首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ding  Yu-mei  Shi  Fengyan 《中国海洋工程》2019,33(5):544-553
An offshore shoal or bar refracts ocean surface waves and causes wave focusing/defocusing on the adjacent beach.Wave focal patterns characterized by alongshore variations in wave height, wave angle, and breaking location induce alongshore non-uniformities of wave setup and nearshore circulation, e.g., rip currents and alongshore currents, in the surfzone. A simplified analytic model for nearshore circulation generated by focused/defocused waves on a planar beach is developed and theoretical solutions are obtained using transport stream function and perturbations in alongshore distributions of wave height and wave angle at the breaker line. The analytic model suggests that alongshore currents are strongly affected by a pair of counter-rotating vortices generated shoreward of the wave focal zone. The vortices are persistent, and their strengths depend on the amplitudes of alongshore variations in wave height and wave angle. The alongshore gradient in wave height tends to intensify the vortices while the convergence of wave angle tends to weaken the vortices. Divergent flows associated with the vortices in the surfzone are intense,strengthening alongshore currents in the downstream of the wave focal zone and weakening alongshore currents or causing flows reversal in the upstream. Alongshore currents are modulated by rip currents associated with the wave focusing/defocusing patterns.  相似文献   

2.
《Coastal Engineering》2001,42(1):53-86
A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence is described by large eddy simulation where the larger turbulent features are simulated by solving the flow equations, and the small scale turbulence that is not resolved by the flow model is represented by a sub-grid model. A simple Smagorinsky sub-grid model has been used for the present simulations. The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved. The surface is still specified to be uniform in the transverse (alongshore) direction, and it is only the flow field that is three-dimensional.The turbulent structures are investigated under different breaker types, spilling, weak plungers and strong plungers. The model is able to reproduce complicated flow phenomena such as obliquely descending eddies. The turbulent kinetic energy is found by averaging over the transverse direction. In spilling breakers, the turbulence is generated in a series of eddies in the shear layer under the surface roller. After the passage of the roller the turbulence spreads downwards. In the strong plunging breaker, the turbulence originates to a large degree from the topologically generated vorticity. The turbulence generated at the plunge point is almost immediately distributed over the entire water depth by large organised vortices. Away from the bed, the length scale of the turbulence (the characteristic size of the eddies resolved by the model) is similar in the horizontal and the vertical direction. It is found to be of the order one half of the water depth.  相似文献   

3.
The instability of Taylor-Görtler vortices which are expected in the air flow on water waves was studied in part I, under the assumption that the curvature around the crest or the trough of water waves, where the instability was expected to take place first, was constant, namely that the characteristics of the vortices were affected little by the local change of the curvature along the direction of the progress of water waves (the direction ofx-axis) However, the curvature actually varies from positive to negative, or vice versa. In order to study this effect, the instability of Taylor-Görtler vortices is examined with respect to the range of the part of a constant curvature, in the model in which the curvature is positive constant near the trough and negative constant near the crest, and zero in the intermediate regions, respectively. It is shown that as the region of the constant curvature becomes narrower, the instability tends to weaken. For the same example with part I, namely, when the wind of 12.2 m s–1 is blowing over swells of 15 m in wavelength, if the range of constant curvature near the trough is taken as a quarter of one wave length, the critical wave height becomes 0.96 m instead of 0.50 m, and conversely, the wave length and the height of center of the vortex become 11.9 m and 2.1 m instead of 24 m and 3.7 m, respectively.Further, using the energy equations, quantitative estimates are performed of the intensity of the vortices which develop when the wave height of the swell is 1.05 m in the above described example, and also of the influence of the vortices upon the wind profile when the equilibrium state is reached. When the vortices are generated and grow to attain to an equilibrium state interacting with the mean flow, the maximumx-component of velocity in the vortices is about 1.04 m s–1. Consequently, the wind profile undergoes a considerable distortion from the logarithmic one near the level of 2 m height. This distorted wind profile has a form similar to those sometimes observed above the sea surface.  相似文献   

4.
The statistical distribution of wave crest characteristics such as crest length, crest height, joint crest height and length are analyzed based on numerical simulation of 3-D random waves. The effects of directional functions and wave crest defining methods on crest characteristics are also studied.The results show that wave crests are no longer uniform and continuous in directional wave field; the distribution of crest length is obviously influenced by the directional function; the statistics of crest characteristics obtained by the two different methods are almost the same.  相似文献   

5.
The characteristics of turbulence created by a plunging breaker on a 1 on 35 plane slope have been studied experimentally in a two-dimensional wave tank. The experiments involved detailed measurements of fluid velocities below trough level and water surface elevations in the surf zone using a fibre-optic laser-Doppler anemometer and a capacitance wave gage. The dynamical role of turbulence is examined making use of the transport equation for turbulent kinetic energy (the k-equation). The results show that turbulence under a plunging breaker is dominated by large-scale motions and has certain unique features that are associated with its wave condition. It was found that the nature of turbulence transport in the inner surf zone depends on a particular wave condition and it is not similar for different types of breakers. Turbulent kinetic energy is transported landward under a plunging breaker and dissipated within one wave cycle. This is different from spilling breakers where turbulent kinetic energy is transported seaward and the dissipation rate is much slower. The analysis of the k-equation shows that advective and diffusive transport of turbulence play a major role in the distribution of turbulence under a plunging breaker, while production and dissipation are not in local equilibrium but are of the same order of magnitude. Based on certain approximate analytical approaches and experimental measurements it is shown that turbulence production and viscous dissipation below trough level amount to only a small portion of the wave energy loss caused by wave breaking. It is suggested that the onshore sediment transport produced by swell waves may be tied in a direct way to the unique characteristics of turbulent flows in these waves.  相似文献   

6.
本文在作者另文数值模拟得到的三维海浪基础上 ,进一步分析给出了三维波峰长度、高度及方向角度等特征量的统计分布。发现考虑海浪的方向性质后波峰分布不再是均匀连续的 ;波峰的长度分布受方向函数影响 ,方向分布越宽 ,波峰的平均长度越短 ,波峰的方向角分布越宽 ;波峰高度和长度在波峰高度较小时有很大的相关性 ,而在波峰高度很大时无关  相似文献   

7.
Taylor-Grörtler vortices are longitudinal vortices resulting from a centrifugal instability. They are generated in the flow having a curved streamline with an increasing velocity in the direction of decreasing curvature.It is shown that the air flow above wind waves and swells also satisfies locally the condition of the centrifugal instability. Numerical calculations indicate the possibility of generation of Taylor-Görtler vortices on the trough of sea waves. For example, when a wind of about 12.2 m/s at 10-m level is blowing over sea waves of the wave length of 15 m like the swell, the critical water wave height beyond which the vortices may be generated is about 0.5 m, and the critical wave length and the height of center of the generated vortices are about 24 m and 3.7 m, respectively. Further, about the relations between the generation of vortices and wind waves, it is shown that the condition of their generation is satisfied at the trough of waves for early stages of the wave generation.In conclusion, it is expected that the Taylor-Görtler vortices change the wind profile along the sea surface, and also, play some part in the growth of wind waves, especially in the formation of their three dimensional structure.  相似文献   

8.
Based on the Hamiltonian formulation of water waves, using Hamiltonian consistent modelling methods, we derive higher order Hamiltonian equations by Taylor expansions of the potential and the vertical velocity around the still water level. The polynomial expansion in wave height is mixed with pseudo-differential operators that preserve the exact dispersion relation. The consistent approximate equations have inherited the Hamiltonian structure and give exact conservation of the approximate energy. In order to deal with breaking waves, we extend the eddy-viscosity model of Kennedy et al. (2000) to be applicable for fully dispersive equations. As breaking trigger mechanism we use a kinematic criterion based on the quotient of horizontal fluid velocity at the crest and the crest speed. The performance is illustrated by comparing simulations with experimental data for an irregular breaking wave with a peak period of 12 s above deep water and for a bathymetry induced periodic wave plunging breaker over a trapezoidal bar. The comparisons show that the higher order models perform quite well; the extension with the breaking wave mechanism improves the simulations significantly.  相似文献   

9.
波浪破碎过程产生的湍流动量和能量垂向输运对于加快海洋上混合层中垂向混合具有显著效果。采用二维实验室水槽中对波浪破碎过程进行模拟。对采集的波浪振幅时间序列采用希尔伯特变换定位破碎波位置,波浪的破碎率随有效波高的增加而增大,波浪谱分析得到的波浪基本周期与有效周期结果相似。实验中采用粒子图像测速技术(particle image velocimetry, PIV)计算波浪破碎过程中湍动能耗散率的空间分布。湍流强度与波浪的相位密切相关,波峰位置处湍流活动最为剧烈,而且波峰位置处湍流混合区内湍动能耗散率量值的垂向分布基本保持不变,即出现"湍流饱和"现象,湍流影响深度可以达到波高的70%—90%。计算湍流扩散系数的垂向分布发现,湍流扩散在混合区上部随深度的增大以指数函数的形式增加,在混合区下部趋于稳定。作为对比,在相同位置处对声学多普勒流速测量仪(acoustic Doppler velocimeter, ADV)测量的单点流速做频谱分析,发现与该位置处PIV湍动能耗散率结果量级处于同一水平,进一步验证了实验结果的准确性。  相似文献   

10.
The results of direct numerical simulations of the boundary layer generated at the bottom of a solitary wave are described. The numerical results, which agree with the laboratory measurements of Sumer et al. (2010) show that the flow regime in the boundary layer can be laminar, laminar with coherent vortices and turbulent. The average velocity and bottom shear stress are computed and the results obtained show that the logarithmic law can approximate the velocity profile only in a restricted range of the parameters and at particular phases of the wave cycle. Moreover, the maximum value of the bottom shear stress is found to depend on the dimensionless wave height only, while the minimum (negative) value depends also on the dimensionless boundary layer thickness. Diagrams and simple formulae are proposed to evaluate the minimum and maximum bottom shear stresses and their phase shift with respect to the wave crest.  相似文献   

11.
Experimental investigation is made on the boundary layers of the transformation zone (i.e. the region between the last symmetrical wave profile depth and the breaking point) of plunging breakers propagating on a smooth beach with 1/12 uniform slope. Using a laser anemometer, the particle velocities are measured at four verticals along the transformation zone for three different steepnesses of waves within the plunging breaker range. The boundary layer flow in the transformation zone is found mostly of turbulent character and vertical distribution of particle velocities does not seem to conform to the classical law of the wall distribution given for steady-flow boundary layers. The results show that free-stream particle velocities, in the boundary layer of the breaker under the crest phase, increase considerably as the wave progresses towards the breaking point. The boundary layer thickness, defined as the velocity-affected region, remains constant throughout the transformation zone but it decreases with increasing deep-water wave steepness for the particular beach slope tested.  相似文献   

12.
By using a new concept of the discrete amplitude, we examine the statistical properties of narrow-banded random waves. The main results are as follows: (1) the wave height distribution follows the Rayleigh distribution in the case of an infinitely narrow-banded spectrum in the strict sense; (2) the discrete amplitudes, different from the crest heights, are distributed according to the Rayleigh distribution for arbitrary bandwidth spectra; (3) the statistical distribution of the gap length between the discrete amplitude and the crest is examined and derived theoretically. The derived distribution agrees well with the result of numerical simulations; (4) taking into account the gap length distribution, the probability density function of crest heights is derived, which deviates from the Rayleigh distribution.  相似文献   

13.
斜坡堤典型胸墙波浪力的影响因素   总被引:2,自引:1,他引:1  
李雪艳  付聪  范庆来  王岗 《海洋科学》2015,39(12):118-129
为探求斜坡堤典型胸墙迎浪面所受波浪力大小的影响因素,设计前仰式、深弧式、后仰式和直立式4种结构型式胸墙进行相关的物理模型试验。通过在典型胸墙迎浪面间隔布置压力测点,获取所受波浪压力,并将其进行积分求和,得到胸墙所受波浪力,进而讨论相对波高、相对波长、斜坡坡度和胸墙结构型式对波浪力的影响。结果表明,相对波高与相对波长对胸墙所受波浪力影响显著;波浪力随着相对波高的增大而增大,随着相对波长的增大呈现先增大、后减小、再增大的变化趋势;波浪力随着斜坡坡度的增大而减小。斜坡堤弧形胸墙所受波浪力明显大于直立式胸墙所受波浪力;在斜坡堤弧形胸墙中,前仰式胸墙受力较其余两种型式胸墙受力小。研究结果将加深波浪对斜坡堤胸墙作用力的理解,为后续工程设计提供理论指导。  相似文献   

14.
Numerical simulations using a full-nonlinear BIM (Boundary Integral Method) potential-theory wave model are carried out to study the internal velocity and acceleration fields of an solitary wave overturning on a reef with vertical face (submerged breakwater) and their relation to breaker type. The simulations make it clear that the jet size normalized by the incident wave height is uniquely governed by the crown height of the reef, while the jet shape is similar and independent of the size. Further, they reveal that the overall internal kinematics of overturning waves is clearly related to the jet size. As the jet size increases and the breaker type changes from spilling to plunging, the kinematics thus become increasingly different from those of steady waves. Water particles with the greatest velocities or accelerations within the wave converge towards the jet. After the breaking, both of the velocities and accelerations almost simultaneously reach extreme values near locations beneath the jet. Some of the extreme values are closely related to the breaker type and can be uniquely determined by substituting the breaker type index into the regression equations suggested here.  相似文献   

15.
The accuracy of several asymptotic series expansions for wave speed and particle velocity under the crest of a solitary wave (on a fluid at rest) up to maximum height is investigated. The very accurate numerical results of Williams (1985) are the measure for our comparisons. The results are based on a scaling of calculated properties of long periodic waves to the case of solitary waves.For wave speeds the classical Boussinesq–Rayleigh expression gives good agreement up to a relative wave height of, say, 0.3. An asymptotic fourth-order expression based on Fenton (1990) can be used up to a relative wave height of 0.7, whereas the corresponding fifth-order expression is slightly less accurate.The Eulerian particle velocity profile under the wave crest is examined using a cnoidal wave expression from Fenton (1990) in the limit of the solitary wave. For low waves a `consistent' (i.e. properly truncated) fifth-order expression and an `inconsistent' ditto both coincide with Williams' results. Beginning at medium high waves, the consistent expression surprisingly exhibits oscillations in the velocity profile, and the oscillations become stronger as the wave gets higher. The inconsistent expression, however, yields the same shape as Williams' profile, but is displaced parallel to this, resulting in slightly larger velocities. For high waves also the inconsistent expression begins to differ in shape from Williams' profile, and asymptotic theory fails. Only for low waves `lowest order theory' gives acceptable results. We show analytically that for the highest wave the particle velocity profile has a horizontal tangent at the water surface; this is corroborated by Williams' numerical results.We also study the particle velocity at the wave crest as a function of wave height. It is shown that the variation has a vertical tangent for the highest wave. Two fifth-order asymptotic series for this velocity, based on the wave speed through the Bernoulli equation, show very good agreement with Williams up to a relative wave height of about 0.6.It is finally shown that it is possible to produce very accurate rational-function approximations to Williams' results for the wave speed as well as for the particle velocity at the wave crest.  相似文献   

16.
为探求斜坡堤典型胸墙迎浪面所受波浪力大小的影响因素,设计前仰式、深弧式、后仰式和直立式四种结构型式胸墙进行相关的物理模型试验。通过在典型胸墙迎浪面间隔布置压力测点获取所受波浪压力,并将其进行积分求和得到胸墙所受波浪力,进而讨论相对波高(H/d)、相对波长(L/d)、斜坡坡度和胸墙结构型式对波浪力的影响。试验结果表明:相对波高与相对波长对胸墙所受波浪力影响显著。波浪力随着相对波高的增大而增大,随着相对波长的增大呈现先增大—后减小—再增大的变化趋势。波浪力随着斜坡坡度的增大而减小。斜坡堤弧形胸墙所受波浪力明显大于直立式胸墙所受波浪力;在斜坡堤弧形胸墙中,前仰式胸墙受力较其余两种型式胸墙受力小。研究结果将加深波浪对斜坡堤胸墙作用力的理解,为后续工程设计提供理论指导。  相似文献   

17.
—An experimental study of regular wave and irregular wave breaking is performed on a gentleslope of 1:200.In the experiment,asymmetry of wave profile is analyzed to determine its effect on wavebreaker indices and to explain the difference between Goda and Nelson about the breaker indices of regu-lar waves on very mild slopes.The study shows that the breaker index of irregular waves is under less influ-ence of bottom slope i,relative water depth d/L_0 and the asymmetry of wave profile than that of regularwaves.The breaker index of regular waves from Goda may be used in the case of irregular waves, whilethe coefficient A should be 0.15.The ratio of irregular wavelength to the length calculated by linear wavetheory is 0.74.Analysis is also made on the waveheight damping coefficient of regular waves after break-ing and on the breaking probability of large irregular waves.  相似文献   

18.
《Coastal Engineering》1999,36(2):147-163
Observations of waves as a time series from a fixed or moored sensor are shown to underestimate the extreme waves occurring in the vicinity. The underestimate arises because of the difference in phase and envelope propagation of surface water waves so that the highest crest, for example, is recorded only when the crest coincides with the envelope maximum at the location of the wave recorder. In addition, the dispersive nature of water waves can lead to the coalescence of groups of waves as longer waves catch up to shorter slower waves, so that the group shape changes markedly as the waves propagate. Moored accelerometer buoys introduce another error that exacerbates the underestimate of the highest crest—the quasi-Lagrangian motion of the buoy leads to flattening of the crests and sharpening of the troughs so that apparent mean water level is raised and thus the height of crests above it is reduced. An analysis approach to correct these underestimates is outlined and tested with observed data against the predictions of extreme values based on narrow-banded random wave theory.  相似文献   

19.
The experimental results have so far shown that when a wave breaks on a vertical wall with an almost vertical front face at the instant of impact that is called perfect breaking or perfect impact, the greatest impact forces are produced on the wall. Therefore, the configuration of breaking waves is important in the design considerations of coastal structures. The present study is concerned with determining the geometrical properties of oscillatory waves that break perfectly on the vertical wall of composite-type breakwaters. The laboratory tests for perfect breaking waves on composite breakwaters are conducted with base slopes of 1/2, 1/4 and 1/6, and with berm widths of 0.00, 0.10, 0.20, 0.30 and 0.40 m. The shape and the dimensions of waves at the instant of perfect breaking on the wall are determined using a video camera. The experimental results for the geometrical properties of the breakers are presented non-dimensionally. Within the range of present experimental conditions, it is found that the dimensionless breaker crest height, hb/dw, and dimensionless breaker height, Hb/dw, decrease; and, dimensionless breaker depth, dw/H0, increases with increasing relative berm width, B/D. The breaker height index, Hb/H0, is almost unaffected by B/D. The deep-water wave steepness and the base slope of the breakwater do not seem to influence the geometrical properties of the breakers at wall systematically.  相似文献   

20.
珊瑚礁破碎带附近波浪演化和波生流实验研究   总被引:2,自引:0,他引:2  
为了研究珊瑚岸礁破碎带附近波浪演化和波生流特性,通过水槽实验对规则波浪作用下珊瑚岸礁上沿礁分布的水位和流速进行了详细的测量。在典型卷破波条件下,测试了礁冠存在与不存在的两种情况。实验结果表明,多重波浪反射作用引起岸礁上形成不完全驻波,而破碎带附近的浅化作用则产生高次谐波,波浪破碎所耗散的波能主要来源于主频波,礁坪上透射波成分中二次谐波与主频波的能量相当;礁冠的存在引起破碎带宽度减小、礁坪上增水变大以及礁坪上各次谐波变小;礁冠不存在时,岸礁上波生流的沿礁分布与平直海岸相似,而礁冠的存在一定程度上阻碍了礁坪上水体向外海的回流。研究成果将丰富和发展珊瑚礁水动力学理论,并为岛礁工程的建设和维护提供一定的理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号