首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the present study, a tethered spherical float undergoing oscillatory motion in regular waves is analysed. Float velocity is computed through dynamical equation of motion and particle velocity using linear wave theory. The results show that variation of particle velocity with respect to wave period, wave height or water depth is small compared to the variation of float velocity with respect to the same parameters. The results further indicate that the difference between float velocity and particle velocity is considerable and, in such cases, the relative velocity instead of the particle velocity has to be considered for drag force or drag power estimation. However, it is suggested that float velocity must be higher than the particle velocity in order to use relative velocity in drag force or drag power estimation.  相似文献   

2.
In the present study, the performance characteristics of a Savonius rotor type wave energy converter used in conjunction with a conventional double-buoy floating breakwater is investigated using physical model studies. The Savonius rotor type converter is suspended under the double-buoy floating breakwater to achieve wave attenuation while generating electricity, thereby enhancing the overall wave-elimination effect of the combination. The Savonius rotor is tested with different water submergence depths, and a reasonable relative submergence depth is determined within the scope of the research parameters. The hydrodynamics and energy capture performance of the combined breakwater with four different sizes of Savonius rotor under different wave conditions are studied, and the transmission coefficient of the experimental device is analyzed. The results show that when the optimal relative submergence depth is 0.65 D, where D is the impeller diameter, there is a correspondence between the optimal performance of Savonius rotor with different rotor sizes and the wave period and wave height. The optimal energy capture efficiency of the wave energy converter reaches 17%-20.5%, and the transmission coefficient is reduced by35%-45% compared with the conventional double-buoy breakwater.  相似文献   

3.
何飞  陈杰  蒋昌波  赵静 《海洋学报》2018,40(5):24-36
海草所形成的植物消波体系能有效防止岸线的侵蚀。利用Sánchez-González等的实验数据分析了波浪非线性对海草消波特性的影响。研究结果表明,相对水深和波陡对海草床的波能衰减系数影响依赖于海草淹没度。相对波高一定时,拖曳力系数随相对水深的增大而增大。对给定的相对水深,拖曳力系数随波陡的增大而减小。波浪非线性对于规则波和非规则波海草消波特性的影响并不一致。用无量纲参数(邱卡数、雷诺数、厄塞尔数)表达拖曳力系数的效果取决于拖曳力系数与无量纲参数的关系中是否充分考虑波浪非线性对拖曳力系数的影响。  相似文献   

4.
于珍  李雪艳  程志  孟钰婕 《海洋工程》2023,41(2):132-143
鉴于双弧板式透空堤的消浪性能仍不理想,提出了一种潜堤—双弧板组合结构,并基于OpenFOAM软件建立了波浪与该结构相互作用的数值模型,采用试验结果对所建数值模型进行验证。在此基础上,讨论了该新型结构的消浪特性、波压力分布特征以及所受波浪力的影响因素。结果表明,透射系数随相对板宽的增大而减小,反射系数则相反。透射与反射系数随相对潜深的变化较为显著。当结构位于静水位上方(即相对潜深为-0.05)时,透射系数最小而反射系数最大;当结构位于静水位下方(即相对潜深为0.05)时,透射系数最大而反射系数最小。该组合结构两块弧板上下表面的正负压力变化关于横轴近似对称,不同测点处的压力值差异显著。水平波浪力与垂直波浪力的变化趋势大致相似,但垂直波浪力远大于水平波浪力。研究结果可为其工程应用提供理论指导与技术支撑。  相似文献   

5.
氮气浮标是一种新型的剖面浮标,通过增加蓄能器作为被动浮力调节模块,可以利用海洋压差实现更有效率的剖面运动。由于蓄能器的加入,氮气浮标的运动特性相对于常规浮标有所变化。基于一款深海剖面浮标,利用理论分析和运动仿真的方法研究了氮气浮标的运动特性,对氮气浮标主动体积改变量与剖面运动深度之间的对应关系、氮气浮标的剖面运动形式以及氮气浮标的定深悬浮稳定性进行研究。研究表明,氮气浮标只需要主动对浮标体积做较小的改变即可完成同等深度的剖面运动,节省了浮标完成一次剖面运动的能量消耗。但蓄能器的引入增加了浮标完成剖面运动需要的时间,且给浮标的运动带来了突变性和不稳定性。  相似文献   

6.
波浪作用下方箱-水平板浮式防波堤时域水动力分析   总被引:1,自引:0,他引:1  
在线性化势流理论范围内求解方箱-水平板浮式防波堤的波浪绕射和辐射问题,从时域角度分析了浮式防波堤的水动力特性.采用格林函数法将速度势定解问题的控制微分方程变换成边界上的积分方程进行数值求解,浮式防波堤的运动方程采用四阶Runge-Kutta方法求解.对不同层数水平板的浮式防波堤的波浪透射系数、运动响应和锚链受力进行了计算分析,结果表明方箱相对宽度对方箱-水平板浮式防波堤的波浪透射作用有重要的影响,透射系数随着方箱相对宽度的增加而减小.对于方箱加二层水平板的浮式防波堤,在本研究的计算条件下,当方箱相对宽度从0.110增加至0.295时,透射系数从0.88减小至0.30.水平板有利于增加浮式防波堤对波浪的衰减作用,但随着水平板层数从0增加至2,这种波浪衰减作用增加的程度趋弱.方箱-水平板的浮式防波堤的运动量小于单一方箱防波堤的运动量.与此对应,方箱-水平板防波堤的锚链受力小于单一方箱防波堤的锚链受力.  相似文献   

7.
The wave transmission characteristics and wave induced pressures on twin plate breakwater are investigated experimentally in regular and random waves.A total of twenty pressure transducers are fixed on four surfaces of twin plate to measure the wave induced dynamic pressures.The spatial distribution of dynamic wave pressure is given along the surface of the twin plate.The uplift wave force obtained by integrating the hydrodynamic pressure along the structure is presented.Discussed are the influence of different incident wave parameters including the relative plate width B /L,relative wave height /i H a and relative submergence depth s /a on the non-dimensional dynamic wave pressures and total wave forces.From the investigation,it is found that the optimum transmission coefficient,t K occurs around B /L 0.41 ~ 0.43,and the twin plate breakwater is more effective in different water depths.The maximum of pressure ratio decreases from 1.8 to 1.1 when the relative submergence depth of top plate is increased from 0.8to +0.8.  相似文献   

8.
The vegetation has important impacts on coastal wave propagation. In the paper, the sensitivities of coastal wave attenuation due to vegetation to incident wave height, wave period and water depth, as well as vegetation configurations are numerically studied by using the fully nonlinear Boussinesq model. The model is based on the implementation of drag resistances due to vegetation in the fully nonlinear Boussinesq equation where the drag resistance is provided by the Morison’s formulation for rigid structure induced drag stresses. The model is firstly validated by comparing with the experimental results for wave propagation in vegetation zones. Subsequently, the model is used to simulate waves with different height, period propagating on vegetation zones with different water depth and vegetation configurations. The sensitivities of wave attenuation to incident wave height, wave period, water depth, as well as vegetation configurations are investigated based on the numerical results. The numerical results indicate that wave height attenuation due to vegetation is sensitive to incident wave height, wave period, water depth, as well as vegetation configurations, and attenuation ratio of wave height is increased monotonically with increases of incident wave height and decreases of water depth, while it is complex for wave period. Moreover, more vegetation segments can strengthen the interaction of vegetation and wave in a certain range.  相似文献   

9.
倪云林  龚倩  沈梦佳 《海洋学报》2022,44(9):124-131
与海床不可渗透的情况相比,波浪在可渗透海床上传播时会发生波能衰减。本文将基于可渗透海床上一维修正型缓坡方程,建立方程求解的有限差分模型。将通过与不可渗透海床上矩形Bragg防波堤对波浪反射系数解析解的对比,验证有限差分模型的正确性和适用性。将进一步研究海床可渗透情况下,海床的渗透性参数、坝体的相对宽度、数量、浸没度对波浪反射系数的影响及其与海床不可渗透情况下的差异。本文研究发现,Bragg共振发生时的反射系数随坝体数量的增多而增大,随海床渗透性参数和坝体浸没度的增大而减小,并且存在一个坝体相对宽度值会使Bragg共振反射达到最大。相较于海床不可渗透的情况,发生Bragg共振反射的波浪频率几乎相同,但反射系数减小,而且零反射(或全透射)现象不再存在。  相似文献   

10.
Forces and moment on a horizontal plate due to wave scattering   总被引:1,自引:0,他引:1  
Wave reflection and transmission from a fixed horizontal plate have been widely studied but theoretical solutions are only available for certain limiting conditions. A general solution for this wave scattering problem is presented using the finite-element method, covering the whole range of relative depth ratio from shallow to deep water limits and submergence depth ratio from the water surface to the bed. Existing long-wave solutions for the surface plate and the submerged plate have been extended to obtain the hydrodynamic forces and overturning moment exerted on the plate. Results from the finite-element program compare well with these solutions. Variations of the reflection coefficient, wave forces and moment, with the plate width to wave length ratio, relative depth ratio and submergence depth ratio are discussed.  相似文献   

11.
This paper presents a mathematical model which computes the hydrodynamic characteristics of a curtainwall–pile breakwater (CPB) using circular piles, by modifying the model developed for rectangular piles by Suh et al. [2006. Hydrodynamic characteristics of pile-supported vertical wall breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering 132(2), 83–96]. To examine the validity of the model, laboratory experiments have been conducted for CPB with various values of draft of curtain wall, spacing between piles, and wave height and period. Comparisons between measurement and prediction show that the mathematical model adequately reproduces most of the important features of the experimental results. The mathematical model based on linear wave theory tends to over-predict the reflection coefficient as the wave height increases. As the draft of the curtain wall increases and the porosity between piles decreases, the reflection and transmission coefficient increases and decreases, respectively, as expected. As the relative water depth increases, however, the effect of porosity disappears because the wave motion is minimal in the lower part of a water column for short waves.  相似文献   

12.
弧板式透空堤消浪性能影响因素数值研究   总被引:1,自引:0,他引:1  
弧板式透空堤是由弧型板组成的新型防波堤结构。为探讨其透射系数的影响因素,利用Fluent软件基于N-S方程构建了波浪与板式透空堤相互作用的数值模型,讨论了相对潜深、入射波周期、相对波高、相对板宽和结构型式对透射系数的影响。结果表明:弧板式透空堤的透射系数随着相对波高和入射波周期的增大而增大,在静水面附近透射系数最小,尤以静水面和略高于静水面时的消浪效果最佳;在相同波浪要素条件下,静水面及其上0.02 m和0.04 m位置处,弧板式透空堤的消浪效果明显优于平板式透空堤。  相似文献   

13.
Vegetation in wetlands is a large-scale nature-based resource that can provide multiple benefits to human beings and the environment,such as wave attenuation in coastal zones.Traditionally,there are two main calibration approaches to calculate the attenuation of wave driven by vegetation.The first method is a straightforward one based on the exponential attenuation of wave height in the direction of wave transmission,which,however,overlooks the crucial drag coefficient (C_D).The other method is in accordance with more complicate equations for predicting the damping factor,which is regarded as a function of C_D.In this study,a new relation,combining these above two conventional approaches,is proposed to predict the C_D in an operative approach.Results show that values yielded by the new assessment method perform a strong linear relationship with a collection of historical observations,with a promising R~2 value of 0.90.Besides,the linear regression derives a new predictive equation for the bulk drag coefficient.Additionally,a calibrated value of 4 for the empirical plant drag coefficient(C_P) is revealed.Overall,this new equation,with the superiority of the convenient exponential regression,is expected to be a rapid assessment method for calculating wave attenuation by vegetation and predicting the drag coefficient.  相似文献   

14.
以海漂垃圾收集装置浮式围栏的圆柱浮子为研究对象,基于圆柱浮子的浅浸没特性,改进了Morison方程,并结合物理模型试验,对波浪与浅浸没水平圆柱浮子作用问题进行探讨。结果表明,改进的Morison方程可对水平圆柱浮子的波浪力做精确预测,并揭示了波幅、浸没深度以及周期对圆柱浮子波浪力的影响规律。对于浅浸没的圆柱浮子,所受水平波浪力随波高的增大而增大,随周期的增大而衰减到某一特定值。波浪力的正向大小分布要大于负向,而正负向大小的差异主要受浸没深度的影响。  相似文献   

15.
The moored three-float line absorber WEC M4 has been developed to optimise power capture through experiments and linear diffraction modelling. With the progression down wave from small to medium to large floats, the device heads naturally into the wave direction. The bow and mid floats are rigidly connected by a beam and a beam from the stern float is connected to the hinge point above the mid float for power take off (PTO). Increasing the bow to mid float spacing to be more than 50% greater than the mid to stern float spacing has been found to improve power capture. To increase power capture further and potentially reduce electricity generation cost the number of mid floats and stern floats is increased while maintaining a single bow float for mooring connection. The bow and mid floats still form a rigid body while the stern floats may respond independently. A time domain linear diffraction model based on Cummins method has been applied to configurations of 121, 123, 132, 133, and 134 floats where the numbers indicate the number of floats: bow, mid, stern. This shows how power capture is increased while response remains similar. We only consider uni-directional (long-crested) waves with narrow band width typical of swell. By considering scatter diagrams for various offshore sites capacities may range from 3.7 MW to 17.3 MW for the eight float system with a capacity factor of 1/3 while the cost of electricity assuming capital cost to be a fixed multiple of steel cost is reduced from that for the three-float system.  相似文献   

16.
珊瑚岸礁破碎带附近波浪演化实验研究   总被引:4,自引:1,他引:3  
通过波浪水槽实验对珊瑚岸礁破碎带附近波浪演变规律开展研究,实验采用了概化的岸礁模型,测试了4种礁坪水深、4种礁前斜坡坡度和一系列入射波高的组合工况。对破碎带宽度和破碎带附近波浪的入射、反射、透射以及能量耗散进行了测量分析,透射波的计算考虑了礁坪上高次谐波的影响。结果表明:礁坪水深和入射深水波高的比值(即礁坪相对水深)是影响岸礁破碎带附近波浪演化的关键参数,而礁前斜坡坡度的影响在本文测量的范围内可以忽略不计。破碎带宽度与礁坪上浅水波波长为同一数量级,并与礁坪相对水深成反比;透射系数随礁坪相对水深的增大呈线性增长,而反射系数的变化却无类似规律;岸礁能够削弱超过50%入射波能,礁坪相对水深越小,波浪破碎造成的能量耗散越大。  相似文献   

17.
Wave attenuation by vegetation is a highly dynamic process and its quantification is important for understanding shore protection potential and modeling coastal hydrodynamics. Data documenting the interactions of Spartina alterniflora, represented by polyolefin tubing, and single- and double-peaked irregular waves were collected in a large-scale laboratory flume. The laboratory provided a controlled environment to evaluate wave attenuation, including the parameters of stem density, submergence, wave height, and peak period. Wave attenuation appeared to be most dependent on stem density and the ratio of stem length to water depth. Wave attention increased slightly with wave height while no clear trend with respect to wave period was seen. Treating double-peaked spectra as superimposed wave systems revealed a preferential dissipation of the higher-frequency wave system relative to the lower-frequency wave system under emergent conditions. Wave energy loss occurred at all frequencies of both spectral types, with dissipation increasing with frequency above the spectral peak. Parameterizing the spectral equilibrium range as a function of frequency showed a steepening of the spectral tail compared to the − 4 power law under emergent conditions. An empirical relationship defining the bulk drag coefficient for S. alterniflora as a function of the stem Reynolds number is found to serve as a first estimate for engineering applications.  相似文献   

18.
Comprehensive experimental and numerical studies have been undertaken to investigate wave energy dissipation performance and main influencing factors of a lower arc-plate breakwater. The numerical model, which considers nonlinear interactions between waves and the arc-plate breakwater, has been constructed by using the velocity wave- generating method, the volume of fluid (VOF) method and the finite volume method. The results show that the relative width, relative height and relative submergence of the breakwater are three main influencing factors and have significant influence on wave energy dissipation of the lower arc-plate open breakwater. The transmission coefficient is found to decrease with the increasing relative width, and the minimum transmission coefficient is 0.15 when the relative width is 0.45. The reflection coefficient is found to vary slightly with the relative width, and the maximum reflection coefficient is 0.53 when the relative width is 0.45. The transmission and reflection coefficients are shown to increase with the relative wave height for approximately 85% of the experimental tests when the relative width is 0.19 0.45. The transmission coefficients at relative submergences of 0.04, 0.02 and 0 are clearly shown to be greater than those at relative submergences of 0.02 and 0.04, while the reflection coefficient exhibits the opposite relationship. After the wave interacts with the lower arc-plate breakwater, the wave energy is mainly converted into transmission, reflection and dissipation energies. The wave attenuation performance is clearly weakened for waves with greater heights and longer periods.  相似文献   

19.
The research into hydrodynamic loading on ocean structures has concentrated mostly on circular cross-section members and relatively limited work has been carried out on wave loading on other cross-sections such as rectangular sections. These find applications in many offshore structures as columns and pontoons in semi-submersibles and tension-leg platforms. The present investigation demonstrates the behaviour of rectangular cylinders subject to wave loading and also supplies the hydrodynamic coefficients for the design of these sections.This paper presents the results of wave forces acting on a surface piercing truncated rectangular cylinder set vertically in a towing tank. The experiments are carried out in a water depth of 2.2 m with regular and random waves for low Keulegan–Carpenter number up to 6. The rectangular cylinder is of 2 m length, 0.2 m breadth and 0.4 m width with a submergence depth of 1.45 m from still water level. Based on Morison equation, the relationship between inertia and drag coefficients are evaluated and are presented as a function of KC number for various values of frequency parameter β, for two aspect ratios of cylinders, equals to 1/2 and 2/1. Drag and inertia coefficients obtained through regular wave tests are used for the random wave analysis to compute the in-line force spectrum.The results of the experiments show the drag and inertia coefficients are strongly affected by the variation in the aspect ratios of the cylinder. The drag coefficients decreases and inertia coefficients increases with increase in Keulegan–Carpenter number up to the range of KC number tested. The random wave results show a good correlation between measured and computed force spectrums. The transverse forces in both regular and random waves are found to be small compared to in-line forces.  相似文献   

20.
A new normal mode spectral analysis method is presented for calculating r.m.s. riser deflections, bending stresses and lower ball joint angles. Forces on the riser consist of: (a) non-linear fluid drag taking account of the relative velocity due to tethered buoyant platform (TBP) motion, riser elastic deflection and wave induced fluid velocity, (b) wave induced fluid acceleration, (c) inertia forces due to TBP acceleration, and (d) buoyancy. The non-linear fluid drag forces are linearized using Tung and Wu's approximation based on the r.m.s. relative fluid velocity and current. A wide range of results is presented for risers in water depths up to 1000 m and it is observed that 6 normal modes are sufficient for calculating bending stresses. A static analysis is also presented for bending stresses due to wave and current induced drag forces and riser offset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号