首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文对常用塑料增塑剂邻苯二甲酸二丁酯( DBP)在海洋沉积物上的吸附行为进行研究,发现它的吸附机理主要是在沉积物上的有机质间分配及表面吸附和微孔作用,吸附与有机质含量和黏土矿物的含量有一定的相关性.在实验浓度范围内,DBP在3种不同处理方式沉积物上的吸附行为分别可以用Linear和Freundlich等温式来描述.通过改变吸附条件发现,随着盐度减小、温度的增加,吸附能力减小;而随酸度的升高,吸附能力先升高后下降.此外,通过向体系中加入不同表面活性剂来模拟双溶质体系的方法,对DBP与表面活性剂的竞争吸附行为进行了研究.结果发现,十六烷基三甲基溴化铵(CTAB)和吐温80(Tween80)的加入使DBP的吸附能力增强;十二烷基苯磺酸钠(SDBS)的加入使DBP的吸附能力降低.  相似文献   

2.
为研究多环芳烃从河口到近海的环境归趋行为与生态风险,考察了沉积物质量浓度、溶解性有机质、温度、盐度4种典型环境因子对菲在黄河口沉积物上吸附的影响,比较了黄河口与近海两种沉积物对菲的吸附性能。研究结果表明,沉积物质量浓度越低,单位质量颗粒物的菲吸附量越高;共存的溶解性有机质对菲的吸附具有增促作用,且腐殖酸比黄腐酸的作用更显著;温度的升高不利于菲的吸附,而盐度的增加有利于菲的吸附。菲在沉积物上的吸附是分配作用与表面吸附两种行为的耦合,其中黄河口沉积物以表面吸附为主,而近海沉积物以分配作用为主。近海沉积物菲吸附量显著高于黄河口沉积物菲吸附量。基于此,菲从河口到近海的迁移过程中,更易于在沉积物表面发生吸附沉降,从而可能降低水相中的生态危害,但对近海底栖生物具有潜在的健康生态风险。  相似文献   

3.
薛峤娜  胡博  谭丽菊  王江涛 《海洋学报》2018,40(10):190-199
本文对采自渤海、黄海和东海3个典型海域的沉积物进行了尿素吸附/解吸的实验室模拟研究,用Freundlich吸附模型和Henry吸附模型分析了不同沉积物对尿素吸附的热力学特性,并研究了温度、沉积物粒径、有机质含量等因素对尿素在沉积物表面吸附的影响。结果表明,沉积物对尿素的吸附/解吸过程总体呈现3个阶段:快速吸附阶段(0~5 h)—慢速吸附阶段(5~12 h)—平衡阶段(12 h之后)。当水体中的尿素浓度较低时,沉积物解吸释放尿素,随着上覆水中尿素浓度逐渐增加,沉积物对上覆水中的尿素产生吸附行为,各海区沉积物对尿素的吸附能力由强至弱依次为渤海、东海、黄海,这可能与沉积物的类型有关。Freundlich方程和Henry方程均可模拟沉积物对尿素的吸附,温度、粒径以及沉积物中有机质含量等因素均对尿素在沉积物上的吸附产生影响,随着温度升高,尿素在沉积物上的吸附量变小,沉积物粒径越小,有机质含量越高,吸附尿素的能力越强,因此,揭示尿素在沉积物表面的环境行为时,必须考虑以上因素的影响。  相似文献   

4.
研究了人工海水介质中,阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)在胶州湾沉积物上的吸附动力学和热力学行为。结果表明:沉积物对CTAB的吸附动力学过程可以用伪二级模型进行较好的描述,拟合所得吸附速率常数k2随CTAB的初始浓度和温度的升高而增大。CTAB在沉积物上的吸附等温线可用Freundlich等温式来描述,而蒸馏水介质中,CTAB的吸附表现出两段特征。沉积物的吸附能力随着介质离子强度的增加而增大。计算得到的吸附活化能Ea以及热力学参数ΔH0、ΔS0和ΔG0表明CTAB在海洋沉积物上的吸附为物理吸附,是一个自发、放热、熵增加的过程。  相似文献   

5.
Tween20在海洋沉积物上的吸附行为   总被引:1,自引:1,他引:0  
研究非离子表面活性剂Tween20在海洋沉积物上的吸附行为.发现沉积物中有机质和粘土矿物的含量对其吸附起主要作用.在实验浓度范围内,Tween20在HCl和H2O处理沉积物上的吸附行为可用线性等温式描述,而在H2O2处理样上的吸附行为可用Freundlich等温式来描述.海水的离子强度和温度都影响其吸附行为:离子强度增加,温度降低,会使沉积物的吸附能力增加.根据热力学函数关系计算出吸附焓ΔHθ为-32.98 kJ/mol,吉布斯自由能ΔGθ为-16.01~-16.99 kJ/mol,吸附熵ΔSθ<0.Tween20在海洋沉积物上的吸附是一自发放热的过程.  相似文献   

6.
本文对常用的染料亚甲基蓝(MB)在海洋沉积物上的吸附行为进行了研究,发现它的吸附机理主要是在沉积物上的表面吸附和微孔作用,吸附与黏土矿物的含量有一定的相关性.在实验浓度范围内,MB在3种不同处理方式沉积物上的吸附行为都可以用Freundlich等温式来描述.通过改变吸附条件发现,随着盐度的增加,吸附能力减小,而温度的改变,对吸附能力的影响并不明显.此外,通过向体系中加入不同表面活性剂来模拟双溶质体系的方法,对MB与表面活性剂的竞争吸附行为进行了研究.结果发现在2种介质中,吐温20(Tween20)的加入对吸附的影响均不大;十六烷基三甲基溴化铵(CTAB)的加入使MB的吸附能力减弱,在蒸馏水中抑制作用更加明显;在海水中,十二烷基苯磺酸钠(SDBS)对吸附有抑制作用,而在蒸馏水中,SDBS却对吸附起到促进作用.  相似文献   

7.
本文对常用的染料亚甲基蓝(MB)在海洋沉积物上的吸附行为进行了研究,发现它的吸附机理主要是在沉积物上的表面吸附和微孔作用,吸附与黏土矿物的含量有一定的相关性。在实验浓度范围内,MB在3种不同处理方式沉积物上的吸附行为都可以用Freundlich等温式来描述。通过改变吸附条件发现,随着盐度的增加,吸附能力减小,而温度的改变,对吸附能力的影响并不明显。此外,通过向体系中加入不同表面活性剂来模拟双溶质体系的方法,对MB与表面活性剂的竞争吸附行为进行了研究。结果发现在2种介质中,吐温20(Tween20)的加入对吸附的影响均不大;十六烷基三甲基溴化铵(CTAB)的加入使MB的吸附能力减弱,在蒸馏水中抑制作用更加明显;在海水中,十二烷基苯磺酸钠(SDBS)对吸附有抑制作用,而在蒸馏水中,SDBS却对吸附起到促进作用。  相似文献   

8.
本文系统地研究人工海水(ASW)中,3种不同类型表面活性剂(十六烷基三甲基溴化铵,CTAB,阳离子表面活性剂;十二烷基苯磺酸钠,SDBS,阴离子表面活性剂;吐温20,Tween20,非离子表面活性剂)存在时辛基酚(OP)在海洋沉积物上的吸附行为.结果表明海洋沉积物中的有机质含量与海洋沉积物吸附OP的能力有着显著的正相关性.在表面活性剂浓度为0~10 mg· L-1时,3种表面活性剂对OP在海洋沉积物上的吸附都有促进作用,其促进作用由强到弱顺序依次为:CTAB>T ween20> SDBS.在表面活性剂浓度从0增加到120 mg·L-1,相同浓度的OP(4mg·L -1)在海洋沉积物上的吸附行为变化中,CTAB使OP的吸附量增加较快,当CTAB浓度大于40 mg·L-1时溶液中未吸附的OP浓度低于检测限;SDBS使OP在海洋沉积物上的吸附量先快速增加、后趋于平稳;Tween20使OP在海洋沉积物上的吸附量先增加后减小,吸附量达到最大值时Tween20的浓度与其临界角束浓度浓度(CMC)相接近.  相似文献   

9.
以黄河口海域表层沉积物为研究对象,研究沉积物对重金属Cu、Pb的吸附特性,将沉积物筛分为4种粒级,探讨粒度、pH值、吸附时间和吸附剂初始浓度对重金属吸附的影响。结果表明:沉积物粒径越小,对重金属的吸附量越大;吸附平衡时间有所差异,但在1.5h均能达到吸附平衡;吸附量均随pH值升高而逐渐增加,但铜的吸附较铅的吸附速度快;铜的吸附量与吸附剂初始浓度呈线性关系,而铅的吸附量在初始浓度较低时变化明显,随初始浓度增加吸附量增加减小;沉积物对铜吸附等温线符合Langmuir型,铅吸附等温线符合Freundlich型,吸附类型存在差异。重金属在沉积物中的吸附规律研究为黄河口海域污染调查及治理提供了科学依据。  相似文献   

10.
黄河口磷酸盐缓冲机制的探讨   总被引:13,自引:2,他引:11  
以黄河口为研究对象,通过对温度、盐度、平衡时间、县浮物含量等模拟河口现场条件,对黄河口磷酸盐的缓冲机制进行了探讨,黄河口悬浮行对磷酸盐的吸附和解吸一般在4-5h后就已趋于平衡;随着水体悬浮物含量的增加,对磷酸盐的吸附-解吸量呈指数形式下降,粒度减小使吸附量-解吸量呈指数形式增加,盐度对解吸量的影响程度大于吸附量,最大附和最小解吸出现在低盐度区;温度对吸附-解吸平衡的影响较大,随温度升高吸附量和解吸  相似文献   

11.
The effect of shale composition and fabric upon pore structure and CH4 sorption is investigated for potential shale gas reservoirs in the Western Canadian Sedimentary Basin (WCSB). Devonian–Mississippian (D–M) and Jurassic shales have complex, heterogeneous pore volume distributions as identified by low pressure CO2 and N2 sorption, and high pressure Hg porosimetry. Thermally mature D–M shales (1.6–2.5% VRo) have Dubinin–Radushkevich (D–R) CO2 micropore volumes ranging between 0.3 and 1.2 cc/100 g and N2 BET surface areas of 5–31 m2/g. Jurassic shales, which are invariably of lower thermal maturity ranging from 0.9 to 1.3% VRo, than D–M shales have smaller D–R CO2 micropore volumes and N2 BET surface areas, typically in the range of 0.23–0.63 cc/100 g (CO2) and 1–9 m2/g (N2).  相似文献   

12.
Benzyl butyl phthalate (BBP) is an endocrine-disrupting chemical, and its sorption behaviour on marine sediments was investigated. BBP sorption on the sediments was a rapid process, which could reach equilibrium in 6 h. The sorption equilibrium results could be well described by a linear isotherm. The BBP partition coefficient, Kd, varied from 7.16 to 12.54 L/g in approximately proportion to the organic content of the sediments. After H2O2 oxidation for removing the organic material from the sediments, the Kd values were reduced by more than 70%, but the organic normalised partition coefficient averaged 2165 L/g for the H2O2-treated sediments, which was more than three times of 598 L/g for the raw sediments. The sorption of BBP on the sediments increased with a decrease in temperature and an increase in salinity. A salting constant of 1.14 L/mol was obtained for BBP in artificial seawater. These research findings are of importance to an assessment of the fate and transport of BBP and other similar endocrine-disrupting chemicals (EDCs) in seawater–sediment systems.  相似文献   

13.
The influences of macronutrient enrichment on iron absorption, adsorption, and the bioconcentration factor (BCF) of iron by coastal diatoms were examined. In addition, the distribution of different iron size fractions in seawater in relation to two diatom species exposed to nutrient enrichment over an extended period (6 days for Thalassiosira weissflogii, and 4 days for Skeletonema costatum), was investigated. Iron concentrations were measured of seven size fractions: particles (>0.4 μm), colloidal particles (0.4 μm–100, 100–50, 50–30, 30–10, 10–3 kDa), and soluble species (<3 kDa).The absorption, adsorption, uptake, BCF of iron by the diatoms, and the iron species distribution in seawater were affected by the diatom species, as well as the nitrate (N) and phosphate (P) concentration. The addition of P could affect the iron internalization strategy. The content of soluble iron species was positively correlated with the amount of iron absorption by T. weissflogii, but it was not suitable for S. costatum.  相似文献   

14.
The sorption of yttrium and the rare earth elements (YREEs) by amorphous ferric hydroxide at low ionic strength (0.01 M ≤ I ≤ 0.09 M) was investigated over a wide range of pH (3.9 ≤ pH ≤ 7.1). YREE distribution coefficients, defined as iKFe = [MSi]T / (MT[Fe3+]S), where [MSi]T is the concentration of YREE sorbed by the precipitate, MT is the total YREE concentration in solution, and [Fe3+]S is the concentration of precipitated iron, are weakly dependent on ionic strength but strongly dependent on pH. For each YREE, the pH dependence of log iKFe is highly linear over the investigated pH range. The slopes of log iKFe versus pH regressions range between 1.43 ± 0.04 for La and 1.55 ± 0.03 for Lu. Distribution coefficients are well described by an equation of the form iKFe = (Sβ1[H+]− 1 + Sβ2[H+]− 2) / (SK1[H+] + 1), where Sβn are stability constants for YREE sorption by surface hydroxyl groups and SK1 is a ferric hydroxide surface protonation constant. Best-fit estimates of Sβn for each YREE were obtained with log SK1 = 4.76. Distribution coefficient predictions, using this two-site surface complexation model, accurately describe the log iKFe patterns obtained in the present study, as well as distribution coefficient patterns obtained in previous studies at near-neutral pH. Modeled log iKFe results were used to predict YREE sorption patterns appropriate to the open ocean by accounting for YREE solution complexation with the major inorganic YREE ligands in seawater. The predicted log iKFe′ pattern for seawater, while distinctly different from log iKFe observations in synthetic solutions at low ionic strength, is in good agreement with results for natural seawater obtained by others.  相似文献   

15.
The dynamics of high molecular weight organic matter in marine systems are influenced by molecular conformation, interactions with surfaces and susceptibility to enzymatic hydrolysis, parameters that are difficult to observe experimentally. Here we use electron paramagnetic resonance spectroscopy (EPR) and spin-labeled (SL-) polysaccharides to monitor the sorption of SL-polysaccharides to natural sediment surfaces and to montmorillonite and to observe decreases in polysaccharide size due to enzymatic hydrolysis. SL-pullulan, SL-xylan and SL-maltoheptaose all sorbed rapidly to muddy sediments but not to sandy sediments. SL-pullulan and SL-maltoheptaose also both sorbed to montmorillonite; however, SL-pullulan reached substantially greater final surface loadings than did SL-maltoheptaose. Using EPR has the advantages of being rapid (spectra can be acquired in 100 seconds), non-destructive and functional in complex media, including sediment slurries, muddy water or other optically opaque samples, permitting investigation of the interactions between biomacromolecules, extracellular enzymes and mineral surfaces in aquatic environments.  相似文献   

16.
The natural human female hormones oestrone and 17β-oestradiol have been implicated in the disruption of endocrine systems in some wildlife adjacent to sewage effluents. The sorption behaviour of these two compounds under estuarine conditions was studied by spiking either 2.55 μg of oestrone or 2.65 μg of 17β-oestradiol in kinetic experiments. In equilibrium experiments, 3 ng of oestrone or 3.2 ng of 17β-oestradiol was added in each of the centrifuge tubes. Sorption onto sediment particles was relatively slow, with sorption equilibrium being reached in about 70 and 170 h for oestrone and 17β-oestradiol, respectively. The effects of a variety of environmental parameters on sorption were studied including salinity, sediment concentration (SC), the presence of a third phase, particle size and, also, surfactant concentrations. Results show that although salinity did not induce any statistically significant effect on the sorption of 17β-oestradiol, it did statistically enhance the sorption of oestrone, and a salting constant of 0.3 l mol−1 was derived. The partition coefficient for both compounds decreased with increasing sediment concentration, a phenomenon that has been widely reported and attributed to the presence of colloids (which could enhance dissolved concentrations). In this paper, the true partition coefficients for sediment particles (Kptrue) and colloidal particles (Kctrue) have been calculated, and a Kptrue value of 141 and 102 ml g−1 was obtained for oestrone and 17β-oestradiol, respectively. In addition, Kctrue values for oestrone (222×102 ml g−1) and 17β-oestradiol (135×102 ml g−1) were two orders of magnitude higher than their respective Kptrue values, suggesting that the colloidal particles are significantly stronger sorbents for natural oestrogens than sediment particles. Particles of different sizes were found to have different partition coefficients due to the strong relationships between partition coefficients for the two compounds and particulate organic carbon (POC) contents and specific surface areas (SSAs). The presence of a surfactant was shown to reduce the partition coefficients for the two compounds, although its concentrations being used were higher than those normally found in the natural environment.  相似文献   

17.
The sediment–water partitioning of radiolabelled Cd, Hg and Zn has been investigated along an estuarine salinity gradient using samples from the Mersey Estuary, UK. Partitioning was studied using untreated particles, and particles that had been extracted using either a reducing agent (NH2OH.HCl–HOAc) or an oxidising agent (H2O2) in order to qualitatively evaluate the relative roles of Fe–Mn oxides and particulate organic matter (POM), respectively, on metal uptake. The extent of Cd partitioning between sediment and water, parameterised in terms of the distribution coefficient, KD, exhibited a reduction with increasing salinity, regardless of whether or not particles had been digested. However, the magnitude of KD decreased significantly following either chemical treatment, suggesting that both oxides and organic matter are important sorbents for Cd. The KD for Hg in the presence of untreated particles increased with increasing salinity, and chemical reduction of the particles enhanced the uptake of Hg and reinforced this trend. Particle oxidation led to a significant reduction in the KD for Hg, and uptake by the particles decreased with increasing salinity. These observations suggest that POM is considerably more important than Fe–Mn oxides in the removal of aqueous Hg, and that its presence is a prerequisite for enhanced sorption (or salting out) at elevated salinities. The salinity dependence of KD for Zn displayed characteristics of both Cd (below salinities of about 5) and Hg (at greater salinities). However, the magnitude of KD for Zn uptake was relatively insensitive to either chemical treatment, suggesting that oxides, POM, and residual phases contribute to the overall sorption of Zn by estuarine particles. Regression analyses of the metal partition data suggest that sorption to oxides and POM is nonadditive, and that the salinity dependence of metal partitioning results mainly from salinity-controlled interactions between metal and organic matter. Sequential extraction of metals bound to untreated and chemically treated particles in the partitioning experiments indicated that the exchangeability or lability of all metals increased on removal of either oxides or POM. This implies that sorption sites of relatively high energy are destroyed (or become less accessible), or sorption sites of relatively low energy are created (or become more accessible) on chemical treatment. These observations support a conceptual model for the particle surface whose integrity and binding properties are only maintained by the coexistence of and interaction between oxides and organic matter.  相似文献   

18.
The role of organic matter in the sorption capacity of marine sediments   总被引:1,自引:0,他引:1  
Zhanfei Liu  Cindy Lee 《Marine Chemistry》2007,105(3-4):240-257
Past studies have suggested that desiccation enhances hydrophobicity of salt marsh sediment, and that drying and rewetting sediment can be used to investigate sorption mechanisms of amino acids and other organic compounds [Liu, Z., Lee, C., 2006. Drying effects on sorption capacity of coastal sediment: The importance of architecture and polarity of organic matter. Geochim. Cosmochim. Acta 70, 3313–3324]. Here we further develop this technique to study sorption of hydrophobic and hydrophilic organic compounds in a wide range of marine sediments. Our results show that hydrophilic compounds sorb strongly to wet coastal sediments; in dried sediments, sorption of hydrophilic compounds decreases, while sorption of hydrophobic compounds is greatly enhanced. Small compounds with aromatic rings sorb more in dried than wet coastal sediments, suggesting that aromatic groups have a stronger effect on sorption than polar groups like amino and carboxyl moieties. Sorption of lysine, glutamic acid and putrescine decreases greatly when sediment is pretreated with KCl, indicating the importance of cation ion exchange. However, α-amino acids sorb much more than corresponding β- or γ-amino acids, and l-alanine sorbs more than d-alanine, suggesting that amino group location and chiral selectivity play an important role in sorption. Comparison of lysine and tyrosine sorption in different sediments indicates that source and diagenetic state of organic matter are important factors determining sorption capacity. Lysine sorbs much more to organic detritus from salt marsh sediment than to fresh Spartina root materials, marine particles, lignin or humic acids, indicating the importance of structural integrity in sorption. Desorption hysteresis of glutamic acid, putrescine and lysine (in dried sediment) suggests the presence of enzyme-type sorption sites of high sorption energy or multiple binding mechanisms. Taken together, these findings suggest that organic matter plays the major role in amino acid sorption in organic-rich sediments.  相似文献   

19.
Incorporation of 14C-depleted (old) dissolved organic carbon (DOC) on/into particulate organic carbon (POC) has been suggested as a possible mechanism to explain the low Δ14C-POC values observed in the deep ocean [Druffel, E.R.M., Williams, P.M., 1990. Identification of a deep marine source of particulate organic carbon using bomb 14C. Nature, 347, 172–174.]. A shipboard incubation experiment was performed in the Sargasso Sea to test this hypothesis. Finely ground dried plankton was incubated in seawater samples from the deep Sargasso Sea, both with and without a biological poison (HgCl2). Changes in parameters such as biochemical composition and carbon isotopic signatures of bulk POC and its organic compound classes were examined to study the roles of sorptive processes and biotic activity on POC character. Following a 13-day incubation, the relative abundance of the acid-insoluble organic fraction increased. Abundances of extractable lipids and total hydrolyzable amino acids decreased for both treatments, but by a greater extent in the non-poisoned treatment. The Δ14C values of POC recovered from the non-poisoned treatment were significantly lower than the value of the unaltered plankton material used for the incubation, indicating incorporation of 14C-depleted carbon, most likely DOC. The old carbon was present only in the lipid and acid-insoluble fractions. These results are consistent with previous findings of old carbon dominating the same organic fractions of sinking POC from the deep Northeast Pacific [Hwang, J., Druffel, E.R.M., 2003. Lipid-like material as the source of the uncharacterized organic carbon in the ocean? Science, 299, 881–884.]. However, the Δ14C values of POC recovered from the poisoned treatment did not change as much as those from the non-poisoned treatment suggesting that biological processes were involved in the incorporation of DOC on/into POC.  相似文献   

20.
The interdependence between the seismo-acoustic properties of a marine sediment and its geotechnical/physical parameters has been known for many years, and it has been postulated that this should allow the extraction of geotechnical information from seismic data. Though in the literature many correlations have been published for the surficial layer, there is a lack of information for greater sediment depths. In this article, a desktop study on a synthetic seafloor model illustrates how the application of published near-surface prediction equations to subsurface sediments (up to several tens of meters burial depth) can lead to spurious predictions. To test this further, acoustic and geotechnical properties were measured on a number of sediment core samples, some of which were subjected to loading in acoustically-equipped consolidation cells (oedometers) to simulate greater burial depth conditions. For low effective pressures (representing small burial depths extending to around 10 meters subsurface), the general applicability of established relationships was confirmed: the prediction of porosity, bulk density, and mean grain size from acoustic velocity and impedance appears generally possible for the investigated sedimentary environments. As effective pressure increases through, the observed relationships deviate more and more from the established ones for the near-surface area. For the samples tested in this study, in some instances increasing pressure even resulted in decreasing velocities. There are several possible explanations for this abnormal behavior, including the presence of gas, overconsolidation, or bimodal grain size distribution. The results indicate that an appropriate depth correction must be introduced into the published prediction equations in order to obtain reliable estimates of physical sediment properties for greater subsurface depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号