首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this study is the simulation of flow dynamics in the deep parts of the Caspian Sea, in which the southern and middle deep regions are surrounded by considerable areas of shallow zones. To simulate spatio-temporal wind induced hydrodynamics in deep waters, a conjunctive numerical model consisting of a 2D depth average model and a 3D pseudo compressible model is proposed. The 2D model is applied to determine time dependent free surface oscillations as well as the surface velocity patterns and is conjunct to the 3D flow solver for computing three-dimensional velocity and pressure fields which coverage to steady state for the top boundary condition. The modified 2D and 3D sets of equations are conjunct considering interface shear stresses. Both sets of 2D and 3D equations are solved on unstructured triangular and tetrahedral meshes using the Galerkin Finite Volume Method. The conjunctive model is utilized to investigate the deep currents affected by wind, Coriolis forces and the river inflow conditions of the Caspian Sea. In this study, the simulation of flow field due to major winds as well as transient winds in the Caspian Sea during a period of 6 hours in the winter season has been conducted and the numerical results for water surface level are then compared to the 2D numerical results.  相似文献   

2.
In a large test reservoir at the Institute of Applied Physics, Russian Academy of Sciences, a series of experiments were performed to investigate the surface manifestations of internal waves radiated by a subsurface buoyant jet. The field of currents on the water surface of the reservoir was studied through the distribution of temperature with shallow thermocline. Using Particle Tracking Velocimetry (PTV), the velocity field of surface currents was measured. A theoretical model was developed to calculate the rates of disturbances on the surface. A comparison with experimental data indicated that the calculated data of the surface rate value are overestimated. This discrepancy was explained by the presence of a film of surface-active substances (SASs) with experimentally obtained parameters. Using scale modeling coefficients, we estimated the parameters of internal waves radiated by the subsurface wastewater system and the values of their surface manifestations in field conditions. We estimated the hydrodynamic contrasts in the field of surface waves, which can be caused by these inhomogeneous currents on the surface. For a wind velocity of 5 m/s, the magnitude of the contrast in the field of short waves can reach up to 10–25%, which is detected with confidence by remote-sensing methods.  相似文献   

3.
安达曼海是内孤立波生成最多的海域之一,目前对其研究大多基于卫星遥感,缺乏基于现场观测资料的相关研究。本文通过2016年至2017年布放在安达曼海中部的锚系潜标对该海域内孤立波的方向和强度进行研究,结果表明在研究区域内孤立波主要向东北方向传播,最大振幅可达100 m。应用彻体力理论预测了研究海域内孤立波波源的分布,与遥感统计结果基本一致,并且波源位置更精确,可直观地给出不同波源激发内孤立波的能力。本文分别用浅水方程、深水方程和有限深方程对安达曼海中部内孤立波相速度进行模拟,结合卫星遥感分析发现该海域内孤立波的产生符合Lee波机制,在三种方程中有限深方程的模拟效果与潜标观测最相符。  相似文献   

4.
基于多源遥感数据的日本海内波特征研究   总被引:2,自引:1,他引:1  
日本海特殊的地理位置和复杂的地形使得该海域内波表征极为复杂,遥感是大范围观测内波的有效手段,已被广泛应用于内波的探测研究。本文利用MODIS、GF-1和ENVISAT ASAR遥感影像,开展了日本海内波特征研究。通过提取内波波峰线,生成了日本海内波空间分布图;获取了内波的波峰线长度和传播速度,并基于非线性薛定谔方程反演了内波振幅。研究结果表明,日本海内波分布范围宽广,不仅大陆架沿海区内波分布密集,深海盆地也探测到了大量内波;日本海北部45°N附近海域有少量内波出现,利用高分影像探测到朝鲜陆架浅海区有大量小尺度内波,大和海盆、大和隆起的西南部海域没有发现内波。日本海内波波峰线长达100多千米,深海区的传播速度大于1 m/s;浅海区内波振幅约10 m左右,深海区可达60 m以上。  相似文献   

5.
《Oceanologica Acta》2002,25(2):87-99
During previous field experiments in the North Sea it was often assumed that the water column in such shallow coastal tidal waters is vertically well mixed and stratification was neglected when discussing the Normalized Radar Cross Section modulation caused by the sea floor. In this paper the influence of quasi resonant internal waves with the sea bed on the radar imaging mechanism of submarine sand waves itself is investigated. In situ data of the tidal current velocity and several water quality parameters such as sea surface temperature, fluorescence, and beam transmittance were measured in the Southern Bight of the North Sea in April 1991. Simulations of the total NRCS modulation caused by sand waves and internal waves as a function of the current gradient or strain rate induced by the internal wave current field at the sea surface have been carried out using the quasi-steady approximation and linear internal wave theory. As a first approximation the strain rate depending on stratification was calculated using the two-layer model. These simulations demonstrate that at least a density difference between the two layers of the order of Δρ ≈ 1 kg m–3 is necessary for a sinusoidal thermocline to effect the total NRCS modulation considerably. The NRCS modulation as a function of wind friction velocity has been calculated independently and is discussed with regard to the strain rate of the surface current field caused by the superimposed imaging mechanisms of sand waves and internal waves. It turned out that the existence of a surface roughness-wind stress feedback mechanism cannot be excluded.  相似文献   

6.
In a large test reservoir with artificial temperature stratification at the Institute of Applied Physics, Russian Academy of Sciences, a major simulation of internal wave actuation by buoyant turbulent jets generated by wastewater flows from underwater collector diffusers in conditions of temperature stratification with deep and shallow thermocline has been performed. Using a modification of the particle tracing velocimetry (PTV) method in the stratification mode with shallow thermocline, the velocities of currents generated by internal waves at the surface of the water area are measured. A theoretical model is developed describing the fields of internal waves in the presence of jet stream. Dispersion relations and structures of lower (first and second) modes of internal waves in the stratified basin for different rates of liquid outflow from the collector model are obtained. The experimentally measured field of isothermal shifts with respect to the system of characteristic modes of internal waves is decomposed. A mixed regime of internal wave actuation with the simultaneous existence of the first and second modes is observed. The characteristics of perturbations in the liquid column and on its surface are compared. This analysis allows us to prove that the velocity fields on the surface are indeed surface manifestations of internal waves.  相似文献   

7.
本文主要是利用含有散射项和微扰项的变系数Korteweg-de Vries方程的双孤子解对海洋内孤立波的非线性相互作用进行研究.在南海东沙群岛海域,着重分析该弹性碰撞在合成孔径雷达图像上的信号特征,同时研究耗散项和微扰项对海洋内孤立波的弹性碰撞引起的表层流速的影响.  相似文献   

8.
Preliminary studies of Caspian Sea have shown the possibility of gas hydrate accumulations, because of suitable physicochemical conditions, existence of clayey deposits, and high concentrations of organic matter. Studies have indicated that gas hydrates are mainly composed of methane. Therefore, based on physicochemical equations for methane hydrate stability in different pressure, temperature, and salinity, this study was designed to calculate the potential of gas hydrate formation in the Caspian Sea basin. For this, data of more than 600 locations were analyzed and in each location, upper and lower limits of methane hydrate formation zone were calculated. Then, the zoning maps of upper and lower limits were prepared which can be useful for exploring the gas hydrate as an energy source or predicting gas hydrate hazards. According to the calculations and maps, methane hydrate formation in Caspian Sea, theoretically, can take place from near the seabed to 4000 and 2500 m beneath the sea surface when low and high geothermal gradient are supposed, respectively. By comparing the results with gas hydrate zones revealed in geophysical profiles, it has been shown that, in Caspian Sea, gas hydrates probably accumulate near the lower limit when a high geothermal gradient is assumed.  相似文献   

9.
This paper describes investigations of the internal waves in the Andaman Sea using Moderate Resolution Imaging Spectroradiometer(MODIS) imagery over the period of June 2010 to May 2016. Results of the spatial and temporal distribution, generation sources and propagation characteristics of internal waves are presented. The statistical analysis shows that internal waves can be observed in almost the entire area of the Andaman Sea. Most internal waves are observed in the northern, central and southern regions of the Andaman Sea. A significant number of internal waves between 7°N and 9°N in the East Indian Ocean are also observed. Internal waves can be observed year-round in the Andaman Sea, while most of internal waves are observed between February and April, with a maximum frequency of 15.03% in March. The seasonal distribution of the internal waves shows that the internal waves have mostly been observed in the dry season(February to April), and fewer internal waves are observed in the rainy season(May to October). The double peak distribution for the occurrence frequency of internal waves is found. With respect to the lunar influence, more internal waves are observed after the spring tide, which implies the spring tide may play an important role in internal wave generation in the Andaman Sea. Generation sources of internal waves are explored based on the propagation characteristics of internal waves. The results indicate that six sources are located between the Andaman Islands and the Nicobar Islands, and one is located in the northern Andaman Sea. Four regions with active internal wave phenomenon in the Andaman Sea were presented during the MODIS survey, and the propagation speed of internal waves calculated based on the semidiurnal generation period is smaller than the results acquired from pairs of the images with short time intervals.  相似文献   

10.
基于弱二维的KP方程,并结合南中国海东沙群岛附近内孤立波的观测资料,模拟了内孤立波的波-波相互倌用0数值结果较好的反应了内孤立波的二维特征,同时体现两个内孤立波波-波相互作用的非线性特征,即两波相交处相速随振幅的增大而变大。相比于一维的KdV方程,KP在内孤立波的仿真反演方面具有更大的优势。  相似文献   

11.
安达曼海是内波频繁发生的海区之一,对其内波的研究是当今海洋研究的热点。本文利用2013—2016年间覆盖整个安达曼海的3 000多幅Terra/Aqua MODIS、GF-1、Landsat-8、Sentinel-1 等卫星遥感图像,从中提取和解译了内波波列线和波向信息,得到安达曼海海洋内波的时间分布特征,并绘制了内波空间分布图。结果表明,安达曼海及其邻近海域内波主要出现在4个区域:苏门答腊岛以北海域、安达曼海中部海域、安达曼海北部海域以及尼科巴群岛以西海域,尺度较大的内波主要分布在苏门答腊岛以北海域和安达曼海中部海域。在时间分布上,2013—2016年间安达曼海内波的年发生次数相近;在热季、雨季及冬季遥感都能观测到内波的发生;2-4月遥感观测到的内波最多,其次为8、9月,7月遥感观测到的内波较少,这可能是由于雨季光学影像受云影响,安达曼海海域晴空影像过少造成,还需要借助更多的遥感影像进一步证明。在波向上,安达曼海多数内波向岸传播,在苏门答腊岛北部、安达曼海中部海域,内波向东或向东南传播;在安达曼群岛东部,内波向东传播,传播一定距离后与海底地形交互作用,一部分继续向前传播,一部分产生反射,向西南方向传播至安达曼群岛;在尼科巴群岛以西海域,内波由尼科巴群岛向孟加拉湾传播。  相似文献   

12.
基于光学遥感的安达曼海内孤立波传播速度特性研究   总被引:2,自引:1,他引:1  
安达曼海内孤立波非常活跃且错综复杂,传播速度是内孤立波的重要特征参量,本文采用光学遥感手段建立了内孤立波传播速度的计算方法。收集并处理大量Terra/Aqua-MODIS遥感图像,利用两景图像追踪同一内孤立波与同一激发源产生的内孤立波波群两种方法定量研究安达曼海内孤立波传播速度。研究结果表明:安达曼海内孤立波传播速度在0.5~2.7 m/s之间,内孤立波传播方向主要受海底地形的影响,传播速度大小在传播过程中随水深变浅而呈减小的趋势,在深水区传播速度大小还呈现出季节性差异。  相似文献   

13.
The features of the distribution of some rare and trace elements in modern bottom sediments of the Caspian Sea have been studied from samples collected during cruises 35, 39, and 41 of the R/V Rift and the cruise of the R/V Nikifor Shurekov in 2013. It was established that bottom sediments in different areas of the Caspian Sea vary to some degree in the contents of Zr, Hf, Th, V, Cr, Co, Ni, Cu, Sr, and Ba in comparison to suspended matter discharged by the Volga River and rivers originating in the Caucasus. As follows from the results of a comparison of the geochemical features of modern bottom sediments of the Volga River delta and different sedimentary subsystems of the Caspian Sea with the chemical composition of Middle Archean granitoids and Paleozoic and Mesozoic–Cenozoic basalts, which are regarded as geochemical images of such provenance areas as the basement of East European Platform, Urals, and Caucasus, none of these regions is considered the dominant provenance area for all sedimentary subsystems of the Caspian Sea region. Here, the revealed similarity between modern bottom sediments of the northern, central and southern Caspian Sea regions, the Volga River delta, and Post-Archean average Australian shale (PAAS) in some parameters, including REE spectra, assumes that the Volga River discharge plays a dominant role in the formation of the geochemical image of Caspian Sea subsystems. The role of clastics, including the fine-grained fraction, which is supplied to the Caspian Sea from the Caucasus region and Elburz Mountains, is insignificant already in the coastal area, which is determined both by influence of the marginal filter (MF) and large-scale cholestatic current circulation.  相似文献   

14.
为研究内孤立波与沙波的相互作用,本文对基于OpenFOAM的SedWaveFoam求解器进行改进,建立了内孤立波-泥沙运动欧拉两相流模型。在利用试验资料对模型进行验证的基础上,在南海北部典型代表性条件下,模拟分析了500 m水深位置沙波床面上内孤立波作用下的水动力变化和泥沙运动。结果表明,内孤立波逐渐离开沙波时,海底沙波背流面处出现与内孤立波背景流速反向的流速,在内孤立波导致的流场作用下,沙波床面上的泥沙悬起并运动到床面以上的水体中。振幅100 m的内孤立波可以导致床面以上14 m高的位置处出现约0.07 kg/m3的悬沙浓度。  相似文献   

15.
For settlement of the well-known problem of contemporary radar imaging models, i. e. , the problem of a general underestimation of radar signatures of hydrodynamic features over oceanic internal waves and underwater bottom topography in tidal waters at high radar frequency bands ( X-band and C-band), the impact of the ocean surface mixed layer turbulence and the significance of strat- ified oceanic model on SAR remote sensing of internal solitary waves are proposed. In the north of the South China Sea by utilizing some observed data of background field the nonlinearity coefficient, the dispersion coefficient, the horizontal variability coefficient and the phase speed in the generalized K-dV equation are determined approximately. Through simulations of internal tide transfor- mation the temporal evolution and spatial distribution of the vertical displacement and horizontal velocity of internal wave field are obtained. The simulation results indicate that the maximum amplitudes of internal solitary waves occur at depth 35 m, but the maximum current speeds take place at depth 20 m in this area of the sea (about 20°30'N, 114°E) in August. It was noticed that considering the effects of flood current and ebb current respectively is appropriate to investigate influence of the background shear flow on coefficients of the K-dV equation. The obtained results provide the possibility for the simulation of SAR signatures of internal solitary waves under considering the impact of ocean surface mixed layer turbulence in the companion paper.  相似文献   

16.
For settlement of the well-known problem of contemporary radar imaging models,i.e.,the pmblem of a general underestimation of radar signatures of hydrodynamic features over oceanic internal waves and underwater bottom topography in tidal watels at at high radar frequency bands(X-band and C-band),the impact of the ocean surface mixed layer turbulence and the significance of strat-ified oceanic model on SAR remote sensing of internal solitary waves are proposed.In the north of the South China Sea by utilizing seme observed data of background field the nonlinearity coefficient,the dispersion coefficient,the horizontal variability coefficient and the phase speed in the generalized K-dV equation are determined approximately.Through simulations of internal tide transfor-mation the temporal evolution and spatial distribution of the vertical displacement and horizontal velocity of intereal wave field are obtained.The simulation results indicate that the maximum amplitudes of internal solitary waves occur at depth 35 m,but the maximum current speeds take place at depth 20 m in this area of the sea(about 20°30'N,114°E)in August.It was noticed that considering the effects of flood current and ebb current respectively is appropriate to investigate influence of the background shear flow on coefficients of the K-dV equation.The obtained results provide the possibility for the simulation of SAR signatures of inter-nal solitary waves under considering the impact of ocean surface mixed layer turbulence in the companion paper.  相似文献   

17.
Markovian hypsotomography is a new way to build a model of the internal structure of rock masses based on the processing of the earth’s surface topography data. The article demonstrates the opportunities for calculating the 3D velocity models and certain cross sections based on the example of the Caspian region.  相似文献   

18.
Long-term hourly data from 12 tide gauge stations were used to examine the character of tidal oscillations in the Caspian Sea. Diurnal and semidiurnal tidal peaks are well-defined in sea level spectra in the Middle and South Caspian basins. High-resolution spectral analysis revealed that the diurnal sea level oscillations in the Middle Caspian Basin have a gravitational origin, while those in the South Caspian Basin are mainly caused by radiational effects: the amplitude of diurnal radiational harmonic S1 is much higher than those of gravitational harmonics О1, P1, and K1. In the North Caspian Basin, there are no gravitational tides and only weak radiational tides are observed. A semidiurnal type of tide is predominant in the Middle and South Caspian basins. Harmonic analysis of the tides for individual annual series with subsequent vector averaging over the entire observational period was applied to estimate the mean amplitudes and phases of major tidal constituents. The amplitude of the M2 harmonic reaches 5.4 cm in the South Caspian Basin (at Aladga). A maximum tidal range of 21 cm was found at the Aladga station in the southeastern part of the Caspian Sea, whereas the tidal range in the western part of the South Caspian Basin varies from 5 to 10 cm.  相似文献   

19.
张昊  孟俊敏  孙丽娜 《海洋学报》2020,42(9):110-118
本文基于2017年634幅MODIS影像分析了安达曼海3个典型区域的内波空间分布特征,定量统计了波峰线长度、波包面积等特征参数,利用射线追踪法探讨了内波的潜在激发源并推算了内波的生成周期。研究表明,安达曼海北部海域的内波空间尺度较小,前导波波峰线的平均长度约为107 km,平均波包面积约为1 860 km2,内波的传播方向主要为东向以及西南向。安达曼海中部海域内波前导波波峰线的平均长度约为133 km,平均波包面积约为3 503 km2,超过70%的内波沿东偏北方向传播。苏门答腊岛北部海域内波前导波波峰线的平均长度约为131 km,平均波包面积约为2 997 km2,内波的传播方向主要为东向、东北向及东南向。安达曼海共有7个潜在内波激发源,内波的生成时间间隔介于11.5~13 h,具有明显的半日周期特征。  相似文献   

20.
The problem of the dynamics of surface and internal waves M 2 in the Kara Sea is solved within the QUODDY-4 3D finite-element hydrostatic model. It is shown that the conventional concept of surface-tide wave generation due to the interaction of two tidal waves (one arrives from the Barents Sea and the other is generated in the Arctic Ocean (AO) and propagates southward along the west coasts of Severnaya Zemlya) is only partially valid: the east branch of the tidal wave generated in the AO actually exists, but there is also a west branch that propagates along the St. Anna trough and another tidal wave that penetrates in the Kara Sea from the Laptev Sea through the Vilkitsky Strait. Simulated spatial distributions of the tidal velocities, amplitudes of internal tidal waves at the pycnocline depth, and some components of the budgets of barotropic and baroclinic tidal energy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号