cloud structures typical for internal gravity waves (IGWs) in the atmosphere have been revealed in the region of the Kuril Islands in five cases. It has been shown that the meteorological conditions observed during those events favored the appearance of such phenomena. The continuous oceanic upwelling in the region of the Kuril–Kamchatka Trench is a favorable factor for IGW generation due to the creation of temperature contrasts observed both in warm and cold seasons between the ground layer of the atmosphere and ocean surface. The estimate of the structure of cloud manifestations of atmospheric waves by satellite images testifies also to the influence of the Kuril Ridge orography on their appearance and propagation over the water area under study. The increase in amplitudes and duration of oscillations caused by the tsunami in the shelf zone can be an auxiliary factor for the IGW generation over coastal territories.  相似文献   

7.
A simple dissolved silica (Si) and dissolved oxygen (O) diagram method was applied to study the deep-water circulation in the North Pacific and the following results and conclusion have been obtained. In the abyssal water flowing northward in the western Pacific Si increases with a constant ratio of Si to decreasing O(Si/O=–0.30). The water is designated as the main sequence. In the eastern Pacific the Si-O diagram is characteristic of the location and reflects the degrees of mixing with older waters and of alteration due to decomposition of biogenic material. The Bay of Alaska is found to be a great source of silica in the North Pacific and its bottom water spreads out to the central North Pacific north of 40°N, called here the abyssal front. The younger abyssal water in the Aleutian Trench flowing to the eastern North Pacific north of 40°N comes through the north end of the Kuril-Kamchatka Trench instead of the gap in the Emperor Seamounts at about 46°N. The deep water is almost completely homogenized by active isopycnal mixing and advection when the deep water reaches its upper boundary by upwelling in the western North Pacific including the Bering Sea. Thus the high productivity in the Bering Sea is principally caused neither by the direct supply of abyssal water rich in nutrients nor by the extremely active vertical mixing reaching depths greater than 500 m, but it may be caused simply by the shallower upper boundary of the deep water mass in the Bering Sea, from which nutrients are easily transported to the surface.  相似文献   

8.
Mesoscale eddies, particularly anticyclonic ones, are dominant features in the Kuril Basin of the Okhotsk Sea. In 1999, both surface drifter and hydrographic observations caught the same anticyclonic eddy northwest of Bussol’ Strait, which has a diameter of ∼100 km, typical surface velocity of 0.2–0.3 m s−1, and less dense core extending to a depth of ∼1200 m. Based on an idea that the generation of mesoscale eddies is caused by strong tidal mixing in and around Kuril Straits, we have conducted a series of three-dimensional numerical model experiments, in which strong tidal mixing is simply parameterized by increasing coefficients of vertical eddy viscosity and diffusivity along the eastern boundary. Initially, a regular series of disturbances with a wavelength of ∼70 km starts to develop. The disturbances can be clearly explained by a linear instability theory and regarded as the baroclinic instability associated with the near-surface front formed in the region between the enhanced mixing and offshore regions. In the mature phase, the disturbances grow large enough that some eddies pinch off and advect offshore (westward), with the scale of disturbances increasing gradually. Typical eddy scale and its westward propagation speed are ∼100 km and ∼0.6 km day−1, respectively, which are consistent with the observations by satellites. The westward propagation can be explained partly due to nonlinear effect of self-offshore advection and partly due to the β-effect. With the inclusion of the upper ocean restoring, the dominance of anticyclonic eddy, extending from surface to a depth of ∼1200 m, can be reproduced.  相似文献   

9.
In this study, the inverse method is used to compute the Kuroshio in the East China Sea and southeast of Kyushu and the currents east of the Ryukyu Islands, on the basis of hydrographic data obtained during September-October, 1987 by R/V Chofu Maru. The results show that: (1)A part of the Taiwan Warm Current has a tendency to converge to the shelf break; (2) the Kuroshio flows across the section C3 (PN) with a reduced current width, and the velocity of the Kuroshio at the section C3 increases and its maximum current speed is about 158 cm/s, and its volume transport here is about 26×106m3/s; (3) the Kuroshio has two current cores at the sections C3 (PN) and B2 (at the Tokara Strait); (4) the currents east of the Ryukyu Islands are found to flow northward over the Ryukyu Trench during September-October, 1987. The velocities of the currents are not strong throughout the depths. At the section C2 east of the Ryukyu Islands, the maximum current speed is at the 699 m levei and its magnitude is 25 cm/s, and i  相似文献   

10.
The abundance and biomass of metazoan meiofauna and their relationships with environmental factors [chloroplastic pigment equivalents (CPE) and sediment characteristics] were studied quantitatively around and within the Kuril Trench (560-7090 m) and the Ryukyu Trench (1290-7150 m), which are located in eutrophic and oligotrophic regions, respectively, of the western North Pacific. Faunal abundance and biomass, as well as the CPE content of sediments, were considerably higher in the Kuril region than in the Ryukyu region. In both cases, CPE tended to decrease with water depth, but relatively high values were found in the deepest areas, suggesting that organic matter has accumulated in both trenches. Meiofaunal abundance and biomass were lower than expected from sediment CPE values at hadal stations below 6000 m. Differences in the density and biomass of meiofauna between these two trenches appeared to reflect differences in overall ocean productivity above them. When the analysis was restricted to each region, however, no association was found between the abundance and biomass of meiofauna and food availability. Furthermore, the factors regulating the bathymetric patterns in these meiofaunal parameters appeared to differ between the two trenches.  相似文献   

11.
A numerical study using a 3-D nonhydrostatic model has been applied to baroclinic processes generated by the K 1 tidal flow in and around the Kuril Straits. The result shows that large-amplitude unsteady lee waves are generated and cause intense diapycnal mixing all along the Kuril Island Chain to levels of a maximum diapycnal diffusivity exceeding 103 cm2s−1. Significant water transformation by the vigorous mixing in shallow regions produces the distinct density and potential vorticity (PV) fronts along the Island Chain. The pinched-off eddies that arise and move away from the fronts have the ability to transport a large amount of mixed water (∼14 Sv) to the offshore regions, roughly half being directed to the North Pacific. These features are consistent with recent satellite imagery and in-situ observations, suggesting that diapycnal mixing within the vicinity of the Kuril Islands has a greater impact than was previously supposed on the Okhotsk Sea and the North Pacific. To examine this influence of tidal processes at the Kurils on circulations in the neighboring two basins, another numerical experiment was conducted using an ocean general circulation model with inclusion of tidal mixing along the islands, which gives a better representation of the Okhotsk Sea Mode Water than in the case without the tidal mixing. This is mainly attributed to the added effect of a significant upward salt flux into the surface layer due to tidal mixing in the Kuril Straits, which is subsequently transported to the interior region of the Okhotsk Sea. With a saline flux into the surface layer, cooling in winter in the northern part of the Okhotsk Sea can produce heavier water and thus enhance subduction, which is capable of reproducing a realistic Okhotsk Sea Mode Water. The associated low PV flux from the Kuril Straits to the open North Pacific excites the 2nd baroclinic-mode Kelvin and Rossby waves in addition to the 1st mode. Interestingly, the meridional overturning in the North Pacific is strengthened as a result of the dynamical adjustment caused by these waves, leading to a more realistic reproduction of the North Pacific Intermediate Water (NPIW) than in the case without tidal mixing. Accordingly, the joint effect of tidally-induced transport and transformation dominating in the Kuril Straits and subsequent eddy-transport is considered to play an important role in the ventilation of both the Okhotsk Sea and the North Pacific Ocean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We report on the extraordinary findings of several endemic species of North Pacific deepwater fish and squid on the continental slope of the Falkland Islands in the Southwest Atlantic, namely the giant rattail grenadier Albatrossia pectoralis (Macrouridae), pelagic eelpout Lycodapus endemoscotus (Zoarcidae) and squid Gonatopsis octopedatus (Gonatidae). These deepwater dwellers might have moved more than 15,000 km from their common species ranges with Pacific Deep Water along the western slopes of both Americas and through the Drake Passage. Our findings provide further evidence of the possible role of deepwater currents in the dispersal of bathypelagic and benthopelagic animals from one polar region to another across various climatic zones of the world ocean.  相似文献   

13.
东海陆架斜坡和台湾海峡是我国东部近海从大洋和南海获取热量、盐量和营养盐的两个主要边界。本文建立了一个不规则分布漂流浮标轨迹的网格化处理方法和跨边界交换估算方法。该方法得到的漂流浮标轨迹累计次数再现了黑潮主轴位置并表明主轴两侧浮标存在显著的跨陆坡交换现象。浮标轨迹的统计结果揭示了东海陆坡上水体交换具有显著的区域性,即陆坡上存在7个主要交换区,3个交换区以入流为主,另4个交换区以出流为主。研究也表明跨东海陆坡交换具有明显的季节变化特征,秋季交换最剧烈且入流最显著,春季最弱。穿越台湾海峡的交换主要以北向入流为主,海峡东侧的交换更加明显,一年之中夏季最显著,春、冬季最弱。  相似文献   

14.
Based on the surface drifters that moved out from the Sea of Okhotsk to the Pacific, the surface velocity fields of mean, eddy, and tidal components in the Oyashio region are examined for the period September 1999 to August 2000. Along the southern Kuril Island Chain, the Oyashio Current, having a width of ∼100 km, exists with velocities of 0.2–0.4 m s−1. From 40°N to 43°N, the Subarctic Current flows east- or northeastward with velocities of 0.1–0.3 m s−1, accompanied by a meandering Oyashio or Subarctic front. Between the Oyashio and Subarctic current regions, an eddy-dominant region exists with both cyclonic and anticyclonic eddies. The existence of an eastward flow just south of Bussol' Strait is suggested. The 2000 anticyclonic warmcore ring located south of Hokkaido was found to have a nearly symmetric velocity structure with a maximum velocity of ∼0.7 m s−1 at 70 km from the eddy center. Diurnal tidal currents with a clockwise tidal ellipse are amplified over the shelf and slope off Urup and Iturup Islands, suggesting the presence of diurnal shelf waves. From Lagrangian statistics, the single-particle diffusivity is estimated to be ∼10 × 107 cm2s−1.  相似文献   

15.
Argos表面漂流浮标在黑潮区的若干观测结果   总被引:3,自引:0,他引:3  
利用近几年国家海洋局第二海洋研究所及国家海洋技术中心在南海和西北太平洋海域布放的部分卫星跟踪表面漂流浮标所取得的观测资料,分析了浮标流经海域的表层海流特征及浮标漂移路径上水温的变化。结果表明:2003年1月,黑潮表层水有入侵南海的趋势,夏季南海表层水经吕宋海峡流出,汇入黑潮主干;夏末冬初,黑潮主干经过东海时明显呈弯曲流动;2003年春季,日本以南海域黑潮弯曲不明显;台湾东北部海域存在一个强反气旋涡;表层海水的温度日变化和季节变化明显,在浮标漂移路径呈反气旋或气旋式转动的区域,对应出现了表层水温的高、低温区。  相似文献   

16.
利用1987年以来WOCE项目及我国自行投放或进入黑潮及其邻近海域(15°~36°N,114°~135°E)的共计323个卫星跟踪海表面漂流浮标资料,得到全年平均及季节平均的浮标轨迹及(1/4)°×(1/4)°格点平均的表层流矢量结果。分析认为:对于全年平均的表层流场,黑潮表层流路主要表现了对大洋西边界地形的适应,并呈现出6个较大的弯曲,其中在反气旋型弯曲处都发生分支或入侵现象、气旋型弯曲处这种现象却不明显。对于季节平均的表层流场,黑潮表层不同流段分别表现出各自显著的季节差异:吕宋海峡附近海域,表层水向南海的入侵只发生在秋、冬两季,而春、夏两季却不发生;在台湾以东海域,黑潮表层流路与黑潮右侧反气旋涡的存在与否密切相关,春季没有涡旋存在时,黑潮表层流路常出现气旋式大弯曲,其他三个季节反气旋涡存在时,黑潮表层流路相对平直;在台湾东北海域,黑潮表层水向东海南部陆架区的入侵以秋、冬季最强,春季次之,而夏季几乎不发生;在赤尾屿以北的东海黑潮中段,黑潮流动比较稳定,其表层平均流径走向由偏北到偏东依次约为冬(北偏东30°)、春(北偏东33°)、秋(北偏东38°)、夏(北偏东45°);流路宽度由宽至窄依次约为秋(90 km)、春(80 km)、冬(70 km)、夏(60 km),而流速由大至小依次为夏、春、秋、冬,且各季节都表现出北段流速大于南段的现象;在九州西南海域,春、秋两季黑潮表层水发生明显的向北入侵,入侵的黑潮水与东海外陆架水共同成为对马暖流的一部分来源,而夏季这种现象不明显,九州西南海域黑潮表层流路北界的位置以秋季最为偏北(但最北不超过31°N)、流路也最宽;在琉球群岛外缘海域,南半部基本没有北上的表层流存在,只有在冲绳群岛-奄美群岛以东海区,秋、夏、春三季表层反气旋涡旋都比较活跃,在涡旋的西侧有顺着冲绳群岛-奄美群岛的东北向流,其中秋季最为明显。这些结果可以为黑潮及其邻近海域的深入研究提供较为客观、直接的参考。  相似文献   

17.
A minor generalization of the theory of random walk is used as a basis for a model of ocean current flow. The model is then applied in a computer simulation of drifter motion. The results of simulation indicate that the geometry of a coastline can have significant impact on the distribution of drifter landings.  相似文献   

18.
Biological Pump in Northwestern North Pacific   总被引:1,自引:1,他引:1  
The northwestern North Pacific is considered to be one of the most productive areas in the global ocean. Although the marginal zones along the Japanese and Kuril islands, Kamchatka Peninsula, and Aleutian Islands are certainly productive, recent studies do not always show high primary production values in the western subarctic gyre (WSG). In addition, a recent analysis of the biological pump in the WSG showed that, in contrast to what was previously reported, the vertical change of the particulate organic carbon flux with depth is large. Nevertheless, the biological pump in the northwestern North Pacific may function to draw down the partial pressure of CO2 in the surface water because the ratio of the organic carbon flux to inorganic carbon flux (Corg/Cinorg), the export flux, and the export ratio from the surface water are higher than those in other oceans. This article also introduces recent research on changes to the biological pump that might have been caused by global warming. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Recent progress in studies of the South China Sea circulation   总被引:13,自引:1,他引:12  
The South China Sea (SCS) is a semi-enclosed marginal sea with deep a basin. The SCS is located at low latitudes, where the ocean circulations are driven principally by the Asia-Australia monsoon. Ocean circulation in the SCS is very complex and plays an important role in both the marine environment and climate variability. Due to the monsoon-mountain interactions the seasonal spatial pattern of the sea surface wind stress curl is very specific. These distinct patterns induce different basin-scale circulation and gyre in summer and winter, respectively. The intensified western boundary currents associated with the cyclonic and anticyclonic gyres in the SCS play important roles in the sea surface temperature variability of the basin. The mesoscale eddies in the SCS are rather active and their formation mechanisms have been described in recent studies. The water exchange through the Luzon Strait and other straits could give rise to the relation between the Pacific and the SCS. This paper reviews the research results mentioned above.  相似文献   

20.
Secular variations of the mean pole and the z-term in the latitudinal vatiations are discussed geophysically in relation to oceanic motions on the large scale, particularly, to the variations of the Kuroshio system.It is shown that the large scale meanders of the Kuroshio occurred when the direction of displacement of the mean pole turned to the European continent from the North East Pacific and when the z-term changed from decrease to increase. The libration of the mean pole has connection with the zonal circulation of the oceanic mass and the secular variation of the z-term has connection with that of the meridional circulation. The large abrupt decrease in the z-term during 1955–1959 has close connection with the wellknown abnormal variation of sea surface temperature in the North Pacific during the same period.The structures of occurrence of the Kuroshio meanders in 1934 and 1969 may be different from those in 1953 and 1959, and the Kuroshio meander perhaps occurred after 1916 and existed during 2 or 3 years. Particularly the occurrence of the Kuroshio meander in 1959 may originate in the abrupt southward flow of oceanic mass in the Pacific.Except for some cases great earthquakes with magnitude of nearly 8 occurred near the Japan Trench and the Kurile-Kamchatka Trench about one year before the occurrences of the Kuroshio meander, and in the regions from the Alaska Peninsula to the Japan Islands great earthquakes occurred during the disappearance of the Kuroshio meander with a few exceptions.Existence of dynamical interactions between the ocean and the solid-earth may be suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号