首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tidal current is generally predominant in China's offshore areas. The vertical structure of the observedtidal current is quite complicated with the presence of seasonal thermocline. The observed tidal current may be divided into two parts, an averaged barotropic tide current and a variation tide current. A method for studying the vertical structure of tidal current is developed from the constitution and distribution of energy, and the vertical structure of the observed tide current in the North Huanghai Sea is studied on the basis of the method. The result shows that the reason why the energy of the tidal current is concentrated on the neighbourhood of the thermocline mainly lies in the internal tides i under certain conditions, the fact that the direction of the internal tide current above the thermocline is opposite to the one below the thermocline will be able to cause the rotary directions of the observed tidal current above and below the thermocline to be in opposite. The interaction between th  相似文献   

2.
Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.  相似文献   

3.
The principal characteristics of the tides are investigated by a shipborne acoustic Doppler current Profiler at a fixed station located in the Beibu Gulf from 4 to 14 April 2003. Data analysis indicates that the diurnal tidal currents dominate local current variations at the observing site. Except the barotropic M_2 constituent, four principal tides comprise both back-and-forth barotropic and baroclinic tidal currents. The baroclinic tidal ellipse parameters vary with depth, showing complicate features, rather than monotonous features being figured. For baroclinic tidal constituents, vertical modes are different to each other. Similarly, the semi-major axes of the tidal constituents vary with depth. In the lower layer, a nonlinear regression approach is used to calculate and obtain the SEMA profiles of diurnal tidal constituents. Results show that in the thin bottom boundary layer, all of the parameters vary drastically with depth, totally distinguished from the vertical profiles above.  相似文献   

4.
The wide presence of internal solitary waves (ISWs) in the northern South China Sea (SCS) has been confirmed by both Synthetic Aperture Radar (SAR) images and in situ observations. These ISWs are believed being generated over the varying topography in the Luzon Strait. They typically propagate westwards into the SCS with a diurnal or semidiurnal period. Their generation sites are, however, not yet solidly identified. To obtain a clear picture of the ISWs, we designed numerical experiments to analyze the generation and propagation of the ISWs in the Luzon Strait using a 2-dimensional non-hydrostatic model. The model current is forced by barotropic or baroclinic currents imposed at open boundaries. The experiments show that the tidal current serves as a kind of triggering force for the ISWs over the submarine ridges in the strait. Under the forcing of tidal currents, depressions are formed near the ridges. The ISWs then split from the depressions through a process different from lee-wave generation mechanism. The appearance of the ISWs is influenced by the strength and period of the forcing current:the ISWs are more likely to be generated by a stronger tidal current. That is why the ISWs in the Luzon Strait are frequently observed during spring tide. Compared with diurnal tidal current, the ISWs generated by semidiurnal tidal current with the same amplitude is much more energetic. It is partly because that the wave beams in diurnal frequency have a larger angle with the vertical direction, thus are more likely to be reflected by the topography slope. The impact of the Kuroshio to the ISWs is also analyzed by adding a vertical uniform or shear current at boundaries. A vertically uniform current may generate ISWs directly. On the other hand, a vertically shear current, which is more realistic to represent the Kuroshio branch, seems to have little influence on the generation process and radiating direction of the ISWs in the Luzon Strait.  相似文献   

5.
Besides seasonal variation, instantaneous variation of thermal layer will occur under the effects of tide, tidal current and wind disturbance. In this study the numerical simulation has been first carried out on fluctuation and undulation of thermal layer under influence of tide (simultaneous input of 8 tidal components). The study reveals the geographic distribution of thermal layer fluctuation in the entire study region and temporal and spatial variations of the undulation in tidal period superposing on the fluctuation. Especially, the wave with large amplitude simulated is consistent with observation in the channal and the sea areas with a convex coastline and complex variation of depth, internal relations of tide, tidal current, residual current as well as the factors such as geography, and the fluctuation of thermal layer is induced by residual current due to unsymmetry which occurs as a result of the tidal movement in lower layer influenced by friction and geography, meanwhile, analysis indicates  相似文献   

6.
Bedload sediment transport was estimated by the SEDTRANS96 model based on three-day hydrodynamics data obtained off the Dongfang coast in the Beibu Gulf during Typhoon Ketsana in September 2009. Bedforms on the sea floor off the Dongfang coast and internal structures of a typical dune were interpreted to evaluate storm influences on individual dunes and the dune field. Results indicated that flow forcings and related bedload transport were both strengthened significantly due to Typhoon Ketsana. The measurements and modeling results, which mainly included three different stages, presented noticeable phasic variation. The three stages were dominated by tidal current (Period Ⅰ), tidal current combined with wind-induced waves (Period Ⅱ), and swells combined with tidal current and seaward flows (Period Ⅲ). This phasic variation could be a common trait of hydrodynamics due to typhoons moving westwardly to the south of Hainan Island and Beibu Gulf in South China Sea. Results indicated that the maximum bedload transport rate for every burst in Period Ⅲ was almost 100 times larger than that in Period I and was ten times larger than that in Period II. However, the short-term increase in bedload transport induced by storms like Ketsana did not change the long-term evolution of dune morphology. Evidence was given by the internal structures of a typical dune, which revealed renewed modification under subsequent moderate conditions after storm erosion. Instead, storms may influence at different scales and regional allocation of sand dunes in some large areas because changes of the sea floor in large scales can hardly be recovered. More surveys during and after storm passage are also needed to document the level of positive contribution to forward migration.  相似文献   

7.
A simple three-dimensional tidal model is used to examine the M2 tidal current distribution in a northeastern part of the East China Sea, especially the vertical variation of the current in the region. Computed M2 current is compared with observations available and found to be in good agreement.Main features of the calculating method in this study are: (1) Vertical variation of the tidal current is taken as a funetion of the depth-mean velocity: (2) the method is applicable to a variety of the vertical eddy viscosities; (3) it has a fine vertical resolution, especially near the sea bootom. So, this method not only enables us to get a steady state solution easily but also depicts effects of the friction on the vertical variation of the current much better.  相似文献   

8.
The characteristics of currents and tidal currents in the Andaman Sea(AS) are studied during the second half of2016 using observed data from a moored acoustic Doppler current profiler(ADCP) deployed at 8.6°N, 95.6°E.During the observation period, the mean flow is 5–10 cm/s and largely southward. The root mean square and kinetic energies of the low and high frequency flows, which are divided by a cutoff period of 5 d, are at the same level, indicating their identical importance to the total current. A power spectrum analysis shows that intraseasonal oscillations, a tidal-related semilunar month signal, a semidiurnal tidal signal and periods of 3–4 d are prominent. The barocliny of an eddy kinetic energy is stronger than the mean kinetic energy, both of which are the strongest on the bottom and the weakest at 70 m depth. Residual currents are largely southward(northward) during the summer(winter) monsoon season. Two striking peaks of the southward flow cause the 80 d period of meridional currents. The first peak is part of a large-scale circulation, which enters the AS through the northern channel and exits through the southern channel, and the second peak is part of a local vortex. The 40 d oscillation of the zonal current is forced by geostrophic variations attributed to local and equatorial remote forcing. The tidal current is dominated by semidiurnal constituents, and among these, M2 and N2 are the top two largest major axes. Moreover, astronomical tidal constituents MM and MSF are also significant. Diurnal constituents are weak and shallow water tides are ignorable. The aims are to introduce the new current data observed in the AS and to provide initial insights for the tidal and residual currents in the Andaman Sea.  相似文献   

9.
Widely applied in maintaining estuarial waterway depth, the spur dike has played an important role in currents and sediment exchange between channel and shoal and sediment back-silting in the channel. Through establishing a generalized physical model at a bifurcated estuary and conducting current tests under the joint action of runoff and tide, the influence of the spur dike length on current exchange between channel and shoal is analyzed. Results show that when the spur dike length reaches a certain value, the direction of the flow velocity shear front between the channel and shoal will change. The longer the spur dike, the larger the transverse fluctuating velocity at the peak of flood in the channel shoal exchange area, while the transport of the transverse hydrodynamics is obvious in the process of flood. There is an optimum length of spur dike when the shear stress in the channel and the longitudinal velocity in flood and ebb reach the maximum, and the flow velocity will decrease when the spur dike length is smaller or larger than the optimum. For a certain length of spur dike, the larger the channel shoal elevation difference, the larger the peak longitudinal flow velocity in the middle of the navigation channel in flood and ebb. However, the transverse flow velocity will first decrease and then increase. The transverse transportation is obvious when the channel shoal elevation difference increases.  相似文献   

10.
A three-dimensional isopycnic-coordinate internal tidal model is employed to investigate the generation,propagation, vertical structure and energy conversion of M2 internal tides in the Luzon Strait(LS) with mooring observations. Simulated results, especially the tidal current amplitudes, agree well with observations,demonstrating the reasonability and accuracy of the model. Results indicate that M2 internal tides mainly propagate into three directions horizontally, i.e., eastward towards the western Pacific Ocean, westward towards the Dongsha Island and southwestward towards the South China Sea Basin. In the horizontal direction, tidal current amplitudes decrease as distance increases away from the LS; in the vertical direction, they show an obvious decreasing tendency with depth. Between the double ridges of the LS, a clockwise gyre of M2 baroclinic energy flux appears, which is caused by reflections of M2 internal tides at supercritical topographies, and resonance of M2 internal tides happens along 19.5° and 21.5°N due to the heights and separation distance of the double ridges. The total energy conversion in the LS is about 14.20 GW.  相似文献   

11.
The nonlinear dynamic response induced by the wave-current interaction on a deepwater steep wave riser(SWR) is numerically investigated based on a three-dimensional(3 D) time-domain finite element method(FEM). The governing equation considering internal flow is established in the global coordinate system. The whole SWR consists of three segments: the decline segment, buoyancy segment and hang-off segment, in which the buoyancy segment is wrapped by several buoyancy modules in the middle section, leading to the arch bend and sag bend. A Newmark-βiterative scheme is adopted for the accurate analysis to solve the governing equation and update the dynamic response at each time step. The proposed method is verified through the published results for the dynamic response of steel catenary riser(SCR) and static configuration of steel lazy wave riser(SLWR). Simulations are executed to study the influence of wave height, current velocity/direction, internal flow density/velocity and top-end pressure on the tension, configuration and bending moment of the SWR. The results indicate that the influence of the current on the configuration and mechanical behavior of the SWR is greater than that of the wave, especially in the middle section. With increasing current velocity, the suspending height of the middle section drops, meanwhile, its bending moment decreases accordingly, but the tension increases significantly. For a fixed external load, the increasing internal flow density induces the amplification of the tension at the hang-off segment and the mitigation at the decline segment, while the opposite trend occurs at the bending moment.  相似文献   

12.
黄河口附近水文特征分析   总被引:8,自引:0,他引:8  
The Huanghe River is the second largest river in our country. The average annual runoff at the estuary is 44.28 billion cubic meters, the average annual suspended load is 1.12 billion tons, of which 24% was deposited on the delta, 40% on the coast and the rest 36% is considered to be carried into the deep sea by various dynamic factors. We‘ve measured the temperature, salinity, current and suspended load in the estuary from autumn of 1983 to summer of 1984 for building a harbour in future. According to our data and other historical data from some institutes, we‘ve obtained following conclusions: 1) The distribution of temperature in winter is different with from that in summer: the contours of temperature in winter is parallel to coast line,and the contours of temperature in summer is coincident with latitudes. 2) The salinity in summer is lower than that in winter. There are three tongues of low values of salinity at the estuary in summer. They are pointed to North,North-east and South-east respectively. Only two tongues are appeared in winter-northward and south-eastward. 3) The distribution of suspended load is similar to the distribution of salinity,There are three tongues of high values of suspended load at the estuary in summer, they are pointed to North,North-east and Southeast respectively,the quantity of suspended load per litre in winter is much than in summer. 4) The influence of Huanghe River to North area of the estuary is less than to Laichou Bay. 5) The velocities of tide current at the estuary are very large.The maximum value is about 150era/see, and the directions of tide current are parallel to coastline.  相似文献   

13.
Internal tide is one of the major oceanic phenomena. Determination of internal tide is important for theoretical study and for ocean engineering research. As an inverse problem, extraction of internal tidal currenls from sea currents is diffi-cult. In this paper, a method is developed to extract internal tidal currents from a portion of the sea current profile based on the fact that the directions of internal tidal currents above and below the thermocline are inverse. Sea current data col-lected from the South China Sea is processed with this method. The internal tidal currents and the depth of the thermocline are successfully extracted. The depth of the thermocline determined is in good agreement with that measured in 1959.  相似文献   

14.
The purpose of the present contribution is to explore the technique to use Acoustic Doppler Current Pro- filers (ADCPs) for suspended sediment flux measurements, which may be applied to coastal embayment environments such as estuaries and tidal inlets for sediment exchange and budget studies. Based on tidal cycle measurements from the entrance of ]iaozhou Bay, Shandong Peninsula, eastern China, statistical rela- tionships between the suspended sediment concentration (SSC) and ADCP echo intensity output are estab- lished. Echo intensity data obtained during an ADCP survey along two cross-sections during a spring tidal phase were transformed into SSC data. The ADCP current velocity and SSC data were then used to calculate the flux of fine-grained sediment. The results show that net sediment transport at the entrance is directed towards the open sea, with an order of magnitude of 103 t per spring tidal cycle; hence, although Jiaozhou Bay is a low SSC environment, the tidally induced suspended sediment transport can be intense.  相似文献   

15.
Rapid changes in the near-bottom water temperature are important environmental factors that can significantly affect the growth and development of species in the bottom culture. The object of this research is to investigate the mechanism causing these rapid changes within a bottom culture area near the Zhangzi Island. The hydrographic transects observations in the North Yellow Sea(NYS) suggest that our mooring station is very close to the tidal mixing front. The horizontal advection of the tidal front has induced the observed tidal change of bottom temperature at the mooring station. Analysis of the mooring near-bottom temperature and current measurements show that the angle between the tidal current horizontal advection and the swing of the tidal front is crucial in determining the variation trend of temperature. When the angle equals 90°, the horizontal tidal current advects along the isotherms so the temperature remains the same. When the angle is between 0° and 90°, the seawater moves from deep water to the warmer coastal zone and the temperature decreases. In contrast, the horizontal tidal advection moves the coastal warm water to the mooring station and the water temperature increases when the angle is between 90° and 180°. The amplitude of the temperature change is proportional to the magnitude of the horizontal temperature gradient and the tidal excursion in the direction of the temperature gradient. This study may facilitate the choice of culture area in order to have a good aquaculture production.  相似文献   

16.
The rise of tidal level in tidal reaches induced by sea-level rise has a large impact on flood control and water supply for the regions around the estuary.This paper focuses on the variations of tidal level response along the tidal reaches in the Yangtze Estuary,as well as the impacts of upstream discharge on tidal level response,due to the sea-level rise of the East China Sea.Based on the Topex/Poseidon altimeter data obtained during the period 1993~2005,a stochastic dynamic analysis was performed and a forecast model was run to predict the sea-level rise of the East China Sea.Two-dimensional hydrodynamic numerical models downscaling from the East China Sea to estuarine areas were implemented to analyze the rise of tidal level along the tidal reaches.In response to the sea-level rise,the tidal wave characteristics change slightly in nearshore areas outside the estuaries,involving the tidal range and the duration of flood and ebb tide.The results show that the rise of tidal level in the tidal reaches due to the sea-level rise has upstream decreasing trends.The step between the stations of Zhangjiagang and Shiyiwei divides the tidal reaches into two parts,in which the tidal level response declines slightly.The rise of tidal level is 1~2.5 mm/a in the upper part,and 4~6 mm/a in the lower part.The stations of Jiangyin and Yanglin,as an example of the upper part and the lower part respectively,are extracted to analyze the impacts of upstream discharge on tidal level response to the sea-level rise.The relation between the rise of tidal level and the upstream discharge can be fitted well with a quadratic function in the upper part.However,the relation is too complicated to be fitted in the lower part because of the tide dominance.For comparison purposes,hourly tidal level observations at the stations of Xuliujing and Yanglin during the period 1993~2009 are adopted.In order to uniform the influence of upstream discharge on tidal level for a certain day each year,the hourly tidal level observations are corrected by the correlation between the increment of tidal level and the increment of daily mean upstream discharge.The rise of annual mean tidal level is evaluated.The resulting rise of tidal level at the stations of Xuliujing and Yanglin is 3.0 mm/a and 6.6 mm/a respectively,close to the rise of 5 mm/a according to the proposed relation between the rise of tidal level and the upstream discharge.  相似文献   

17.
The spoiler is a kind of device to disturb current and promote burying.At present,all submarine pipeline spoilers at home and abroad are parallel spoilers,that is,the plane of the spoiler is parallel to the vertical plane of the pipeline axis.According to the results of indoor experiments,when the pipeline with the forward spoiler is installed perpendicular to the direction of water flow,the spoiler will accelerate the seabed erosion and cause the pipeline to endure downward pressure,which will eventually cause the pipeline self-buried to form a protection.However,when the pipeline direction is consistent with the flow direction,the self-buried behavior and protective effect is vanished.By aiming at the defect that the forward spoiler cannot be self-buried when the direction of the pipeline and the flow are basically parallel,the spoiler burying aid device perpendicular to the pipeline axis has been innovatively developed,and the hydrodynamic changes and sediment erosion characteristics near the pipeline after the installation of the device were studied based on the experiment.Results reveal that although the perpendicular spoiler cannot generate downforce,it can greatly increase the turbulent kinetic energy of the flow and the rate of sediment erosion.The larger the angle between the pipeline axis and the spoiler plane is,the larger the increase in turbulent energy will be.The increase in turbulent energy near the bed surface can reach up about 70%when the angle is 90°,while serious sediment erosion mainly occurs along both sides of the pipeline with a distance of about 2?4 times the pipe diameter.In the future,we can further explore the influence of the perpendicular spoiler size and installation position on the pipeline downforce and the effect of burying promotion.At the same time,field tests on the perpendicular spoiler burying aid device currently developed will conduct to observe the actual effect of perpendicular spoiler promoting pipeline scouring and burying,and improve submarine pipeline safety protection technology.  相似文献   

18.
Vortex-induced motion is based on the complex characteristics of the flow around the tension leg platform (TLP) hull. By considering the flow field of the South China Sea and the configuration of the platform, three typical flow velocities and three flow directions are chosen to study the numerical simulation of the flow field characteristics around the TLP hull. Reynolds-averaged Navier–Stokes equations combined with the detached eddy simulation turbulence model are employed in the numerical study. The hydrodynamic coefficients of columns and pontoons, the total drag and lift coefficients of the TLP, the formation and development of the wake, and the vorticity iso-surfaces for different inlet velocities and current directions are discussed in this paper. The average value of the drag coefficient of the upstream columns is considerably larger than that of the downstream columns in the inlet direction of 0°. Although the time history of the lift coefficient demonstrates a “beating” behavior, the plot shows regularity in general. The Strouhal number decreases as the inlet velocity increases from the power spectral density plot at different flow velocities. The mean root values of the lift and drag coefficients of the front column decrease as the current direction increases. Under the symmetrical configuration of 45°, the streamwise force on C4 is the smallest, whereas the transverse force is the largest. The broken vortex conditions in current directions of 22.5° and 45° are more serious than that in the current direction of 0°. In addition, turbulence at the bottom of the TLP becomes stronger when the current direction changes from 0° to 45°. However, a high inlet velocity indicates a large region influenced by the broken vortex and shows the emergence of the wake behind the TLP under the same current angle.  相似文献   

19.
—A numerical model for wave diffraction-refraction in water of varying current and topogra-phy is proposed,and time-dependent wave mild-slope equation with a dissipation term and correspondingequivalent governing equations are presented.Two different expressions of parabolic approximations forthe case of the absence of current are also given and analyzed.The influence of current on the results ofsimulation of waves is discussed.Some examples show that the present model is better than others in simu-lating wave transformation in large water areas.And they also show that the influence of current shouldbe taken into account,on numerical modeling of wave propagation in water of strong current and coastalareas,otherwise the modeling results will be largely distorted.  相似文献   

20.
The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be generated. In real application, the bubble may move under the combined action of walls in different directions when it forms at the corner of a pipe or at the bottom of a dam. The motion of the bubble shows complex and nonlinear characteristics under these conditions. In order to investigate the bubble pulse features near complex walls, a horizontal wall and a vertical wall are put into the experimental water tank synchronously, and an electric circuit with 200 voltages is designed to generate discharge bubbles, and then experimental study on the bubble pulse features under the combined action of horizontal and vertical walls is carried out. The influences of the combined action of two walls on the bubble shape, pulse period, moving trace and inside jet are obtained by changing the distances from bubble center to the two walls. It aims at providing references for the relevant theoretical and numerical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号