首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Profiles of total dissolvable Cd, Cu, Mn and Ni are reported for samples collected from the southwest Pacific in 1989, from the western equatorial Pacific along 155°E at 5°S, 0° and 5°N in 1990 and 1993, and along the equator from 143°E to 152°E and in the Bismarck Sea in 1997 and 2000. Profiles of Cd along 155°E in 1990 and along the equator were essentially the same but, in 1993, Cd values at 5°N were higher by a factor of about 1.5–2 than at 5°S over the depth range 500–1500 m. Similar, but less pronounced, differences were observed for PO4 and Ni. Cd and Ni were both strongly correlated with PO4, and an even stronger correlation was found between Ni and Cd. The concentration of Ni did not fall below ≈2 nmolkg−1, even in the nitrate-depleted waters of the western equatorial Pacific, where primary production is strongly dependent on recycled nitrogen (mainly ammonia and urea). It is proposed that this residual Ni is not bioavailable and that Ni could be biolimiting, since the metabolism of urea requires the nickel-containing enzyme urease. The impact of the Sepik River on Cd, Cu and Ni concentrations was small but elevated concentrations of Mn were observed near the Sepik River and close to the coast suggesting that the rivers and sediments on the north coast of New Guinea are a significant local source of Mn to the Bismarck Sea. Simple mass balance calculations show that the elevated levels of Mn observed in the Equatorial Undercurrent cannot be due to input from the rivers of New Guinea and they were attributed to the trapping of particulate matter due to strong current shear. A strong hydrothermal source of Mn was observed in the central Bismarck Sea.  相似文献   

2.
Total dissolvable metals (Co, Ni, Cu, Cd, and Pb) in both surface waters and the water columns were acquired in the southern East/Japan Sea during a cruise around the Ulleung Basin in June 2001 to understand the spatial distributions of the metals. Concentrations in offshore surface waters were found to be Co 60 ± 12 pM, Ni 2.16 ± 0.25 nM, Cu 1.85 ± 0.55 nM, Cd 0.134 ± 0.018 nM, and Pb 155 ± 40 pM. Spatial distributions in surface waters showed that metal levels were generally enhanced at coastal sites in both Korea and Japan, where the metal distributions indicated complex patterns due to inputs, biogeochemical processes, and physical factors including upwelling. The Co distributions in the water columns seemed to be influenced predominantly by surface and bottom inputs, scavenged rather than regenerated at depth. For Cd, there was generally good agreement between the Cd and PO4 depth distributions, in agreement with the literature. The Cd/PO4 ratio from the water columns was found to be 0.133–0.203, lower than that in other marginal seas (e.g. the East/South China Seas and the Philippine Sea) of the western Pacific Ocean; this might be a result of the fast ventilation rate in this sea. The vertical Pb profile showed typical scavenged-type behavior with a surface maximum and deep minimum. From a comparison of inputs from the atmosphere and the Tsushima Warm Current, atmospheric deposition is substantial enough that it cannot be ignored, and its role in metal cycling is more significant in the offshore zone.  相似文献   

3.
In order to investigate effects of benthic flux on the short-term variations in the distribution of nutrients in coastal waters, the concentrations of nutrients (PO4 3-, NH4 + NO3 -, NO2 - and H4SiO4) and other oceanographic parameters were measured every three hours over a 24-hour period at four fixed stations in the water column of Aburatsubo Bay, a shallow semi-enclosed inlet. Sediment cores were also taken from a fixed station once in each season over one year to quantitatively determine their benthic flux. Consistent linear negative correlations were found between their concentrations and salinity in the surface layers. This result suggests that fresh water was the main source of these nutrients and a physical mixing was the major process controlling their distribution. Monthly variations of PO4 3- and NH4 + monitored for 18 months in the bay also indicate that the high surf concentration of these nutrients was associated with the appearance of low salinity waters. On the other hand, in the bottom layers, a linear correlation between the concentration of the nutrients and salinity became weak, especially for NH4 + and PO4 3-. Their concentrations were higher than the predicted value from the conservative mixing between the fresh water and seawater, indicating the possibility of another source in the bottom layers. Benthic flux is suggested as a possible source. Pore water profiles of NH4 + and PO4 3- indicate their flux towards the overlying seawater, which is quantitatively consistent with their water column distributions.  相似文献   

4.
We report dissolved iron (Fed) concentrations measured in the upper 600 m in the central region of the Gulf of California (GC) under spring conditions. Our results showed the complex nature of Fe cycling within the GC. In the northern region of the study area, surface waters were relatively enriched, with Fed concentrations >5.0 nM, which can be partially explained by an atmospheric source. These concentrations are 12 times higher than those found in the adjacent Pacific Ocean. In contrast, Fed depth profiles in the southern region did not show any Fed surface enrichment (concentrations <1.5 nM) because of particle scavenging and higher stratification of the water-column. The most southern station in our area of study was the most stratified and showed an excess Fed and PO4 with respect to NO3, conditions favorable for nitrogen fixation. This station also showed the least negative surface value of N* of all stations. However, despite the adequate levels of Fed and PO4 at that location, the surface temperature (22.6 °C) was probably not high enough for diazotrophs to develop. A slight increase in Fed levels in intermediate waters at the southern region was associated with the oxygen minimum zone. Finally, our results suggest that remineralization of organic matter is probably the major source of Fed in subsurface waters of the GC.  相似文献   

5.
The relationship between Cd and PO4 in the Kuroshio and Oyashio regions and the Okhotsk Sea was examined. The resultant equations are as follows: Cd (ng l–1)=37.0 PO4 (M)+2.6; Cd(ng l–1)=32.1 PO4 (M)+1.2 and Cd (ng l–1)=34.1 PO4 (M)+7.9, respectively. These results are in good agreement with previously reported studies, and indicate that during removal from surface waters to deeper waters by biological assimilation and regeneration in deeper waters Cd and PO4 maintain the same ratio in the open ocean. The relationship between Cd and PO4 in coastal waters, however, differed from that in the open ocean.  相似文献   

6.
Freshwater concentrations confirm the pristine character of the Lena River environment as already pointed-out in a previous study with a limited set of data (Martin et al., 1993). Total dissolved concentrations of the freshwater are 13.8 ± 1.6 nM, Cu, 4.4 ± 0.1 nM, Ni, 0.054 ± 0.047 nM, Cd, 642 ± 208 nM, Fe, 0.2–0.3 nM Pb and 1.2 ± 1.0 nM, Zn. For Zn and Pb, a simple mixing of the Lena River waters with the Arctic waters is observed. Relationships with salinity suggest that for Cu, Ni and Cd, there is a mobilization of the dissolved fraction from the suspended matter, with an increase of the dissolved concentration of 1.5, 3 and 6 times, respectively. For Fe, the total dissolved concentrations follow an exponential decrease in the mixing zone and 80% of the total “dissolved” Fe is removed from the solution. For Cu, Ni, Cd and Fe, the riverine end-members are 20 nM, 12 nM, 0.3 nM and 47 nM, respectively. When considering the input of total dissolved metals to the Arctic Ocean, the fraction attributed to the freshwaters from the Arctic rivers appears to be small (4% of the input of dissolved metal to the Arctic Ocean for Cd, 27% for Cu, 11 % for Ni and 2% for Zn). Metal concentrations in the Laptev Sea and Arctic Ocean are very similar, indicating a generally homogeneous distribution in the areas sampled.  相似文献   

7.
The concentration level of cadmium (Cd) and the regeneration related to phosphate (PO4) were examined at two stations (CM10, CM12) in the eastern Japan Basin in July 1998. The observed Cd concentrations were around 0.2–0.3 nM and 0.5–0.6 nM in the surface and deep layers (Japan Sea Proper Water; JSPW), respectively; the concentration of Cd in the JSPW was much lower than that in the Pacific deep water, which is attributed to its specific formation system (which driven by the winter convection of the surface layer within the Japan Sea, thereafter descending to the deep layer) connected with the relatively active vertical mixing in the Japan Sea. A plot of Cd against PO4 showed good linearity with positive y-intercept values, suggesting that the excess Cd was apparently not available in the biogeochemical cycle. The molecular ratios of consumed O2 to regenerated Cd and PO4 in the JSPW were 688,000, 140 and 881,000, 146 for CM10 and CM12, respectively, and a lower preformed Cd concentration (around 0.37 nM) was also estimated in the JSPW, different from that of the North Pacific deep water (613,000 for Cd, 170 for PO4, and 0.64 nM of preformed Cd).  相似文献   

8.
Cadmium is a biologically important trace metal that co-varies with phosphate (PO43− or Dissolved Inorganic Phosphate, DIP) in seawater. However, the exact nature of Cd uptake mechanisms and the relationship with phosphate and other nutrients in global oceans remain elusive. Here, we present a time series study of Cd and PO43− from coastal Antarctic seawater, showing that Cd co-varies with macronutrients during times of high biological activity even under nutrient and trace metal replete conditions. Our data imply that Cd/PO43− in coastal surface Antarctic seawater is higher than open ocean areas. Furthermore, the sinking of some proportion of this high Cd/PO43− water into Antarctic Bottom Water, followed by mixing into Circumpolar Deep Water, impacts Southern Ocean preformed nutrient and trace metal composition. A simple model of endmember water mass mixing with a particle fractionation of Cd/P (αCd–P) determined by the local environment can be used to account for the Cd/PO43− relationship in different parts of the ocean. The high Cd/PO43− of the coastal water is a consequence of two factors: the high input from terrestrial and continental shelf sediments and changes in biological fractionation with respect to P during uptake of Cd in regions of high Fe and Zn. This implies that the Cd/PO43− ratio of the Southern Ocean will vary on glacial–interglacial timescales as the proportion of deep water originating on the continental shelves of the Weddell Sea is reduced during glaciations because the ice shelf is pinned at the edge of the continental shelf. There could also be variations in biological fractionation of Cd/P in the surface waters of the Southern Ocean on these timescales as a result of changes in atmospheric inputs of trace metals. Further variations in the relationship between Cd and PO43− in seawater arise from changes in population structure and community requirements for macro- and micronutrients.  相似文献   

9.
《Marine Chemistry》2002,79(1):27-36
Preformed Cd and PO4 were investigated in the northwestern Pacific (Station CM05) and the Okhotsk Sea (Station CM06), and the relationship between the two elements was examined. At CM05, from the apparent oxygen utilization (AOU)–Cd and PO4 plot, the different molecular ratios of consumed O2 to regenerated Cd and PO4 were calculated to be 254,000 (Cd) and 96 (PO4) for the shallow layer (30–99 m) and 613,000 (Cd) and 170 (PO4) for the deep layer (below the oxygen minimum layer), which suggested the preferential remineralization of Cd and PO4 in the shallow layer. At CM06, regeneration ratios of O2/Cd, PO4 were obtained only in the shallow layer (29–124 m) as 227,000 (Cd) and 75 (PO4). The calculated preformed Cd and PO4 concentrations in the shallow layer were 0.59 nM of Cd and 1.6 μM of PO4 at CM05 and 0.35 nM of Cd and 0.95 μM of PO4 at CM06. These concentrations were much higher than those (close to 0) in the low-latitude area, which was attributable to the supply of these constituents from deep water by the strong winter convection. In the deep layer, at CM05, preformed concentrations were 0.64 nM of Cd and 1.4 μM of PO4. Preformed PO4 generally agreed with previously reported values in the Pacific, which suggested that the concentrations of the initial PO4 in the deep water were preserved as preformed through the movement to the northwestern Pacific. On the other hand, obtained preformed Cd in the northwestern Pacific deep water showed a somewhat higher value than that in the southwest Pacific. The possibility of the terrestrial input and remineralization of Cd by CaCO3 dissolution during the northward movement was considered. A plot of Cd and PO4 showed a linear relationship with slopes of 0.34 and 0.40 (nM/μM) at CM05 and CM06, respectively, which generally agreed with the reported values in the North Pacific.  相似文献   

10.
《Marine Chemistry》2002,79(1):1-26
This study investigates the relative importance of processes that affect trace metal (TM) cycling in the upper water column at the shelf edge of the Celtic Sea on the western European continental margin. The examined processes include external inputs (by atmosphere and river), physical factors (upwelling, winter mixing and water mass advection) and biological processes (in situ uptake, regeneration and export to deep waters). The concentrations of dissolved Cd, Cu, Ni and Pb were measured with this aim in January 1994 and June 1995 at vertical stations across slope, including stations with upwelling, and in the surface waters along the Celtic Sea shelf. Additionally, deep sea (from sediment trap data) and atmospheric fluxes were estimated. The metal profiles over the slope off the Celtic Sea are quite similar to open ocean profiles already described in the northeast Atlantic, and the concentrations in surface waters are only slightly enriched compared to the nearby open ocean (1.2–1.3× for Cd and Ni). The external sources to the system appear to be of weak influence: the fluvial input is locally strong at the coast and then “diluted” along the large continental shelf; the atmospheric deposition is not significant at the annual scale in comparison to the metal content in the upper waters of the shelf edge (at least for Cd, Ni and Cu). In the upwelling zone, a significant increase in concentrations was observed in the summer surface mixed layer (×2 for nitrate and Cd and ×1.5 for Ni) in comparison to the non-upwelling zone. In winter, concentrations of bioreactive metals increased significantly in the surface waters in comparison to the low summer levels (×5 for nitrate and Cd). Our results suggest that upwelling and winter mixing act as regenerated sources that lead to the resupply of the bioreactive elements above the permanent thermocline with a low export to deeper waters. The tracing of the Mediterranean intermediate waters (MIW) from Gibraltar to the studied area shows indeed that its elemental content at the Celtic shelf edge is mainly due to the conservative mixing of the three “end-member” component waters which are thought to make up the MIW. The remineralization of organic matter within this water mass during its transport to the north would contribute only 20% of the nutrients and Cd concentrations recorded at the Celtic Sea shelf edge. According to the correlation found with nutrients in the 10–200-m layer, dissolved Pb would also be subjected to biological uptake and regeneration within the seasonal thermocline. Particulate scavenging removal of Pb would take place below the permanent thermocline throughout the water column.  相似文献   

11.
Dissolved and particulate trace metal concentrations (dissolved Fe, Zn, Cd, Co, Cu and Ni; particulate Fe, Mn and Al) were measured along two transects in the Ross Sea during austral summer of 1990. Total Fe concentrations in southern Ross Sea and inshore waters were elevated >3.5 times that of northern waters. Dissolved Zn, Cd and Co concentrations were lower by factors of 4.5, 3.5 and 1.6 in southern surface waters relative to northern waters. Dissolved Cu and Ni concentrations were similar in both areas. Elevated Fe concentrations coincided with areas of increased productivity, phytoplankton biomass and nutrient drawdown, indicating that Fe is an important factor controlling the location of phytoplankton blooms in the Ross Sea. Particulate concentrations of Fe, Mn and Al indicate two possible sources of iron to the Ross Sea, resuspension of continental shelf sediments and iron incorporated in annual sea ice and released with meltwaters.  相似文献   

12.
The distributions of the trace metals iron (Fe), copper (Cu) and cadmium (Cd) along with hydrological parameters (salinity, temperature and reactive phosphate) across the New Zealand continental shelf near Otago Peninsula have been studied. This is a region in which the Subtropical Convergence (STC), a major oceanic front separating subtropical and subantarctic waters, is uniquely located close to land, permitting an examination of the influence of terrestrial sources of Fe and Cu on oceanic waters containing excess micronutrients. Acid-soluble (110 nmol kg−1) and dissolved (6.3 nmol kg−1) Fe concentrations were highest over the central shelf, and decreased rapidly across the mixing zone of the STC to about 5 nmol kg−1 for both forms. The distribution of acid-soluble and dissolved Cu were similar to their counterparts for Fe. Depth-concentration profiles for acid-soluble Fe and Cu suggest resuspension of shelf sediments is the main source. The ratio of oxine-labile to acid-soluble Fe varied from 0.03 to 0.26, with the highest values found in the near surface waters. Oxine-labile Fe and Cu also decreased in concentration in a seawards direction, and with depth, indicating the influence of near surface processes on the reactivity of these elements. Cd concentrations across the continental shelf were very low (<200 pmol kg−1) and exhibited no clear spatial trend and no correlation with phosphate. Comparison of the Cd/P ratio across the shelf indicated that the waters in this region were strongly depleted in Cd relative to P. Phosphate concentrations were lowest in neritic water and increased in the seawards direction because of mixing with nutrient-rich Subantarctic Surface Water.  相似文献   

13.
《Marine Chemistry》2005,93(2-4):81-103
Surface water transects and vertical profiles for dissolved iron, macronutrients, chlorophyll a (Chl a), and hydrographic data were obtained in the Peru upwelling regime during August and September 2000. The supply of the micronutrient iron, relative to that of the macronutrients nitrate, phosphate and silicic acid, is shown to play a critical role in allowing extensive diatom blooms to develop in the Peru upwelling system. The extremely high-chlorophyll “brown waters of Peru” (with Chl a concentrations between 20 and 45 μg/l) result from massive diatom blooms with maximal photochemical efficiencies (Fv/Fm >0.6) occurring in the iron-rich upwelling region observed over the broad continental shelf off northern and central Peru. The source of the upwelled water in this region is the nutrient-rich subsurface countercurrent in contact with the organic-rich shelf sediments. This subsurface shelf water is suboxic and has extremely high concentrations of dissolved Fe (>50 nM) in the near-bottom waters. In marked contrast, relatively low-chlorophyll “blue waters” (Chl a <2 μg/l) with low concentrations of dissolved Fe (<0.1 nM) and high unutilized macronutrient concentrations are observed in the coastal upwelled waters along the southern coast of Peru and in the offshore regions of the Peru Current. Southern Peru is a region without a wide shelf to serve as a source of iron and, as a result, dissolved Fe concentrations in the near-bottom suboxic waters of this region are an order-of-magnitude lower than observed off northern and central Peru. In addition, the offshore Peru Current is a broad, Fe-limited, high-nitrate, lower than expected chlorophyll region extending hundreds of kilometers offshore into the northeast region of the South Pacific subtropical gyre and northwestward into the South Equatorial Pacific.  相似文献   

14.
In June 1981, dissolved Zn, Cd, Cu, Ni, Co, Fe, and Mn were determined from two detailed profiles in anoxic Baltic waters (with extra data for Fe and Mn from August 1979). Dramatic changes across the O2H2S interface occur in the abundances of Cu, Co, Fe, and Mn (by factors of ?100). The concentrations of Zn, Cd, and Ni at the redox front decrease by factors between 3 to 5.Equilibrium calculations are presented for varying concentrations of hydrogen sulfide and compared with the field data. The study strongly supports the assumption that the solubility of Zn, Cd, Cu, and Ni is greatly enhanced and controlled by the formation of bisulfide and(or) polysulfide complexes. Differences between predicted and measured concentrations of these elements are mainly evident at lower ΣH2S concentrations.Cobalt proved to be very mobile in anoxic regions, and the results indicate that the concentrations are limited by CoS precipitation. The iron (Fe2+) and manganese (Mn2+) distribution in sulfide-containing waters is controlled by total flux from sediment-water interfaces rather than by equilibrium concentrations of their solid phases (FeS and MnCO3). The concentrations of these metals are therefore expected to increase with prolonged stagnation periods in the basin.  相似文献   

15.
The concentrations of Cu, Ni and Cd were determined in Funka Bay during a spring phytoplankton bloom, consisting of diatoms. Just after the bloom, both dissolved Cd and nutrients were removed in the euphotic zone. However, the removal ratio of Cd to phosphate was very different from that in seawater. The removal of Cd took place at a Cd/phosphate ratio of 0.07×10−3, which was lower than in seawater before the bloom (0.25×10−3), leading to an increase in this ratio in seawater exceeding 0.7×10−3 at the end of the bloom. Elevated concentrations of Cd and phosphate were observed in the deeper layer after the bloom due to the decomposition of detrital materials produced in the bloom. The ratio of Cd/phosphate in the regeneration step was 0.24×10−3 which was different from the removal ratio of 0.07×10−3. These observations suggest that the high Cd/phosphate ratio in the regeneration would reflect a relatively high regeneration rate of Cd than that of phosphate. No significant decrease in Cu and Ni concentrations was observed during the development of the bloom, suggesting that biological removal of these metals was not so significant during the spring bloom. The concentrations of Cd, Cu and silicate in surface waters increased after the bloom with decreasing salinity due to the influence of a spring thaw.  相似文献   

16.
In September 1993 (M26) and June/July 1996 (M36), a total of 239 surface samples (7 m depth) were collected on two transects across the open Atlantic Ocean (224 samples) and northwest European shelf edge area. We present an overview of the horizontal variability of dissolved Cd, Co, Zn, and Pb in between the northwest and northeast Atlantic Ocean in relation to salinity and the nutrients. Our data show a preferential incorporation of Cd relative to P in the particulate material of the surface ocean when related to previously published parallel measurements on suspended particulate matter from the same cruise. There is a good agreement with results recently estimated from a model by Elderfield and Rickaby (Nature 405 (2000) 305), who predict for the North Atlantic Ocean a best fit for αCd/P=[Cd/P]POM/[Cd/P]SW of 2.5, whereas the approach of our transect shows a αCd/P value of 2.6. The Co concentrations of our transects varied from <5 to 131 pmol kg−1, with the lowest values in the subtropical gyre. There were pronounced elevations in the low-salinity ranges of the northwest Atlantic and towards the European shelf. The Co data are decoupled from the Mn distribution and support the hypothesis of marginal inputs as the dominant source. Zinc varied from a minimum of <0.07 nmol kg−1 to a maximum of 1.2 and 4.8 nmol kg−1 in regions influenced by Labrador shelf or European coastal waters, respectively. In subtropical and northeast Atlantic waters, the average Zn concentration was 0.16 nmol kg−1. Zinc concentrations at nearly three quarters of the stations between 40°N and 60°N were <0.1 nmol kg−1. This suggests that biological factors control Zn concentrations in large areas of the North Atlantic surface waters. The Pb data indicated that significant differences in concentration between the northwest and northeast Atlantic surface waters presently (1996) do not exist for this metal. The transects in 1993 and 1996 exhibited Pb concentrations in the northeast Atlantic surface waters of 30 to 40 pmol kg−1, about a fifth to a quarter of the concentrations observed in 1981. This decline is supported by our particle flux measurements in deep waters of the same region.  相似文献   

17.
Water column samples have been collected in the outer channel of the Ferrol Ria (NW Spain) during four occasions over a tidal cycle. The objective was to study the exchange of dissolved and particulate Cd, Cu, Pb and Zn and particulate Al, Fe and Si between the ria and the adjacent coastal waters. This study provides the first extensive dataset on dissolved and particulate metal concentrations in the water column of a Galician ria. Typical concentrations of dissolved Cd (96 ± 31 pM), Cu (8 ± 4 nM), Pb (270 ± 170 pM) and Zn (21 ± 10 nM) were similar than in other European Atlantic shelf and coastal waters. The fraction of metals in the particulate phase followed the trend: Pb > Cu Zn > Cd. The outgoing water from the ria was enriched in dissolved and particulate Cu, Pb and Zn compared with incoming waters, whereas Cd concentrations were similar for both waters. The suspended particulate matter was composed of a mixture of marine and continental material. The latter end-member was found to arise from the metal-rich ria bed sediments, which is diluted by the dominant metal-poor marine end-member. The net output flux of Cu from the channel is balanced by the freshwater inputs to the ria, and the net Zn flux gave a positive output to coastal waters. For Pb, the net flux to the coastal waters is less than that input from the rivers, as a result of its particle reactivity and deposition in sediments. On the contrary, a net input flux of dissolved Cd from coastal waters was observed, highlighting the oceanic source of this metal in the Galician rias. Results from the budget calculations are in agreement with the differential geochemical behavior of these elements in coastal waters.  相似文献   

18.
The relation between the nitrate and phosphate concentrations in the Sea of Okhotsk and the bordering waters of the Pacific Ocean were studied. The surveys were carried out in the autumn, spring, and summer of 2001–2002. For the deepwater part of the sea, the relation [NO? 3] = ((14.88 ± 0.07) × [PO3? 4] ? 5.46 ± 0.17) was found. The coefficients in the equation given are statistically different from those in the similar equation for the Pacific waters: [NO? 3] = (16.05 ± 0.15) × [PO3? 4]-(7.23 ± 0.36). In the northern part of the sea; on the shelf; in the slope area; and, especially, in the deep waters of the TINRO Depression, the linear dependence between the phosphate and nitrate concentrations was distorted. This feature was described in terms of nitrate deficiency. The maximum values of this deficiency were found in the near-bottom waters. The principal processes that might cause the nitrate deficiency were considered: the difference in the oxidation rates of the nitrogen and phosphorus organic compounds, the matter transfer between the continent and the sea, the different efficiency of the biogenic burial of nitrogen and phosphorus in the bottom sediments, and the denitrification in the upper layer of the bottom sediments. It was shown that the most probable cause of the nitrate deficiency was the denitrification. The loss of inorganic nitrogen owing to the supply of the waters of the Sea of Okhotsk to the Pacific Ocean was estimated as ~2.5 × 1011 mol N/year.  相似文献   

19.
The first vertical profiles of chlorofluoromethanes (Freons F11 and F12) measured during the austral summer 1987 (INDIGO-3 cruise) in the region of Enderby Land (30°E) and the Princess Elizabeth Trough (90°E) arc presented in relation to hydrological and geochemical characteristics. In the open ocean, transient tracer penetration reaches 1000 m. Off the West Ice Shelf and Enderby Land, a significant decrease in Freons is found below the cold Winter Water and just above the deep oxygen minimum and temperature maximum of the upper Circumpolar Deep Water (200–400 m). In the region off MacRobertson Land, where the oxygen minimum is deeper (1000 m), the Freon gradients are less abrupt. In deep open ocean waters, no Freons were detected in the core of the Circumpolar Deep Water. However, near the continental shelf, we have encountered Freon minima associated with salinity maxima, indicating significant mixing between deep and (recent) ventilated waters. Over the whole water column, a strong zonal contrast emerges in tracer distributions between stations situated to the east and to the west of MacRobertson Land (65°E), which may be associated with the Weddell Gyre extension. Freon maxima associated with oxygen maxima and temperature and salinity minima that characterize Antarctic Bottom Water (AABW) have been found over all the region studied; the tracers indicate three main bottom waters that are related to Weddell Sea, Ross Sea and local origins. At two stations located on the edge of the continental shelf, Freon measurements suggest that the AABW formation was recent, and the tracers' continuity reveals a preferential westward flow of bottom waters. Although it is clear that bottom water formation takes place around 60–70°E, the information is too sparse to specify the source regions.  相似文献   

20.
North Pacific Tropical Water (NPTW) is characterized as a subsurface salinity maximum flowing in the North Equatorial Current and is the main source of salt for the North Pacific. We briefly describe the climatological features of its formation and circulation, and then examine temporal changes in its properties associated with the climate regime shift in the 1970s. We use a variety of data, which include the repeat hydrographic sections along 130°E, 137°E, 144°E and 155°E meridians, the hydrographic data from the Hawaii Ocean Time-series, the World Ocean Atlas 1994, and available gridded data of wind stress and evaporation. The classical idea that NPTW originates from the zone of the highest sea surface salinity at 20°–30°N centered around the international date line and spreads along the isopycnal geostrophic flow patterns is confirmed. Further, it is shown that the meridional extent of NPTW along 137°E is from 10°N to 23°N on average and the highest salinity core lies at about 15°N and 24.0σθ, and that the portion of NPTW north (south) of about 15°N originates from the formation region west (east) of the date line. NPTW in the 137°E section changed remarkably associated with the mid-1970s regime shift. North of 15°N NPTW increased both in its salinity and thickness while to the south of 15°N only its salinity increased and its thickness remained unchanged. The westward geostrophic velocity is increased significantly in both the southern and northern parts of NPTW. The northern thickening and speedup and the southern speedup increased NPTW transport across 137°E. The changes in the thermohaline forcing such as evaporation and Ekman salt convergence in the NPTW formation region possibly contributed to the increases in salinity in the southern part of NPTW, but not to that of the northern part. On the other hand, the increased Ekman pumping accounts for the increase of the NPTW inventory and transport at 137°E. The increased salinity of NPTW at 137°E, especially its northern portion, was presumably caused by an increase in its formation rate rather than changes in the sea surface salinity in its formation region; the thicker the NPTW layer is, the saltier is the core that tends to survive the mixing processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号