首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
北极夏季海冰单轴抗压强度研究   总被引:2,自引:2,他引:0  
The results on the uniaxial compressive strength of Arctic summer sea ice are presented based on the samples collected during the fifth Chinese National Arctic Research Expedition in 2012(CHINARE-2012). Experimental studies were carried out at different testing temperatures(-3,-6 and-9°C), and vertical samples were loaded at stress rates ranging from 0.001 to 1 MPa/s. The temperature, density, and salinity of the ice were measured to calculate the total porosity of the ice. In order to study the effects of the total porosity and the density on the uniaxial compressive strength, the measured strengths for a narrow range of stress rates from 0.01 to 0.03 MPa/s were analyzed. The results show that the uniaxial compressive strength decreases linearly with increasing total porosity, and when the density was lower than 0.86 g/cm3, the uniaxial compressive strength increases in a power-law manner with density. The uniaxial compressive behavior of the Arctic summer sea ice is sensitive to the loading rate, and the peak uniaxial compressive strength is reached in the brittle-ductile transition range. The dependence of the strength on the temperature shows that the calculated average strength in the brittle-ductile transition range, which was considered as the peak uniaxial compressive strength, increases steadily in the temperature range from-3 to-9°C.  相似文献   

2.
2007和2012年北极最小海冰范围空间分布不同的原因分析   总被引:1,自引:0,他引:1  
Satellite records show the minimum Arctic sea ice extents(SIEs) were observed in the Septembers of 2007 and2012, but the spatial distributions of sea ice concentration reduction in these two years were quite different.Atmospheric circulation pattern and the upper-ocean state in summer were investigated to explain the difference.By employing the ice-temperature and ice-specific humidity(SH) positive feedbacks in the Arctic Ocean, this paper shows that in 2007 and 2012 the higher surface air temperature(SAT) and sea level pressure(SLP)accompanied by more surface SH and higher sea surface temperature(SST), as a consequence, the strengthened poleward wind was favorable for melting summer Arctic sea ice in different regions in these two years. SAT was the dominant factor influencing the distribution of Arctic sea ice melting. The correlation coefficient is –0.84 between SAT anomalies in summer and the Arctic SIE anomalies in autumn. The increase SAT in different regions in the summers of 2007 and 2012 corresponded to a quicker melting of sea ice in the Arctic. The SLP and related wind were promoting factors connected with SAT. Strengthening poleward winds brought warm moist air to the Arctic and accelerated the melting of sea ice in different regions in the summers of 2007 and 2012. Associated with the rising air temperature, the higher surface SH and SST also played a positive role in reducing summer Arctic sea ice in different regions in these two years, which form two positive feedbacks mechanism.  相似文献   

3.
The diffuse attenuation coefficient(Kd) for downwelling irradiance is calculated from solar irradiance data measured in the Arctic Ocean during 3rd and 4th Chinese National Arctic Research Expedition(CHINARE), including 18 stations and nine stations selected for irradiance profiles in sea water respectively. In this study, the variation of attenuation coefficient in the Arctic Ocean was studied, and the following results were obtained. First, the relationship between attenuation coefficient and chlorophyll concentration in the Arctic Ocean has the form of a power function. The best fit is at 443 nm, and its determination coefficient is more than 0.7. With increasing wavelength, the determination coefficient decreases abruptly. At 550 nm, it even reaches a value lower than 0.2. However, the exponent fitted is only half of that adapted in low-latitude ocean because of the lower chlorophyll-specific absorption in the Arctic Ocean. The upshot was that, in the case of the same chlorophyll concentration, the attenuation caused by phytoplankton chlorophyll in the Arctic Ocean is lower than in low-latitude ocean. Second, the spectral model, which exhibits the relationship of attenuation coefficients between 490 nm and other wavelength, was built and provided a new method to estimate the attenuation coefficient at other wavelength, if the attenuation coefficient at 490 nm was known. Third, the impact factors on attenuation coefficient, including sea ice and sea water mass, were discussed. The influence of sea ice on attenuation coefficient is indirect and is determined through the control of entering solar radiation. The linear relationship between averaging sea ice concentration(ASIC, from 158 Julian day to observation day) and the depth of maximum chlorophyll is fitted by a simple linear equation. In addition, the sea water mass, such as the ACW(Alaskan Coastal Water), directly affects the amount of chlorophyll through taking more nutrient, and results in the higher attenuation coefficient in the layer of 30–60 m. Consequently, the spectral model of diffuse attenuation coefficient, the relationship between attenuation coefficient and chlorophyll and the linear relationship between the ASIC and the depth of maximum chlorophyll, together provide probability for simulating the process of diffuse attenuation coefficient during summer in the Arctic Ocean.  相似文献   

4.
2018年北极太平洋区域夏季海冰物理及光学性质的研究   总被引:2,自引:1,他引:1  
The reduction in Arctic sea ice in summer has been reported to have a significant impact on the global climate. In this study, Arctic sea ice/snow at the end of the melting season in 2018 was investigated during CHINARE-2018, in terms of its temperature, salinity, density and textural structure, the snow density, water content and albedo, as well as morphology and albedo of the refreezing melt pond. The interior melting of sea ice caused a strong stratification of temperature, salinity and density. The temperature of sea ice ranged from –0.8℃ to 0℃, and exhibited linear cooling with depth. The average salinity and density of sea ice were approximately 1.3 psu and 825 kg/m~3, respectively, and increased slightly with depth. The first-year sea ice was dominated by columnar grained ice. Snow cover over all the investigated floes was in the melt phase, and the average water content and density were 0.74% and 241 kg/m~3, respectively. The thickness of the thin ice lid ranged from 2.2 cm to 7.0 cm, and the depth of the pond ranged from 1.8 cm to 26.8 cm. The integrated albedo of the refreezing melt pond was in the range of 0.28–0.57. Because of the thin ice lid, the albedo of the melt pond improved to twice as high as that of the mature melt pond. These results provide a reference for the current state of Arctic sea ice and the mechanism of its reduction.  相似文献   

5.
The attenuation of lateral propagating light(LPL) in sea ice was measured using an artificial light source in the Canadian Arctic during the 2007/2008 winter. The apparent attenuation coefficient μ(λ) for lateral propagating light was obtained from the measured logarithmic relative variation rate. In this study an analytical solution based on the strict optical theories is developed to validate the measured result. There is a good consistency between theoretical solution and measured data, by which a quite simple but very rigorous relationship among the light source, measurement geometry, and measured irradiance is established. The attenuation coefficients acquired by measurement and theory are the diffusion attenuation as an apparent optical property of ice, independent of the light source and shining condition. The attenuation ability of sea ice should be caused by the microstructure of sea ice, such as crystal size, ice density, brine volume, air inclusion, etc. It also includes the leak from both interfaces by directional scattering. It is verified that the measuring approach is operational and accurate to measure the attenuation of the LPL. The solution from this study did not tell the connection among the extinction and the inclusions of sea ice theoretically because of insufficient understanding.  相似文献   

6.
The recent decline in the Arctic sea ice has coincided with more cold winters in Eurasia.It has been hypothesized that the Arctic sea ice loss is causing more mid-latitude cold extremes and cold winters,yet there is lack of consensus in modeling studies on the impact of Arctic sea ice loss.Here we conducted modeling experiments with Community Atmosphere Model Version 5(CAM5) to investigate the sensitivity and linearity of Eurasian winter temperature response to the Atlantic sector and Pacific sector of the Arctic sea ice loss.Our experiments indicate that the Arctic sea ice reduction can significantly affect the atmospheric circulation by strengthening the Siberian High,exciting the stationary Rossby wave train,and weakening the polar jet stream,which in turn induce the cooling in Eurasia.The temperature decreases by more than 1°C in response to the ice loss in the Atlantic sector and the cooling is less and more shifts southward in response to the ice loss in the Pacific sector.More interestingly,sea ice loss in the Atlantic and Pacific sectors together barely induces cold temperatures in Eurasia,suggesting the nonlinearity of the atmospheric response to the Arctic sea ice loss.  相似文献   

7.
The physical structures of snow and sea ice in the Arctic section of 150°-180°W were observed on the basis of snow-pit, ice-core, and drill-hole measurements from late July to late August 2010. Almost all the investigated floes were first-year ice, except for one located north of Alaska, which was probably multi-year ice transported from north of the Canadian Arctic Archipelago during early summer. The snow covers over all the investigated floes were in the melting phase, with temperatures approaching 0℃ and densities of 295-398 kg/m3 . The snow covers can be divided into two to five layers of different textures, with most cases having a top layer of fresh snow, a round-grain layer in the middle, and slush and/or thin icing layers at the bottom. The first-year sea ice contained about 7%-17% granular ice at the top. There was no granular ice in the lower layers. The interior melting and desalination of sea ice introduced strong stratifications of temperature, salinity, density, and gas and brine volume fractions. The sea ice temperature exhibited linear cooling with depth, while the salinity and the density increased linearly with normalized depth from 0.2 to 0.9 and from 0 to 0.65, respectively. The top layer, especially the freeboard layer, had the lowest salinity and density, and consequently the largest gas content and the smallest brine content. Both the salinity and density in the ice basal layer were highly scattered due to large differences in ice porosity among the samples. The bulk average sea ice temperature, salinity, density, and gas and brine volume fractions were-0.8℃, 1.8, 837 kg/m3 , 9.3% and 10.4%, respectively. The snow cover, sea ice bottom, and sea ice interior show evidences of melting during mid-August in the investigated floe located at about 87°N, 175°W.  相似文献   

8.
A comprehensive analysis of sea ice and its snow cover during the summer in the Arctic Pacific sector was conducted using the observations recorded during the 7th Chinese National Arctic Research Expedition(CHIANRE-2016) and the satellite-derived parameters of the melt pond fraction(MPF) and snow grain size(SGS)from MODIS data. The results show that there were many low-concentration ice areas in the south of 78°N, while the ice concentration and thickness increased significantly with the latitude above the north of 78°N during CHIANRE-2016. The average MPF presented a trend of increasing in June and then decreasing in early September for 2016. The average snow depth on sea ice increased with latitude in the Arctic Pacific sector. We found a widely developed depth hoar layer in the snow stratigraphic profiles. The average SGS generally increased from June to early August and then decreased from August to September in 2016, and two valley values appeared during this period due to snowfall incidents.  相似文献   

9.
Long term in situ atmospheric observation of the landfast ice nearby Zhongshan Station in the Prydz Bay was performed from April to November 2016. The in situ observation, including the conventional meteorological elements and turbulent flux, enabled this study to evaluate the sea ice surface energy budget process. Using in situ observations, three different reanalysis datasets from the European Centre for Medium-Range Weather Forecasts Interim Re-analysis(ERA-Interim), National Centers for Environmental Prediction Reanalysis2(NCEP R2), and Japanese 55-year Reanalysis(JRA55), and the Los Alamos sea ice model, CICE, output for surface fluxes were evaluated. The observed sensible heat flux(SH) and net longwave radiation showed seasonal variation with increasing temperature. Air temperature rose from the middle of October as the solar elevation angle increased.The ice surface lost more energy by outgoing longwave radiation as temperature increased, while the shortwave radiation showed obvious increases from the middle of October. The oceanic heat flux demonstrated seasonal variation and decreased with time, where the average values were 21 W/m~2 and 11 W/m~2, before and after August,respectively. The comparisons with in situ observations show that, SH and LE(latent heat flux) of JRA55 dataset had the smallest bias and mean absolute error(MAE), and those of NCEP R2 data show the largest differences.The ERA-Interim dataset had the highest spatial resolution, but performance was modest with bias and MAE between JRA55 and NCEP R2 compare with in situ observation. The CICE results(SH and LE) were consistent with the observed data but did not demonstrate the amplitude of inner seasonal variation. The comparison revealed better shortwave and longwave radiation stimulation based on the ERA-Interim forcing in CICE than the radiation of ERA-Interim. The average sea ice temperature decreased in June and July and increased after September,which was similar to the temperature measured by buoys, with a bias and MAE of 0.9°C and 1.0°C, respectively.  相似文献   

10.
The data were collected during Chinese Arctic and Antarctic Expeditions in the western Arctic Ocean and the marginal sea ice zone (MSIZ) of the Southern Ocean, respectively in the boreal summer from July to September of 1999 and in the austral summer from December of 1999 to January of 2000. The concentrations of CO2 in surface water of the survey regions would mostly present lower than those in the atmosphere. A significant biological driving force could also been observed in summer waters in both of the above oceans. Air to sea CO2 fluxes were also calculated to compare oceanic uptake capacity of CO2 in both oceans with the world oceans using Liss, Wanninkhof, and Jacobs‘s methods. The averaged CO2 fluxes of air to sea in the western Arctic Ocean or in the MSIZ of the Southern Ocean doubled that in the world oceans.  相似文献   

11.
An irradiance profile measurement approach and profiling system were developed to measure the solar irradiance profile of the Arctic sea ice using fiber optic spectrometry. The approach involved using a miniature spectrometer to sense light signals collected and transmitted from a fiber probe. The fiber probe was small, and could thus move freely in inclined bore holes drilled in sea ice with its optical entrance pointing upward. The input-output relationship of the system was analyzed and built. Influence factors that determined the system output were analyzed. A correctional system output approach was proposed to correct the influence of these factors, and to obtain the solar irradiance profile based on the measurements outputted by this system. The overall performance of the system was examined in two ice floes in the Arctic during the 9 th Chinese National Arctic Research Expedition. The measured solar irradiance profiles were in good agreement with those obtained using other commercially available oceanographic radiometers. The derived apparent optical properties of sea ice were comparable to those of similar sea ice measured by other optical instruments.  相似文献   

12.
The dramatic decline of summer sea ice extent and thickness has been witnessed in the western Arctic Ocean in recent decades, which hasmotivated scientists to search for possible factors driving the sea ice variability. An eddy-resolving, ice-ocean coupled model covering the entire Arctic Ocean is implemented, with focus on the western Arctic Ocean. Special attention is paid to the summer Alaskan coastal current (ACC), which has a high temperature (up to 5℃ ormore) in the upper layer due to the solar radiation over the open water at the lower latitude. Downstream of the ACC after Barrow Point, a surface-intensified anticyclonic eddy is frequently generated and propagate towards the Canada Basin during the summer season when sea ice has retreated away from the coast. Such an eddy has a warm core, and its source is high-temperature ACC water. A typical warm-core eddy is traced. It is trapped just below summer sea ice melt water and has a thickness about 60 m. Temperature in the eddy core reaches 2-3℃, and most water inside the eddy has a temperature over 1℃. With a definition of the eddy boundary, an eddy heat is calculated, which can melt 1 600 km2 of 1mthick sea ice under extreme conditions.  相似文献   

13.
通过谐波分析的方法,对东亚31个冬季(1980—2010年)的气温提取年际变化分量(周期小于8a部分)进行EOF分析。结果发现:在年际变化的时间尺度上,东亚冬季气温表现为高纬模态和低纬模态2个主要模态,它们一起可以解释总方差73%的变化。进一步分析表明,在年际变化尺度上,与气温变化的高纬模态相联系的大气环流表现为显著的北极涛动(AO)负位相分布,海平面气压场上西伯利亚高压和阿留申低压北移,对流层中层东亚大槽西移,高层西风急流向西北方向移动;副热带北太平洋和阿拉斯加湾的海表面温度(SST)变化呈偶极子振荡分布,这种准两年的周期振荡对这一模态的出现有一定的预示意义。而与气温变化的低纬模态相联系的大气环流表现为类AO正位相分布,与之相关的西伯利亚高压和阿留申低压南移,对流层中层东亚大槽东移,高层的西风急流则是向东南方向移动;赤道东太平洋的SST异常可能对这一模态的形成有一定的作用,而东亚近海的SST则更多是被动地改变。此外,海冰异常变化与东亚冬季气温变化的联系主要体现在:在前夏和前秋,东西伯利亚海-波弗特海海冰异常减少(增加)对应着随后东亚冬季气温变化的高纬模态(低纬模态),而冬季东亚气温变化的高纬模态(低纬模态)又与后期春季北极东半球的海冰异常增加(减少)具有较好的相关性,此外白令海和鄂霍次克海的海冰异常变化是伴随东亚冬季气温变化产生的。  相似文献   

14.
王坤  毕海波  黄珏 《海洋科学》2022,46(4):44-54
北极海冰作为一个巨大的淡水资源库, 每年向全球输送大量淡水资源, 从北极输出的海冰在向南输送的过程中融化, 对海洋水循环与水环境产生影响, 进而影响全球气候变化, 弗雷姆海峡作为北极海冰输出的主要通道, 对其研究显得尤为重要。为了解弗雷姆海峡海冰长期输出量, 利用美国冰雪数据中心(NSIDC)发布的海冰密集度、海冰厚度与海冰漂移速度数据, 计算得到 1979 年至 2019 年弗雷姆海峡海冰输出面积通量与 2010 至 2019 年弗雷姆海峡海冰输出体积通量, 并在此基础上分析弗雷姆海峡近 40 a 海冰输出量的变化状况以及弗雷姆海峡海冰输出的年际变化、季节变化, 并分析了影响弗雷姆海峡海冰输出量的可能原因。结果表明: 近 40 a 弗雷姆海峡年均海冰输出面积通量为 7.83×105 km2,近 10 a 弗雷姆海峡海冰年均输出体积通量为 1.34×106 km3, 从长期来看, 弗雷姆海峡海冰输出面积通量呈略微增加趋势, 弗雷姆海峡海冰输出体积通量在 2010—20...  相似文献   

15.
北极海冰输出研究综述   总被引:1,自引:1,他引:0  
北极海冰对全球气候变化起重要的指示作用。除了海水冻结和融化过程以外,通过弗拉姆海峡(Fram Strait)的海冰输出也是影响北极海冰质量变化的重要动力机制。观测数据中的多源卫星遥感数据(尤其是辐射计观测数据)在获取大尺度连续观测方面具有独特的优势,在研究北极海冰输出面积通量变化方面有着广泛应用。本文总结了北极弗拉姆海峡、其他通道(S-FJL、FJL-SZ、加拿大群岛、Nares海峡通道)海冰输出面积或体积通量,着重介绍了弗拉姆海峡不同年龄海冰输出情况,并总结和分析了影响北极海冰输运的大尺度大气活动模态。最后,本文阐明北极海冰输出方面现有研究的不足之处以及未来的突破方向。  相似文献   

16.
海冰对北极海冰边缘区大洋光学观测的影响评估   总被引:1,自引:1,他引:0  
Diffuse attenuation coefficient(DAC) of sea water is an important parameter in ocean thermodynamics and biology, reflecting the absorption capability of sea water in different layers. In the Arctic Ocean, however, sea ice affects the radiance/irradiance measurements of upper ocean, which results in obvious errors in the DAC calculation. To better understand the impacts of sea ice on the ocean optics observations, a series of in situ experiments were carried out in the summer of 2009 in the southern Beaufort Sea. Observational results show that the profiles of spectral diffuse attenuation coefficients of seawater near ice cover within upper surface of 50 m were not contaminated by the sea ice with a solar zenith angle of 55°, relative azimuth angle of 110°≤φ≤115° and horizontal distance between the sensors and ice edge of greater than 25 m. Based on geometric optics theory, the impact of ice cover could be avoided by adjusting the relative solar azimuth angle in a particular distance between the instrument and ice. Under an overcast sky, ice cover being 25 m away from sensors did not affect the profiles of spectral DACs within the upper 50 m either. Moreover, reliable spectral DACs of seawater could be obtained with sensors completely covered by sea ice.  相似文献   

17.
陈迪  孙启振 《海洋学报》2022,44(12):42-54
本文利用1951?2021年哈德莱中心提供的海冰和海温最新资料以及美国国家海洋和大气管理局气候预报中心提供的NCEP/NCAR再分析资料,分析探讨了北极海冰70余年的长期变化特征,进而研究了其快速减少与热带海温场异常变化之间的联系,揭示了在全球热带海洋海温场变化与北极海冰之间存在密切联系的事实。结果表明,北极海冰异常变化最显著区域出现在格陵兰海、卡拉海和巴伦支海。热带不同海区对北极海冰的影响存在明显时滞时间和强度差异,热带大西洋的影响相比偏早,印度洋次之,太平洋偏晚。热带大西洋、印度洋和中东太平洋海温异常影响北极海冰的最佳时间分别是后者滞后26个月、30个月和34个月,全球热带海洋影响北极海冰的时滞时间为33个月。印度洋SST对北极海冰的影响程度最强,其次是太平洋,最弱是大西洋。全球热带海洋对北极海冰的影响过程中,热带东太平洋和印度洋起主导作用。当全球热带海洋SST出现正(负)距平时,北极海冰会出现偏少(多)的趋势,而AO、PNA、NAO对北极海冰变化起重要作用,是热带海洋与北极海冰相系数的重要“纽带”。而AO、PNA和NAO不仅受热带海洋SST的影响,同时也受太平洋年代际振荡PDO和大西洋多年代际AMO的影响,这一研究为未来北极海冰快速减少和全球气候变暖机理的深入研究提供理论支撑。  相似文献   

18.
Arctic sea ice area and thickness have declined dramatically during the recent decades. Sea ice physical and mechanical properties become increasingly important. Traditional methods of studying ice mechanical parameters such as ice-coring cannot realize field test and long-term observation. A new principle of measuring mechanical properties of ice using ultrasonic was studied and an ultrasonic system was proposed to achieve automatic observation of ice mechanical parameters (Young’s modulus, shear modulus and bulk modulus). The ultrasonic system can measure the ultrasonic velocity through ice at different temperature, salinity and density of ice. When ambient temperature decreased from 0°C to ?30°C, ultrasonic velocity and mechanical properties of ice increased, and vice versa. The shear modulus of the freshwater ice and sea ice varied from 2.098 GPa to 2.48 GPa and 2.927 GPa to 4.374 GPa, respectively. The bulk modulus of freshwater ice remained between 3.074 GPa and 4.566 GPa and the sea ice bulk modulus varied from 1.211 GPa to 3.089 GPa. The freshwater ice Young’s modulus kept between 5.156 GPa and 6.264 GPa and sea ice Young’s modulus varied from 3.793 GPa to 7.492 GPa. The results of ultrasonic measurement are consistent with previous studies and there is a consistent trend of mechanical modulus of ice between the process of ice temperature rising and falling. Finally, this ultrasonic method and the ultrasonic system will help to achieve the long-term observation of ice mechanical properties of ice and improve accuracy of sea ice models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号