首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Particle fluxes were measured 7 m above the sea bottom during the predisturbance, disturbance, and postdisturbance periods by using time series sediment traps attached to seven deep-sea moorings deployed in the INDEX experiment site in the Central Indian Basin. The predisturbance particle fluxes varied between 22.3 to 55.1 mg m?2 day?1. Increased and variable particle fluxes were recorded by the sediment traps during the disturbance period. The increase observed was 0.5 to 4 times more than the background predisturbance fluxes. The increases in particle fluxes (~4 times) recorded by the sediment trap located in the southwestern direction (DMS-1) were the greatest, which could be the result of preferential movement of resuspended particles generated during the deep-sea benthic disturbance along the general current direction prevailing in this area during the experimental period. Also, the traps located closer to the disturbance area recorded greater fluxes than did the traps far away, across the Deep Sea Sediment Resuspension System path. This variability in recorded particle fluxes by the traps around the disturbance area clearly indicates that physical characteristics such as grain size and density of the resuspended particles produced during the disturbance had an important effect on particle movement. The postdisturbance measurements during ~5 days showed a reduction in particle fluxes of ~50%, indicating rapid particle settlement.  相似文献   

2.
Three moorings equipped with sediment traps were deployed in the north-western Alboran continental margin to study downward particle fluxes in the Guadiaro submarine canyon depositional system. This area is located close to the Strait of Gibraltar and is influenced by the upwelling induced by the Atlantic Jet and by episodic flood events from the Guadiaro River. Sediment traps were installed in the Guadiaro Canyon, in the Guadiaro Channel and in the adjacent continental slope. The overall duration of the deployment was 12 months (from November 1997 to October 1998). Time-series of downward particle fluxes, major constituents (organic carbon, nitrogen, biogenic opal, calcium carbonate and lithogenics) and 210Pb were determined near the surface at mid-depths and near the bottom. Total mass fluxes (TMF) in this area fluctuated more than two orders of magnitude and showed an important seasonal variability with higher fluxes in winter. Increases in TMF and lithogenics together with decreases in 210Pb, organic carbon and opal were recorded in all traps coinciding with river floods, indicating a direct response of the system to these events and a rapid offshore transport of suspended matter affecting the entire water column. The channel site received similar particle fluxes to the western open slope site, indicating that this channel did not act as a preferential sediment conduit during the deployment period. In the Guadiaro Canyon, TMF were more than one order of magnitude higher, 210Pb concentration was lower (one half) and organic matter was more degraded than at the channel site during spring and summer, as a consequence of receiving particles resuspended by internal waves and occasionally by trawling activities. These particles were mainly retained in the canyon, which works as a trap. Also, during spring and summer, the opal and organic carbon percentages increased in all traps both in magnitude and variability, and peaks seem to be associated with biological blooms.  相似文献   

3.
Hydrophobic organic contaminants (HOCs) may be used as tracers of particle dynamics in aquatic systems. Internal cycling of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were studied in the mesohaline Chesapeake Bay to assess the role of resuspension in maintaining particle and contaminant inventories in the water column, and to compare settling and suspended particle characteristics. Direct measurements of sediment resuspension and settling conducted in conjunction with one of the sediment trap deployments indicate reasonable agreement between measurements of particle flux using the two different methods. Organic carbon and PCB concentrations in settling solids collected in near-surface sediment traps were remarkably lower than concentrations in suspended particles collected by filtration during the trap deployments, but higher PAH concentrations were found in the settling particles. The different behaviors of PAHs and PCBs in the settling particles are due to their different source types and association to different types of particles. Sediment trap collections in near bottom waters were dominated by resuspension. Resuspension fluxes of HOCs measured 2 m above the bay bottom were as high as 2.5 μg/m2 day for total PCBs and 15 μg/m2 day for fluoranthene, and were 25 and 10 times higher than their settling fluxes from surface waters, respectively. HOC concentrations in the near bottom traps varied much less between trap deployments than HOC concentrations in the surface traps, indicating that the chemical composition of the resuspended particles collected in the near bottom traps was more time-averaged by repeated resuspension than the surface particles.  相似文献   

4.
Abstract

Twenty-four stations (12 each, during pre- and postdisturbance studies) 5300 to 5330 m deep between 10°01' and 10°03'S latitude and between 75°59' and 76°02'E longitude were sampled to study the effect of benthic disturbance on the distribution of meiofauna in the Central Indian Ocean. Bottom-sampling was conducted with a box corer. Total meiofauna density ranged from 35 to 45 organisms per 10 cm2 of bottom area during the predisturbance period and 21 to 32 organisms per 10 cm2 during the postdisturbance period in the test and reference sites. Differences between pre- and postdisturbance study results were statistically significant (P < 0.05). Nematoda was the most abundant meta-zoan group, on an average representing >55% of the meiofaunal population. The abundance of nematodes and harpacticoid copepods as well as total meiofauna showed marked decreases during postdisturbance sampling. Vertical distribution of meiofauna in the sediment cores revealed that 75% to 90% of the metazoan population was confined to the top 2-cm layer of the sediment. Recolonization experiments suggest that harpacticoid copepods may take more time for recolonization than the nematodes and are more sensitive to the physical disturbance. These findings suggest that nematodes and harpacticoid copepods can be used as indicator organisms in recolonization experiments.  相似文献   

5.
As a part of the Environmental Impact Assessment studies for nodule mining, a long-term program has been initiated in the Central Indian Basin. Multidisciplinary studies on geological, biological, physical, and chemical parameters were carried out in an area selected on the basis of baseline data collected in the first phase of the program. A benthic disturbance was simulated with a hydraulic device also used in the previous experiments in the Pacific Ocean. A site of 3,000 ×200 m was repeatedly disturbed by a combination of fluidizing pump and suction pump to dislodge and discharge sediment from the seafloor into the water column 5 m above the seafloor. During 9 days of operation, 26 tows were carried out for 47 h of disturbance, resuspending about 6,000 m 3 of sediment along an 88-km line. Data for postdisturbance impact assessment were collected with sediment traps, deep-towed cameras, seafloor samples, and conductivity-temperature depth sensor (CTD)-rosette observations. Seafloor data, sediment samples, and water column studies were aimed at evaluating the impact of benthic disturbance, on the basis of pre- and postdisturbance data collected during the experiment. Observations show that vertical mixing of sediment as well as its lateral movement and resedimentation because of plume migration alters various parameters and leads to changes in the environment around the area.  相似文献   

6.
Cold-water coral reefs and mounds are observed mainly on slopes and topographic highs, in areas with high current speeds. Previous investigations of the near-bed hydrodynamic regime around cold-water coral mounds at the Southwest Rockall Trough margin have revealed the presence of internal waves with a diurnal tidal frequency. Hitherto only short-term measurements existed on the particle supply to the corals and data are lacking on the seasonal variability. Bottom landers equipped with sensors recording near-bottom current dynamics were deployed at two sites in a mound area on the Southwest Rockall Trough margin, one with a dense coral cover and one without coral cover. At both sites a similar seasonal variation in internal-wave activity was recorded with high activity during winter and summer months and less dynamic conditions in spring and autumn. Increased intensity of internal-wave activity, reflected in higher average near-bottom current speed and amplitude of daily temperature fluctuations, results in higher mass fluxes as recorded in the sediment traps. On the site without coral cover, mass fluxes are two times higher, compared to the site with dense coral cover. During periods of high mass fluxes a predominance of resuspended material was observed at both sites, as indicated by reduced 210Pb activity and low organic matter concentrations. The flux of resuspended material largely masked the primary pelagic signal. However, low δ15N values in early spring and summer marked the arrival of fresh particles on both sites. A dense coral framework, baffling a large amount of particles settling between the coral branches, results in differences in particle flux, chemical composition and freshness of the trapped material. On the long term the presence of a coral framework plays a crucial role in the build-up of cold-water coral mounds.  相似文献   

7.
Downward fluxes of microbial assemblages associated with sinking particles sampled in sediment traps deployed at nominal depths of 1000 m (trap A), 3000 m (trap B) and 4700 m (trap C) were measured between October 1995 and August 1998 on the Porcupine Abyssal Plain (PAP, NE Atlantic). The goal of the study was to provide detailed information on the microbial contributions to the particulate organic carbon and DNA fluxes. Bacterial fluxes associated with settling particles in the PAP area were generally low and significantly lower than bacterial fluxes reported from the same area during 1989–90. Marked seasonal pulses in the microbial assemblages were observed in all years that were associated with particle flux maxima in April–June. No significant differences were found in microbial fluxes between 1000 and 4700 m depth, but both the bacterial biomass flux and the frequency of dividing bacteria increased with depth, suggesting that organic matter turnover and conversion into bacterial biomass increased in the deeper traps. The structure of microbial assemblages displayed clear changes with increasing depth; the ratios of bacteria to both flagellates and cyanobacteria increased up to 4-fold between 1000 and 4700 m, showing a marked increase in bacterial dominance in the deeper layers of the water column. A parallel increase of the bacterial contribution to particulate organic carbon (POC) and DNA fluxes was observed. Total microbial contribution to the POC flux in the PAP area was about 2%, whereas the contribution of cyanobacteria was negligible. Fluxes of microbial assemblages were significantly correlated with DNA fluxes and on average the bacteria accounted for 5% of DNA fluxes. Data reported here confirm that the “rain” of particulate bacterial DNA may represent an important source of nucleotides for deep-sea bacteria, but also suggests that a much larger pool of detrital DNA is potentially available to deep-sea micro-organisms.  相似文献   

8.
Currents, particle fluxes and ecology were studied in the Palamós submarine canyon (also known as the Fonera canyon), located in the northwestern Mediterranean. Seven mooring arrays equipped with current meters and sediment traps were deployed along the main canyon axis, on the canyon walls and on the adjacent slope. Additionally, local and regional hydrographic cruises were carried out. Current data showed that mean near surface and mid-depth currents were oriented along the mean flow direction (NE–SW), although at 400 and 1200 m depth within the canyon current reversals were significant, indicating a more closed circulation inside the canyon. Mean near-bottom currents were constrained by the local bathymetry, especially at the canyon head. The most significant frequency at all levels was the inertial frequency. A second frequency of about three days, attributed to a topographic wave, was observed at all depths, suggesting that this wave was probably not trapped near the bottom. The current field observed during the most complete survey revealed a meandering pattern with cyclonic vorticity just upstream from and within the canyon. The associated vertical velocity ranged between 10 and 20 m/day and was constrained to the upper 300 m. This latter feature, together with other computations, suggests that during this survey the meander was not induced by the canyon but by some kind of instability of the mean flow.In the canyon, suspended sediment concentration, downward particle fluxes, chlorophyll and particulate C and N were significantly higher up-canyon from about 1200 m depth than offshore, defining, along with the different hydrodynamics, two canyon domains: one from the canyon head to about 1200 m depth more affected by the canyon confinement and the other deeper than 1200 m depth more controlled by the mean flow and the shelf-slope front. The higher near-bottom downward total mass fluxes were recorded in the canyon axis at 1200 m depth along with sharp turbidity increases and are related to sediment gravity flows. During the deployment period, the increase in downward particle fluxes occurred by mid-November, when a severe storm took place. On the canyon walls at 1200 m depth, suspended sediment concentrations, downward particle fluxes, chlorophyll and particulate C and N were higher on the southern wall than on the northern wall inversely to the current’s energy. This could be caused by an upward water supply on the southern canyon wall and/or the mean flow interacting with the canyon bathymetry. In the swimmers collected by the sediment traps, the dominant species was an elasipod holothurian, which has not been recorded in other canyons or elsewhere in the Mediterranean, indicating particular speciation.  相似文献   

9.
Radiolarian fossil study in the sediment cores collected during the pre- and postdisturbance cruises of the Environmental Impact Assessment (EIA) Indian Ocean Experiment (INDEX) program of deep sea mining in the Central Indian Ocean Basin suggests a pronounced directional deposition of fossil radiolarians exhumed during the deep sea benthic disturbance experiment. The relative occurrences of the Stylatractus universus species that became extinct ~0.425 million years before present were mostly confined to the older and deeper strata of the sediment of the disturbance tract in the southwestern direction. This pattern is remarkable and suggests that the disturbance plume has been preferentially redeposited in the southwestern direction. This observation is in concurrence with the prevailing southwestern abyssal current during the disturbance experiment in the Central Indian Basin.  相似文献   

10.
Three mooring arrays were deployed in the Palamós Canyon axis with sediment traps, current meters and turbidimeters installed near the bottom and in intermediate waters. Frequent sharp and fast turbidity peaks along with current speed increases were recorded, particularly at 1200 m depth in spring and summer. During these events, near-bottom water turbidity increased by up to more than one order of magnitude, current velocity by two to four times and horizontal sediment fluxes by one to three orders of magnitude. When these events occurred, 9–11 days integrated downward particle fluxes collected by the near-bottom sediment trap increased by two to three times. These events were identified as sediment gravity flows triggered by trawling activities along the northern canyon wall. Sediment eroded by the trawling nets at 400–750 m depth on this wall seems to be channeled through a gully and transported downslope towards the canyon axis, where the 1200 m mooring was located. The sediment gravity flows recorded at the 1200 m site were not detected at deeper instrumented sites along the canyon axis, suggesting that they affect local areas of the canyon without traveling long distances downcanyon. These observations indicate that trawling can generate frequent sediment gravity flows and increase sediment fluxes locally in submarine canyons. Furthermore, in addition to the various natural processes currently causing sediment gravity flows and other sediment transport events, human activities such as trawling must be taken into account in modern submarine canyon sediment dynamics studies.  相似文献   

11.
During the Indian Deep-sea Environment Experiment (INDEX) conducted in the Central Indian Basin to simulate nodule mining activity, the sediments were physically disturbed, lifted from the seafloor, and then redeposited to study the effects of sediment redistribution on geological, chemical and biological characteristics of benthic environment. The first monitoring cruise, 44 months after the experiment, was part of long-term observations for restoration of conditions. This study describes the effects of the experiment on geotechnical properties of sediments measured in predisturbance, postdisturbance and monitoring phases. To compare the effects, sediment cores were collected from the same locations during the three phases. Siliceous, fine-grained sediments from the study area showed change in geotechnical properties induced due to the disturbance. Marginal increase in natural water content and significant reduction in undrained shear strength at the 0–5 cm sediment layer of cores from the tow zone during postdisturbance was observed. However, during the monitoring phase, an increase in shear strength and reduction in water content was noticed, which might indicate that the sediments are gradually acquiring predisturbance characteristics. The study also revealed that the meiofaunal density has a positive correlation with the water content, but a negative relationship with the shear strength of these siliceous sediments. Specific gravity of solids and porosity showed marginal change, whereas wet density remained unchanged.  相似文献   

12.
The DYFAMED time-series station, located in the open Ligurian Sea, is one of the few pluriannual flux programs in the world and the longest in the Mediterranean Sea. The trap data series is one of only three multi-decadal data sets in existence, and it provides flux information for an environment that is distinct from the other long-term data sets. At DYFAMED, downward fluxes of particles, carbon and other major elements have been regularly measured with sediment traps since 1986 at fixed depths of 200 and 1000 m. An overview is presented of the main trends of particle and carbon fluxes observed during the period 1988–2005, period when the mooring was located on the northern side of the Ligurian Sea. In spite of considerable interannual variability, fluxes displayed a marked seasonal pattern with the highest fluxes occurring during winter and spring and lowest fluxes throughout the stratified season (summer–autumn). Organic carbon fluxes measured at both depths were highly variable over time, ranging from 0.3 to 59.9 (mean 6.8) mg C m−2 d−1 at 200 m, and from 0.2 to 37.1 (mean 4.3) mg C m−2 d−1 at 1000 m. Mass fluxes were maximal in winter, whereas carbon fluxes were maximal in late spring. Reasonably good agreement existed between particle fluxes at both depths over the years, indicating a relatively efficient and rapid transport of particles from the upper ocean to the deep sea. However, during certain periods mass flux increased with depth suggesting lateral inputs of particles that by-pass the upper trap. Since 1999, the system has apparently shifted towards an increasing occurrence of extreme flux events in response to more vigorous mixing of the water column during the winter months. Although annual mass fluxes have increased in the last years, mean POC fluxes have not substantially changed over time, due mainly to lower carbon contents of the sinking particles during maxima of mass flux.  相似文献   

13.
To understand the transport process of lithogenic particles in the ocean, we measured the grain size distributions of lithogenic particles and measured the opal, La, Yb, Th, and Sc concentrations of the settling particles collected from time-series sediment traps at Sta. KNOT (44°N, 155°E, water depth 5320 m) from June 2002 to May 2004. The annual mean lithogenic particle flux observed at the lower sediment trap (5100 m) was twice as high as that at the upper sediment trap (770 m). The contribution of Asian loess estimated by the La/Yb and the Th/Sc ratios in the lower layer was greater than that in the upper layer. The fluxes of small lithogenic particles with sizes of 3–4 μm at the lower layer (5 to 65 mg/m2/day) were approximately four times larger than that at the upper layer (0.6 to 27 mg/m2/day). These results indicate that the horizontal addition of small particle sizes of Asian loess is a main factor in the increase of lithogenic particles at the lower layer. The temporal variations in the small lithogenic particle flux at the lower layer had a positive correlation with those at the upper layer (r = 0.71). The small lithogenic particle fluxes showed a strong positive correlation with the opal fluxes (r = 0.9). We therefore conclude that the small lithogenic particles were laterally transported and scavenged by the formation of aggregates with opal.  相似文献   

14.
Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49°N within the EU-funded Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid-slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off-slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of particulate organic carbon exceed the primary flux by over a factor of 2 at 1440 m on the outer slope. Estimated lateral fluxes of suspended particulate matter in the water column and intermediate nepheloid layers at the outer slope are potentially large compared to sinking fluxes measured by sediment traps. A comparison is made of particle flux at three continental margin sites and two sites in the adjacent open North Atlantic, from which it is seen that bulk and organic matter flux increases exponentially with proximity to the shelf break. The percentage contribution of particulate organic carbon to biogenic fluxes increases from a mean of 5.7% in the abyssal N. Atlantic to 13.9% at the continental margins.  相似文献   

15.
Seasonal patterns of vertical flux over two years (2001–2003) at two stations in the Bras d'Or Lakes, a large estuary in Cape Breton Island, Nova Scotia, were determined using aluminum and organic carbon in settled particles collected in moored traps to calculate lithogenic (terrigenous) and marine biogenic fractions. On an annual basis, lithogenic material comprised 53% and 81% of dry weight and 48% and 66% of organic carbon in settled particles at the deep- (128 m) and shallow-water (41 m) locations, respectively. Peaks in runoff, inferred from rain and snowfall precipitation, ice cover and possible horizontal transport of resuspended sediment coincided with maximum sedimentation rates of lithogenic material during unstratified periods between October and March. Biological factors correlated with phytoplankton and ice algal primary production and seasonal changes in zooplankton grazing inferred from phaeopigments controlled biogenic particle fluxes under stratified conditions between June and September and during winter. Year-to-year variations in deposition of lithogenic and marine biogenic material depended on seasonal differences in stratification, precipitation, freeze/melt conditions and the extent of ice cover.  相似文献   

16.
The Meriadzek Terrace (a 2100m deep plateau on the North-East Atlantic continental slope) was chosen as the experimental site for a multidisciplinary programme to observe the parameters needed for a better understanding of biological processes in the benthic environment.Two approaches were used to study the input of particulate matter to the bathyal seabed: sediment traps and indirect particle concentration measurements with nephelometry. These two technologies do not measure particles of the same size range, but as we are interested in the fluctuations of the particle supply, their results are complementary.Vertical profiles of nephelometry show that over the Meriadzek Terrace there is 125m thick nepheloid layer immediately above the bottom.The dynamics in the deep layer has been determined by measurements made with a Module Autonome Pluridisciplinaire (MAP), an in situ monitoring device developed at IFREMER which measures currents, nephelometry, temperature vertical profile near the bottom.Throughout six months of measurements in 1984, the currents at 0.5m and 120m above the bottom were subject to semi-diurnal tidal oscillations. The intensity of light scattering recorded with the nephelometer on the MAP was highly correlated with current velocities especially with semidiurnal tidal oscillations which seem to induce local resuspension. There are also longer term fluctuations, notably a very strong event which lasted several days during August. This event lagged behind a period of high intensity of internal waves correlated with a reversal in current direction. The sediment trap (Pièges à Particules “PAP”) observations showed that the particle fluxes on the Meriadzek Terrace have a cycle of variation similar to primary production which is characterized by a maximum in May during the phytoplankton bloom and a minimum during January. There was also interannual fluctuation.These two kinds of results point out the different time scales (from some hours to several months) of the large temporal fluctuations which affect the near-bottom particle behaviour.  相似文献   

17.
Deep-sea benthic ecosystems are mainly sustained by sinking organic materials that are produced in the euphotic zone. “Benthic-pelagic coupling” is the key to understanding both material cycles and benthic ecology in deep-sea environments, in particular in topographically flat open oceanic settings. However, it remains unclear whether “benthic-pelagic coupling” exists in eutrophic deep-sea environments at the ocean margins where areas of undulating and steep bottom topography are partly closely surrounded by land. Land-locked deep-sea settings may be characterized by different particle behaviors both in the water column and in relation to submarine topography. Mechanisms of particle accumulation may be different from those found in open ocean sedimentary systems. An interdisciplinary programme, “Project Sagami”, was carried out to understand seasonal carbon cycling in a eutrophic deep-sea environment (Sagami Bay) with steep bottom topography along the western margin of the Pacific, off central Japan. We collected data from ocean color photographs obtained using a sea observation satellite, surface water samples, hydrographic casts with turbidity sensor, sediment trap moorings and multiple core samplings at a permanent station in the central part of Sagami Bay between 1997 and 1998. Bottom nepheloid layers were also observed in video images recorded at a real-time, sea-floor observatory off Hatsushima in Sagami Bay. Distinct spring blooms were observed during mid-February through May in 1997. Mass flux deposited in sediment traps did not show a distinct spring bloom signal because of the influence of resuspended materials. However, dense clouds of suspended particles were observed only in the spring in the benthic nepheloid layer. This phenomenon corresponds well to the increased deposition of phytodetritus after the spring bloom. A phytodetrital layer started to form on the sediment surface about two weeks after the start of the spring bloom. Chlorophyll-a was detected in the top 2 cm of the sediment only when a phytodetritus layer was present. Protozoan and metazoan meiobenthos increased in density after phytodetritus deposition. Thus, “benthic-pelagic coupling” was certainly observed even in a marginal ocean environment with undulated bottom topography. Seasonal changes in features of the sediment-water interface were also documented.  相似文献   

18.
The first results of studies of vertical fluxes of sediment particles using the sediment traps at the Trans-Caspian section are presented. The flux values and distribution regularities are established. The fluxes of particles forming the sediment are also determined. The intra-annual variability in the fluxes corresponds to the seasonal variability of the biological activity. Above the northern slope of the Derbent Basin, the maximum vertical fluxes are recorded in the winter, which is caused by the intensification of the near-bottom currents.  相似文献   

19.
Four types of sediment traps which are different in their shapes were simultaneously deployed in Funka Bay, Hokkaido or open ocean, in order to compare the quantity and quality of settling particles collected at the same time. In Funka Bay, the larger total particulate fluxes were observed with the sediment traps having the larger height to width ratios. The settling particles collected with the narrower sediment traps were somewhat similar to suspended particle enriched in organic matter, phosphorus and Mn. These results suggest that the narrower sediment trap more effectively collects fine and light particles similar to suspended particles.  相似文献   

20.
Sinking matter collected by sediment traps, which were deployed in the equatorial Pacific Ocean at 175°E for about 11 months during 1992–1993, were analyzed for their flux and labile components in terms of amino acids and hexosamines. The samples provided a temporal resolution of 15 days and were collected from 1357 (shallow trap) and 4363 m (deep trap) depths where sea floor depth was 4880 m. Particle flux along with major components (carbonate, organic matter, biogenic opal and lithogenic material) and amino acid parameters showed distinct temporal variations, which were more pronounced in the shallow trap relative to deep trap. A coupling between the fluxes in the shallow and deep traps was more evident during the period of maximum particle flux, which seems to be connected with the short reappearance of non-El Niño conditions in equatorial Pacific during the 1991–1993 El Niño event. The biogeochemical indicators C/N, Asp/Bala, Glu/Gaba, Bala+Gaba mol%, THAA-C% and THAA-N% implied that the increase in sinking flux was associated with upwelling and enhanced surface production. Degradation of sinking particulate organic matter between the shallow and deep traps was also evident. Occasionally higher mass and major component fluxes in the deep trap relative to the shallow trap are attributed to contribution of resuspended particulates from sea floor (nepheloid layer) or to laterally advected particulates from nearby areas. Carbonate and opal composition of the sinking flux showed a predominance of calcareous plankton; however, Asp/Gly mol ratio and Ser+Thr mol% indicated enhanced occurrence of diatoms during the periods of higher flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号