where k (M− 2 s− 1) can be determined from the
in the pH range 2 to 5, from 5 to 40 °C and 0.01 to 1 M.The effect of pH and ionic strength on the reaction suggest that the rates are due to
where H2A = H2CrO4, HA = HCrO4, H2B = H2SO3 and HB = HSO3. The overall rate expression over the investigated pH range can be determined from
k=kH2A–H2B(αH2A)(αH2B)2+kHA–H2B(αHA)(αH2B)2+kH2A–HB(αH2A)(αHB)2
with kH2A−H2B = 5.0 × 107, kHA–H2B = 1.5 × 106 and kH2A–HB = 6.7 × 107.Fe(III) in the range 1.5 to 20 μM exerts a small catalytic effect on the reaction and significantly lowers the initial concentration of Cr(VI) compared to the nominal value. Contrary to Fe(III), formaldehyde (20 to 200 μM) reacts with S(IV) to form the hydroxymethanesulfonate adduct (CH2OHSO3), which does not react with Cr(VI). Major cations Mg2+ and some minor elements such as Ba2+ and Cu2+ did not affect the rates. The application of this rate law to environmental conditions suggest that this reaction may have a role in acidic solutions (aerosols and fog droplets). This reaction becomes more important in the presence of high Fe(III) and low HMS concentrations, contributing to affect the atmospheric transport of chromium species and the distribution of redox species of chromium, which reach surface water from atmospheric depositions.  相似文献   

14.
Radiation balance and heat budget at the ocean/atmosphere interface in the western North Pacific     
Hirotaka Otobe 《Journal of Oceanography》1989,45(2):134-153
The downward short- and long-wave radiation fluxes at the sea surface (S, L) were measured aboard the R/VHakuho Maru, University of Tokyo, for the period of 117 days on six cruises from 1981 to 1985 in the western North Pacific near Japan. The upward fluxes of short- and long-wave radiation (S, L) were calculated by Payne's (1972) table and the Stefan-Boltzmann's law, respectively. The sensible and laten heat fluxes (Q h ,Q e ) were also estimated from an aerodynamic bulk method.From April to August, the daily mean value ofS varied with the amplitude of 100200 Wm–2. The value ofS was estimated approximately 6% ofS in all seasons. The difference betweenL andL was so small that the net radiation flux (Q n ) was dominated byS. In addition, the net heat flux at the sea surface was also dominated byS due to small values ofQ h andQ e , and then the ocean was warmed at the rate of 111 Wm–2 in April and 63 Wm–2 in August in the Oyashio Area, and 132 Wm–2 in May and 164 Wm–2 in June in the Kuroshio Area, respectively.From September to March, a remarkable negative correlation between the day to day variation ofS and that ofL was observed except when an intense cold air outbreak occurred. It was found that the correlation was caused by the cloud climatological feature of the western North Pacific in this period.S was not a dominant factor in the net heat flux. The value ofQ h +Q e in the Kuroshio Area ranged from 260 Wm–2 to 630 Wm–2, much larger thanQ n which ranged from –8 Wm–2 to 92 Wm–2 in the leg mean values (each leg period was about 10 days). Then the ocean was cooled at the rate of –160–620 Wm–2 during this period. The net heat flux in the Kuroshio Area averaged over five legs from late November to February was –473 Wm–2. This value is 50100% larger than the climatological values reported so far.The temporal and spatial variability of radiation fluxes and heat fluxes during each leg was also discussed.  相似文献   

15.
Estimation of the leeway drift of small craft   总被引:1,自引:0,他引:1  
G.L. Hufford  S. Broida 《Ocean Engineering》1976,3(3):123-132
Small craft (<6·4 m) leeway is determined as a function of the wind speed in the range of 5–20 knots (3·6–10·3 m/sec). Leeway is calculated relative to the surface current by measurement of the separation distance of the small craft from a dyed patch of surface water at sea, using time-sequenced aerial photography. Leeway increases linearly with wind speed for small craft equipped with or without a sea anchor in the wind range studied. Leeway for small craft without sea anchor can be calculated from the equation UL = 0.07 UW + 0.04 where UW is the wind speed at 2 m elevation. Leeway for small craft drifted off the be calculated from the equation ULD = 0·05 UW − 0·12. The small craft drifted off the downwind direction in about 80% of the experiments. The drift angle is variable and difficult to predict.  相似文献   

16.
A review of the analyses of ocean wave groups     
J.R. Medina  R.T. Hudspeth 《Coastal Engineering》1990,14(6)
The most common parameters and functions used to characterize wave groups in linear seas are reviewed and interrelated in a unified manner. A three-axes representation of run lengths is used to characterize wave groups using exponential and Markov chain approximations. A relationship between four parameters (Qp, Qe, κ2, and ρ2) and the correlation coefficient between consecutive wave heights [rHH(1)] is demonstrated. The wave-height function method is reviewed in some detail in order to relate the run length theory with envelope theories. The theoretical estimates used to demonstrate the relationships between the various parameters must be considered as only first-order trends to parameter estimates computed from real wave data due to the statistical variability in these estimates when computed from real wave data.  相似文献   

17.
Observed relationship between the drag coefficient,Cd, and stability parameter, (−z/L)     
Tatsuo Konishi  Tosio Nan-niti 《Journal of Oceanography》1979,35(5):209-214
Momentum and heat flux were measured with a sonic anemometer at the Marine Observation Tower in the port of ItÔ. Under unstable conditions (T w -T a =3C4C), using the eddy correlation method, results show thatCd=(1.2±0.3)×10–3 andCh=(1.5±0.3)×10–3 at 5.5 m above mean sea level except for the case of weak winds.An unexpected relationship betweenCd and (–z/L) was observed, that is,Cd decreases as (–z/L) increases. If roughness variation over the sea is taken into account, we can explain the decrease in the range of (–z/L) less than 1, but not in the range greater than 1. This is due to a strong instability effect and the change of roughness class, from moderately rough to smooth.  相似文献   

18.
Anomalously low alkenone temperatures caused by lateral particle and sediment transport in the Malvinas Current region, western Argentine Basin     
Albert Benthien  Peter J. Müller 《Deep Sea Research Part I: Oceanographic Research Papers》2000,47(12):373
We analysed the alkenone unsaturation ratio (UK′37) in 87 surface sediment samples from the western South Atlantic (5°N–50°S) in order to evaluate its applicability as a paleotemperature tool for this part of the ocean. The measured UK′37 ratios were converted into temperature using the global core-top calibration of Müller et al. (1998) and compared with annual mean atlas sea-surface temperatures (SSTs) of overlying surface waters. The results reveal a close correspondence (<1.5°C) between atlas and alkenone temperatures for the Western Tropical Atlantic and the Brazil Current region north of 32°S, but deviating low alkenone temperatures by −2° to −6°C are found in the regions of the Brazil–Malvinas Confluence (35–39°S) and the Malvinas Current (41–48°S). From the oceanographic evidence these low UK′37 values cannot be explained by preferential alkenone production below the mixed layer or during the cold season. Higher nutrient availability and algal growth rates are also unlikely causes. Instead, our results imply that lateral displacement of suspended particles and sediments, caused by strong surface and bottom currents, benthic storms, and downslope processes is responsible for the deviating UK′37 temperatures. In this way, particles and sediments carrying a cold water UK′37 signal of coastal or southern origin are transported northward and offshore into areas with warmer surface waters. In the northern Argentine Basin the depth between displaced and unaffected sediments appears to coincide with the boundary between the northward flowing Lower Circumpolar Deep Water (LCDW) and the southward flowing North Atlantic Deep Water (NADW) at about 4000 m.  相似文献   

19.
Improving estuarine net flux estimates for dissolved cadmium export at the annual timescale: Application to the Gironde Estuary     
Aymeric Dabrin  Jrg Schfer  Grard Blanc  Emilie Strady  Matthieu Masson  Ccile Bossy  Sabine Castelle  Naïg Girardot  Alexandra Coynel 《Estuarine, Coastal and Shelf Science》2009,84(4):429-439
Dissolved Cd (CdD) concentrations along the salinity gradient were measured in surface water of the Gironde Estuary during 15 cruises (2001–2007), covering a wide range of contrasting situations in terms of hydrology, turbidity and season. During all situations dissolved Cd concentrations displayed maximum values in the mid-salinity range, reflecting Cd addition by chloride-induced desorption and complexation. The daily net CdD fluxes from the Gironde Estuary to the coastal ocean were estimated using Boyle's method. Extrapolating CdD concentrations in the high salinity range to the freshwater end member using a theoretical dilution line produced 15 theoretical Cd concentrations (CdD0), each representative of one distinct situation. The obtained CdD0 concentrations were relatively similar (201 ± 28 ng L−1) when freshwater discharge Q was >500 m3 s−1 (508 ≤ Q ≤ 2600 m3 s−1), but were highly variable (340 ± 80 ng L−1; 247–490 ng L−1) for low discharge situations (169 ≤ Q ≤ 368 m3 s−1). The respective daily CdD net fluxes were 5–39 kg day−1, mainly depending on freshwater discharge. As this observation invalidates the existing method of estimating annual CdD net fluxes, we proposed an empirical model, using representative CdD0 values and daily freshwater discharges for the 2001–2007 period. Subsequent integration produced reliable CdD net flux estimates for the Gironde Estuary at the annual timescale that ranged between 3.8–5.0 t a−1 in 2005 and 6.0–7.2 t a−1 in 2004, depending on freshwater discharge. Comparing CdD net fluxes with the incoming CdD fluxes suggested that the annual net CdD addition in the Gironde Estuary ranged from 3.5 to 6.7 t a−1, without any clear temporal trend during the past seven years. The annual CdD net fluxes did not show a clearly decreasing trend in spite of an overall decrease by a factor 6 in Cd gross fluxes during the past decade. Furthermore, in six years out of seven (except 2003), the annual CdD net fluxes even exceeded river borne total (dissolved + particulate) gross Cd fluxes into the estuary. These observations were attributed to progressive Cd desorption from both suspended particles and bottom sediment during various sedimentation–resuspension cycles induced by tidal currents and/or continuous dredging (navigation channel) and diverse intra-estuarine sources (wet deposition, urban sources, and agriculture). Provided that gross fluxes remain stable over time, dissolved Cd exportation from the Gironde Estuary to the coastal ocean may remain at the present level for the coming decade and the estuarine sedimentary Cd stock is forecast to decrease slowly.  相似文献   

20.
Transmission and reflection of planetary and topographic Rossby waves in a two-layer ocean     
Hiroshi Takeda 《Journal of Oceanography》1985,41(4):199-206
Transmission and reflection problems when kissing≓ occurs among planetary and topographic Rossby waves in a two-layer ocean are studied. The slope parameterS(=dh 2/dx, whereh 2is the thickness of the lower layer) is assumed to have constant values in the regionsx 0 andxL and to vary linearly with the increase ofx in the region0xL (refer to Fig. 2 in the text). Furthermore, a wave is entered fromx=– and kissing is assumed to occur in the region (0<)x axxb(<L).It is found that a wave of the same type as the incident wave is mainly transmitted when the width of the region in which kissing occurs,L kiss(=tx b–xa), is smaller than kiss=2/K¦+ y/2), whereK is a representative wavenumber in the regionx ab, y is they-component of , and is the frequency. WhenL kiss is larger than kiss, on the other hand, the main wave transmitted is of a different type to the incident wave. As an application, transmission and reflection problems of planetary Rossby waves are considered, and it is shown that when an external (internal) planetary Rossby wave is entered, an internal (external) one can be transmitted due to the effect of kissing.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《Ocean Modelling》2009,26(3-4):154-171
Ocean surface mixing and drift are influenced by the mixed layer depth, buoyancy fluxes and currents below the mixed layer. Drift and mixing are also functions of the surface Stokes drift Uss, volume Stokes transport TS, a wave breaking height scale Hswg, and the flux of energy from waves to ocean turbulence Φoc. Here we describe a global database of these parameters, estimated from a well-validated numerical wave model, that uses traditional forms of the wave generation and dissipation parameterizations, and covers the years 2003–2007. Compared to previous studies, the present work has the advantage of being consistent with the known physical processes that regulate the wave field and the air–sea fluxes, and also consistent with a very large number of in situ and satellite observations of wave parameters. Consequently, some of our estimates differ significantly from previous estimates. In particular, we find that the mean global integral of Φoc is 68 TW, and the yearly mean value of TS is typically 10–30% of the Ekman transport, except in well-defined regions where it can reach 60%. We also have refined our previous estimates of Uss by using a better treatment of the high frequency part of the wave spectrum. In the open ocean, Uss  0.013U10, where U10 is the wind speed at 10 m height.  相似文献   

2.
粗糙海面L 和C 双波段的代价函数多参量遥感反演分析   总被引:1,自引:0,他引:1  
齐震  魏恩泊  刘淑波 《海洋科学》2012,36(1):100-107
利用代价函数(cost function)方法,通过分析粗糙海面L和C双波段多极化遥感亮温对海表盐度、温度、风速和有效波高等参数的敏感性以及L和C双波段多极化的代价函数收敛特性,建立了反演海表盐度、温度、风速和有效波高等多参数的L和C双波段多极化代价函数模式。双波段遥感模式分析结果表明:(1)对于双参数的联合反演,L和C双波段垂直极化代价函数联合反演海表盐度和温度可以获得较好的反演结果。(2)L波段垂直极化和C波段水平极化代价函数联合反演海表盐度和风速较好。(3)对于三参数联合反演,L波段垂直极化和C波段的双极化联合反演盐度、温度和风速的精度较高。(4)L波段亮温对有效波高的敏感性较低(C波段经验模式不含有效波高),使得有效波高反演误差较大,L和C波段经验模式不适合反演有效波高参数。另外,为了定量分析L和C双波段代价函数的多参量遥感反演结果,采用加性噪音模拟亮温方法,对上述L和C双波段多极化模式的盐度、温度和风速等多参数联合反演误差进行了分析,均得出较好的结果。结论表明L和C双波段代价函数联合反演多参量可以明显提高参量反演精度,为粗糙海表面多参量的反演提供了新的方法和途径。  相似文献   

3.
Various wind velocitiesu *,U /2,U andU 10 are correlated to the measured growth rate of water waves , whereu * is the friction velocity of the wind, andU /2,U andU 10 are the wind speeds respectively at the heights /2, and 10m above sea surface (: wave length). It is shown that within a range of the dimensionless wind speed, 0.1<u * /C<0.6, there are no appreciable differences in the correlations, whereC is the phase velocity of water waves. The present relation between andU shows qualitatively similar properties as the one obtained by Al'Zanaidi and Hui (1984); the growth rate for waves with rough surface is larger than that with smooth surface. However, our present relations give, for the both waves with different surface roughness, larger values by factors 1.71.8 than those given by Al'Zanaidi and Hui's relation.  相似文献   

4.
Changes from winter (July) to summer (February) in mixed layer carbon tracers and nutrients measured in the sub-Antarctic zone (SAZ), south of Australia, were used to derive a seasonal carbon budget. The region showed a strong winter to summer decrease in dissolved inorganic carbon (DIC;  45 µmol/kg) and fugacity of carbon dioxide (fCO2;  25 µatm), and an increase in stable carbon isotopic composition of DIC (δ13CDIC;  0.5‰), based on data collected between November 1997 and July 1999.The observed mixed layer changes are due to a combination of ocean mixing, air–sea exchange of CO2, and biological carbon production and export. After correction for mixing, we find that DIC decreases by up to 42 ± 3 µmol/kg from winter (July) to summer (February), with δ13CDIC enriched by up to 0.45 ± 0.05‰ for the same period. The enrichment of δ13CDIC between winter and summer is due to the preferential uptake of 12CO2 by marine phytoplankton during photosynthesis. Biological processes dominate the seasonal carbon budget (≈ 80%), while air–sea exchange of CO2 (≈ 10%) and mixing (≈ 10%) have smaller effects. We found the seasonal amplitude of fCO2 to be about half that of a study undertaken during 1991–1995 [Metzl, N., Tilbrook, B. and Poisson, A., 1999. The annual fCO2 cycle and the air–sea CO2 flux in the sub-Antarctic Ocean. Tellus Series B—Chemical and Physical Meteorology, 51(4): 849–861.] for the same region, indicating that SAZ may undergo significant inter-annual variations in surface fCO2. The seasonal DIC depletion implies a minimum biological carbon export of 3400 mmol C/ m2 from July to February. A comparison with nutrient changes indicates that organic carbon export occurs close to Redfield values (ΔP:ΔN:ΔC = 1:16:119). Extrapolating our estimates to the circumpolar sub-Antarctic Ocean implies a minimum organic carbon export of 0.65 GtC from the July to February period, about 5–7% of estimates of global export flux. Our estimate for biological carbon export is an order of magnitude greater than anthropogenic CO2 uptake in the same region and suggests that changes in biological export in the region may have large implications for future CO2 uptake by the ocean.  相似文献   

5.
The wave transmission, reflection and energy dissipation characteristics of ‘’-type breakwaters were studied using physical models. Regular and random waves in a wide range of wave heights and periods and a constant water depth were used. Five different depths of immersion (two emerged, one surface flushing and two submerged conditions) of this breakwater were selected. The coefficient of transmission, Kt, and coefficient of reflection, Kr, were obtained from the measurements, and the coefficient of energy loss, Kl was calculated using the law of balance of energy. It was found that the wave transmission is significantly reduced with increased relative water depth, d/L, whether the vertical barrier of the breakwater is surface piercing or submerged, where ‘d’ is the water depth and ‘L’ is the wave length. The wave reflection decreases and energy loss increases with increased wave steepness, especially when the top tip of the vertical barrier of this breakwater is kept at still water level (SWL). For any incident wave climate (moderate or storm waves), the wave transmission consistently decreases and the reflection increases with increased relative depth of immersion, Δ/d from −0.142 to 0.142. Kt values less than 0.3 can be easily obtained for the case of Δ/d=+0.071 and 0.142, where Δ is the height of exposure (+ve) or depth of immersion (−ve) of the top tip of the vertical barrier. This breakwater is capable of dissipating wave energy to an extent of 50–80%. The overall performance of this breakwater was found to be better in the random wave fields than in the regular waves. A comparison of the hydrodynamic performance of ‘’-type and ‘T’-type shows that ‘T’-type breakwater is better than ‘’-type by about 20–30% under identical conditions.  相似文献   

6.
The minimum value of wind stress under which the flow velocity in short wind waves exceeds the phase speed is estimated by calculating the laminar boundary layer flow induced by the surface tangential stress with a dominant peak at the wave crest as observed in previous experiments. The minimum value of the wind stress is found to depend strongly on, the ratio of the flow velocity just below the boundary layer and the phase speed, but weakly onL, the wavelength. For wind waves previously studied (=0.5,L=10 cm), the excess flow appears when the air friction velocityu * is larger than about 30 cm sec–1. The present results confirm that the excess flow found in my previous experiments is associated with the local growth of a laminar boundary layer flow near the wave crest.  相似文献   

7.
The mechanism of the development of wind-waves will be proposed on the basis of the observed wave spectra in the wind tunnels and at Lake Biwa (Imasato, 1976). It consists of two aspects: One is that the air flow over the wind-waves transfers momentum concentratively to the steepest component waves and the other is that the upper limit of the growth of a wave spectral density is given by the ultimate value in the slope spectral density. The first aspect means that the wave field has the momentum transfer filter on receiving the momentum from the air flow. Wind-waves in the stage of sea-waves receive the necessary amount of momentum by the form drag,e.g. according to the Miles' (1960) inviscid mechanism, through a very narrow frequency region around a dominant spectral peak. On the other hand, wind-waves in the stage of initial-wavelets receive it according to the Miles' (1962a) viscous model through a fairly broad frequency region around the peak. The upper limit ofS max developing according to viscous mechanism is given byS max =6.40×10–4 k max –2cm2s andS max =2.03C(f max )–2cm2s(S max is the power density of the wave spectral peak with the frequencyf max ,k max is the wave number corresponding to the frequencyf max andC is the phase velocity).From the second aspect, the upper limit of the growth of wave spectral density is given by 33.3f –4cm2s in the frequency region of late stage of sea-waves. Therefore, the spectral peak, which has the largest value in the slope spectral density in the component waves of the wave spectrum, rises high over the line 4.15f –5cm2s. The energy is transported from the spectral peak to the high frequency part and to the forward face of a wave spectrum by nonlinear wave-wave interaction. This nonlinearity is confirmed by the bispectra calculated from the observed wind-wave data. In the stage of sea-waves, nonlinear rearrangement of the wave energy comes from a narrow momentum transfer filter, and, in the stage of initial-wavelets, it comes mainly from small corrugations and small steepness of the wave field.  相似文献   

8.
A red tide due toGymnodinium nagasakiense was observed in August 1988 in Tanabe Bay, Wakayama Prefecture, Japan. The maximum cell concentration ofG. nagasakiense reached 1×105 cells ml–1 at the surface water. From May to September 1988, the following were monitored: water temperature, salinity, chlorophylla, D.O., dissolved nutrients (NO2–N, NO3–N, NH4–N, PO4–P DON, DOP), particulate nutrients (PON, POP) and three dissolved selenium species [Se(IV), Se(VI), Organic Se]. Dissolved inorganic nitrogen (NO3–N, NH4–N) decreased but PON, POP, DON, DOP and inorganic phosphate increased at the peak of the bloom. The concentration of organic selenium increased up to the bloom initiation period which started on 5 July, and then the concentration of Se(IV) increased as the concentration of organic selenium decreased at the peak of the bloom (3 August). The strong relationship was found between the concentration of Se(IV) and the cell concentration ofG. nagasakiense (r 2=0.98). The Se(IV) requirement ofG. nagasakiense was 2.89×10–17 moles cell–1, which was agreed well with 4.4×10–17 moles cell–1 found in a laboratory experiment onG. nagasakiense using selenium spiked artificial sea water medium. The average ratio of Se(IV) to dissolved inorganic nitrogen (DIN) during the red tide bloom was 11441, the ratio of Se(IV) to DIN at the surface with the maximum cell concentration ofG. nagasakiense of 1×105 cells ml–1 was 1137. These results suggested that selenium may play an important role in red tide outbreak ofG. nagasakiense.  相似文献   

9.
The development process of wind-waves of which spectral peak distributes from 0.6 cps to 9.3 cps will be discussed on the basis of the wind tunnel experiments and of the field observations performed at Lake Biwa. The characteristics of power and slope spectra are here presented. The development process of these wind-waves is characterized by three stages;i.e. initial-wavelets, transition stage and sea-waves. In the wind tunnel experiments, the transition from the stage of the initial-wavelets to the transition stage occurs when the wave spectral peak arrives at the line 6.40×10–4 k –2cm2·sec (wherek is wave number) or when the slope spectral density at the frequencyf max becomes larger than 6.40×10–4 sec. In the stage of sea-waves, the component wave of a wave-spectral peak is steepest in the component waves. And the wave spectral peak develops along the line 1.02×102 f –6 cm2·sec (wheref is the frequency corresponding to the wave numberk) untill it reaches the line 33.3f –4cm2·sec, and thereafter develops along the latter line, which indicates the constant density of slope spectrum. It is suggested that the nonlinearity of wind-waves must become stronger as wind-waves develop. The effective momentum flux ws from the air flow to wind-waves in this stage is evaluated to be about 49% of the total stress 0.  相似文献   

10.
Bispectral analysis is applied to records of the vertical profile of the vertical temperature gradient in the oceanic thermocline in the San Diego Trough. The bispectra exhibit three notable features; (1) bispectral peaks at the points (0.2 m–1, 0.2 m–1) and (0.2 m–1, 0.1 m–1), (2) bispectral ridges along the lines ( 1= 0, 2= 0 and 1+ 2= 0 corresponding to peak wavenumbers 0 in power spectra, and (3) array of bispectral peaks of interval of 0.2 m–1 The results are compared with the bispectra of several modeled time series of spike-array type. The periodicity of 5 m found in the records seems to have two meanings: spacing of predominant spikes and wavelength of predominant sinusoidal wave. If this indicates the existence of internal waves having a vertical wavelength the same as the scale of homogeneous layers, it would suggest the possible importance of internal waves in the formation and maintenance mechanisms of oceanic microstructure.  相似文献   

11.
Local balance in the air-sea boundary processes   总被引:2,自引:0,他引:2  
A combination of the three-second power law, presented in part I for wind waves of simple spectrum, and the similarity of the spectral form of wind waves, leads to a new concept on the energy spectrum of wind waves. It is well substantiated by data from a wind-wave tunnel experiment.In the gravity wave range, the gross form of the high frequency side of the spectrum is proportional tog u * –4, whereg represents the acceleration of gravity,u * the friction velocity, the angular frequency, and the factor of proportionality is 2.0×l0–2. The wind waves grow in such a way that the spectrum slides up, keeping its similar form, along the line of the gross form, on the logarithmic diagram of the spectral density,, versus. Also, the terminal value of, at the peak frequency of the fully developed sea, is along a line of the gradient ofg 2 –5.The fine structure of the spectrum from the wind-wave tunnel experiment shows a characteristic form oscillating around the –4-line. The excess of the energy density concentrates around the peak frequency and the second- and the third-order harmonics, and the deficit occurs in the middle of these frequencies. This form of the fine structure is always similar in the gravity wave range, in purely controlled conditions such as in a wind-wave tunnel. Moving averages of these spectra tend very close to the form proportional to –5.As the wave number becomes large, the effect of surface tension is incorporated, and the –4-line in the gravity wave range gradually continues to a –8/3-line in the capillary wave range, in accordance with the wind-wave tunnel data. Likewise, the –5-line gradually continues to a –7/3-line.Also, through a discussion on these results, is suggested the existence of a kind of general similarity in the structure of wind wave field.  相似文献   

12.
The estimated characteristics of the atmospheric boundary layer, obtained by the simulation of wind wave fields using three versions of the WAM numerical model are compared with the well-known empirical dependences of drag coefficient C d on wind speed U 10 and wave age A, as well as with the dependence of dimensionless roughness height z n on inverse wave age u*/с р. Calculations carried out for several years in the areas of the Pacific and Indian oceans, based on the ERA-interim and CFSR wind reanalyses have shown good agreement between the model and empirical dependences C d (U 10) and C d (A). The range of estimated variability for z n (u*/с р ) has been found to be significantly less than empirical. It has been also found that estimated values of wind speed U 10W (t) are overestimated from 5 to 10% in all versions of WAM models compared with the input wind reanalysis U 10R (t) at the moments of appearance maximum values of wind U 10R (t). The reasons for the established features of the WAM model and their dependence on the model version are discussed.  相似文献   

13.
The rates of the reduction of Cr(VI) with S(IV) were measured in deaerated NaCl solution as a function of pH, temperature and ionic strength. The rates of the reaction were found to be first order with respect to Cr(VI) and second order with respect to S(IV), in agreement with previous results obtained at concentrations two order higher than the present study. The reaction also showed a first-order dependence of the rates on the concentration of the proton and a small influence of temperature with an apparent energy of activation ΔHapp of 22.8 ± 3.4 kJ/mol. The rates were independent of ionic strength from 0.01 to 1 M. The rate of Cr(VI) reduction is described by the general expression
−d[Cr(VI)]/dt=k[Cr(VI)][S(IV)]2
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号