首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mesoscale eddies, which are mainly caused by baroclinic effects in the ocean, are common oceanic phenomena in the Northwest Pacific Ocean and play very important roles in ocean circulation, ocean dynamics and material energy transport. The temperature structure of mesoscale eddies will lead to variations in oceanic baroclinity, which can be reflected in the sea level anomaly (SLA). Deep learning can automatically extract different features of data at multiple levels without human intervention, and find the hidden relations of data. Therefore, combining satellite SLA data with deep learning is a good way to invert the temperature structure inside eddies. This paper proposes a deep learning algorithm, eddy convolution neural network (ECN), which can train the relationship between mesoscale eddy temperature anomalies and sea level anomalies (SLAs), relying on the powerful feature extraction and learning abilities of convolutional neural networks. After obtaining the temperature structure model through ECN, according to climatic temperature data, the temperature structure of mesoscale eddies in the Northwest Pacific is retrieved with a spatial resolution of 0.25° at depths of 0–1 000 m. The overall accuracy of the ECN temperature structure is verified using Argo profiles at the locations of cyclonic and anticyclonic eddies during 2015–2016. Taking 10% error as the acceptable threshold of accuracy, 89.64% and 87.25% of the cyclonic and anticyclonic eddy temperature structures obtained by ECN met the threshold, respectively.  相似文献   

2.
南印度洋中尺度涡统计特征及三维合成结构研究   总被引:2,自引:2,他引:0  
南印度洋是海洋中尺度涡的多发区域。本文利用卫星高度计资料及Argo浮标资料,对南印度洋(10°~35°S, 50°~120°E)区域中尺度涡的分布、表观特征等进行了统计分析,采用合成方法,构建了该区域中尺度涡的三维温盐结构。结果表明,涡旋频率呈明显的纬向带状分布,在18°~30°S存在一个明显的涡旋频率带状高值区;涡旋半径具有由南至北逐渐增大的趋势;长周期涡旋在其生命周期内,半径、涡动能、涡能量密度、涡度等性质均经历了先增大而后减小的过程;涡旋以西向运动为主,在经向上移动距离较小,长周期气旋(反气旋)涡具有明显的偏向极地(赤道)移动的倾向;涡旋平均移动速度为5.9 cm/s,速度大小大致沿纬向呈带状分布。在混合层以下,气旋涡(反气旋涡)内部分别呈现明显的温度负(正)异常,且分别存在两个位温负(正)异常的冷(暖)核结构;气旋涡(反气旋涡)整体上呈现"正-负"("负-正")上下层相反的盐度异常结构。中尺度涡对温盐的平均影响深度可达1 000×104 Pa以上。  相似文献   

3.
中尺度涡旋是海洋中典型的中尺度现象,是海洋中能量传递的运输者,中尺度涡识别与提取是物理海洋学研究的重要内容之一,而中尺度涡自动发现算法是最基础的用于寻找与分析中尺度涡的工具。中尺度涡旋探测工作的数据来源主要为卫星高度计数据融合出的SLA数据,该数据可以客观的描述海洋表层高度状态。中尺度涡表示为SLA闭合等值线所包围的局部等值区域,涡旋识别需要从SLA数据中提取出稳定的闭合等值线结构。针对基于SLA数据中的中尺度涡探测的特点,本文提出了一种新的基于聚类方法的中尺度涡自动识别算法,通过对SLA数据集的分割与筛选将中尺度涡区域与背景区域分离,后建立区域内联系并将其映射到SLA地图上来提取中尺度涡结构。本文算法解决了传统探测算法中参数设定的敏感性问题,不需要进行稳定性测试,算法适应性增强。算法中加入了涡旋筛选机制,保证了结果的涡旋结构的稳定性,提高了识别准确率。在此基础上,本文选取了西北太平洋及中国南海地区进行了中尺度涡探测实验,实验结果展示出了本文算法在较传统算法提高算法效率的同时,也保持着较高的算法稳定性,可以在稳定识别各个单涡结构的同时识别稳定的多涡结构。  相似文献   

4.
Mesoscale eddies play vital roles in ocean processes. Although previous studies focused on eddy surface features and individual three-dimensional (3D) eddy cases in the northwestern Pacific Ocean, the analysis of unique eddy 3D regional characteristics is still lacking. A 3D eddy detection scheme is applied to 9 years (2000–2008) of eddy-resolving Regional Ocean Modeling System (ROMS) output to obtain a 3D eddy dataset from the surface to a depth of 1 000 m in the northwestern Pacific Ocean (15°–35°N, 120°–145°E). The 3D characteristics of mesoscale eddies are analyzed in two regions, namely, Box1 (Subtropical Countercurrent, 15°–25°N, 120°–145°E) and Box2 (Southern Kuroshio Extension, 25°–35°N, 120°–145°E). In Box1, the current is characterized by strong vertical shear and weak horizontal shear. In Box2, the current is characterized by the strong Kuroshio, topographic effect, and the westward propagation of Rossby waves. The results indicate the importance of baroclinic instability in Box1, whereas in Box2, both the barotropic and baroclinic instability are important. Moreover, the mesoscale eddies’ properties in Box1 and Box2 are distinct. The eddies in Box1 have larger number and radius but a shorter lifetime. By contrast, Box2 has fewer eddies, which have smaller radius but longer lifetime. Vertically, more eddies are detected at the subsurface than at the surface in both regions; the depth of 650 m is the turning point in Box1. Above this depth, the number of cyclonic eddies (CEs) is larger than that of anticyclonic eddies (AEs). In Box2, the number of CEs is dominant vertically. Eddy kinetic energy (EKE) and mean normalized relative vorticity in Box2 are significantly higher than those in Box1. With increasing depth, the attenuation trend of EKE and relative vorticity of Box1 become greater than those of Box2. Furthermore, the upper ocean (about 300 m in depth) contains 68.6% of the eddies (instantaneous eddy). Only 16.6% of the eddies extend to 1 000 m. In addition, about 87% of the eddies are bowl-shaped eddies in the two regions. Only about 3% are cone-shaped eddies. With increasing depth of the eddies, the proportion of bowl-shaped eddies gradually decreases. Conversely, the cone- and lens-shaped eddies are equal in number at 700–1 000 m, accounting for about 30% each. Studying the 3D characteristics of eddies in two different regions of the northwestern Pacific Ocean is an important stepping stone for discussing the different eddy generation mechanisms.  相似文献   

5.
赵军  高山  王凡 《海洋与湖沼》2021,52(5):1145-1159
海洋中尺度涡在本质上是属于满足准地转平衡的大尺度运动,因此理论上,其在短时间内的运动将主要受到准地转平衡关系的约束,而外部强迫场的影响在短期内不会明显改变其运动特征。基于上述思想,我们提出了一种基于四维变分同化初始场的中尺度涡旋预报方案。为了检验该方案的可行性,本文使用区域海洋模式(regional ocean modeling system, ROMS)和其内建的增量强约束四维变分同化(incremental strong constraint four dimensional variational, I4D-Var)模块,建立了一个南海海洋同化模拟系统。首先,通过I4D-Var方法将AVISO卫星高度计资料同化到海洋数值模拟中,获得了理想的中尺度涡同化模拟结果。同化、模式模拟和观测三者的中尺度涡统计结果表明,该同化系统模拟的南海中尺度涡的路径、半径、海表高度异常和振幅等特征信息与AVISO(Archiving ValidationandInterpolationofSatelliteOceanographicData)观测结果高度吻合,同时在深度上的分析表明,涡旋对应的温度、盐度和密度均得到有效的调整。然后,将该同化系统的模拟结果做为初始场,对某一特定时段的南海中尺度涡进行了后报模拟和结果的定量化分析。通过比较后报模拟与观测资料中对应涡旋的海表面高度异常(sea surface height anomalies, SSHA)相关系数、涡心差距和半径绝对误差,证明该方案的中尺度涡后报时效至少可达10 d以上。后报实验结果验证了该中尺度涡预报方案的可行性,从而为中尺度涡的预报提供一定的理论基础和可行性方案。  相似文献   

6.
吕宋海峡两侧中尺度涡统计   总被引:4,自引:0,他引:4  
利用1993-2000年间的T/P卫星高度计轨道资料的时间序列和MODAS同化产品中的卫星高度计最优插值资料对南海东北部海区中尺度涡旋进行动态追踪。按照给定的标准从2种资料中提取了涡旋信息并对其特征量进行统计分析。结果表明,南海东北部海区中尺度涡旋十分活跃,平均每年6个,其中暖涡4个,尺度一般为200~250 km,平均地转流速为44 cm/s;冷涡每年平均2个,尺度一般为150~200 km,平均地转流速为-37 cm/s。吕宋海峡两侧涡旋的比较分析表明,南海东北部海区仍属于西北太平洋副热带海区的涡旋带,冷、暖涡旋处于不断的形成—西移—消散过程中。南海东北部中尺度冷涡大多是南海内部产生的,而暖涡与吕宋海峡外侧暖涡有一定的联系又具有相对的独立性。分析认为西北太平洋的西行暖涡在到达吕宋海峡时,受到黑潮东翼东向下倾的等密度面的抑制和岛链的阻碍,涡旋停滞于吕宋海峡外侧并逐渐消弱,被阻挡于吕宋海峡东侧涡旋释放的能量,形成一支横穿吕宋海峡(同时横穿过黑潮)的高速急流,把能量传递给吕宋海峡西侧的涡旋,使其得到强化,这是吕宋海峡两侧涡旋联系的一种重要机制。  相似文献   

7.
为深入研究太平洋中尺度涡的三维结构特征,解决常规一维剖面和二维平面图对温盐空间分布规律分析不足的弊端,文章在三维结构合成分析的基础上首次引入Voxler平台,建立太平洋中尺度涡温盐要素的三维数据模型,实现太平洋中尺度涡三维结构的可视化表达,利用历史观测数据合成的太平洋中尺度涡三维结构,对温盐结构特征进行直观的全空间三维分析。研究结果表明:太平洋反气旋涡温度异常的主体结构深度约200m,呈鹅卵石状,涡旋结构可维持到1 000m;盐度异常的主体结构深度约300m,呈水平扁平水滴状,涡旋结构仅维持约800m;与盐度异常的三维结构相比,温度异常结构较复杂,且涡旋结构更明显,到达深度也更深,即温度受中尺度涡的影响更显著。  相似文献   

8.
The statistical characteristics and vertical thermohaline properties of mesoscale eddies in the Bay of Bengal are studied from the view of satellite altimetry data and Argo profiles. Eddy propagation preferences in different lifetimes, eddy evolution process, and geographical distribution of eddy kinetic properties are analyzed in this area. Eddies exist principally in the western Bay of Bengal, and most of them propagate westward. There is a clear southward(equatorward) preference for eddies with long lifetimes, especially for cyclones. Moreover, the eddies in different areas of the bay show different north-southward preferences. Evolution of eddy kinetic properties with lifetime shows that eddies have the significant three-stage feature: the growth period in the former one-fifth lifetime, the stable period in the middle two-fifth to four-fifth lifetime, and the dying period in the last one-fifth lifetime. Large-amplitude and high-intensity eddies occur only in the relatively confined regions of highly unstable currents, such as the East Indian Coastal Current and eastern Sri Lanka. Based on Argo profile data and climatology data, the eddy synthesis method was used to construct three-dimensional temperature and salt structures of eddies in this area. The mean temperature anomaly is negative/positive to the cyclonic/anticyclonic eddies in the upper 300×10~4 Pa, and below this depth, the anomaly becomes weak. The salinity structures of positive anomalies inside cyclonic eddies and negative anomalies inside anticyclonic eddies in the Bay of Bengal are not consistent with other regions. Due to the special characteristics of the water mass in the bay, especially under the control of the low-salinity Bay of Bengal water at the surface and the Indian equatorial water in the deep ocean, the salinity of seawater shows a monotonic increase with depth. For regional varieties of temperature and salinity structures, as the eddies move westward, the temperature anomaly induced by the eddies increases, the effecting depth of the eddies deepens, and the salinity structures are more affected by inflows. In the north-south direction, the salinity structures of the eddies are associated with the local water masses, which comprise lowsalinity water in the northern bay due to the inflow of freshwater from rivers and salty water in the southern bay due to the invasion of Arabian Sea high-salinity water from the north Indian Ocean.  相似文献   

9.
采用AVISO提供的卫星高度计融合数据,对南海及西北太平洋(5°~35°N,105°~150°E)1993~2009年17a间的中尺度涡活动进行统计分析.结果表明南海中尺度涡活动具有明显的年际变化,每年观测到产生的中尺度涡个数平均为21~22个,标准差约为4个,占年平均值的20%;而西北太平洋中尺度涡个数的年际差异不大,平均每年观测到150~151个中尺度涡产生,标准差约为14个,仅占年平均值的9%.中尺度涡的逐月统计结果表明南海和西北太平洋的中尺度涡活动均有明显季节变化,1993~2009年间的各月南海和西北太平洋分别观测到30~31个和213~214个中尺度涡产生,标准差分别约为6个和41个,均占各自月平均值的19%.中尺度涡主要集中分布在南海东北部、越南东部和黑潮流轴附近海域.涡动能、海面高度距平均方根以及涡度均方根的空间分布大致与涡旋个数分布一致,但在西北太平洋的低纬海区和黑潮延伸体区域则不甚吻合.在相同的涡旋判别标准下,西北太平洋低纬海区(5°~15°N)观测到的中尺度涡个数比中高纬海区要少得多.  相似文献   

10.
自黑潮脱落并由吕宋海峡进入中国南海的中尺度涡(简称脱落涡旋)对黑潮与南海的水体交换、热量及物质输送等过程均有十分重要的作用。基于1993—2013年OFES(OGCM for the Earth Simulator)模式数据产品,分析研究了脱落涡旋的统计特征及其温盐流三维结构,并与卫星观测结果进行对比分析。OFES模式的海表面高度数据和卫星高度计数据的统计结果都表明气旋式脱落涡旋(脱落冷涡)绝大部分在黑潮西侧边缘生成,反气旋式脱落涡旋(脱落暖涡)则大部分在黑潮控制区(包括黑潮流套区)生成,脱落暖涡的数量远多于脱落冷涡的。OFES模式数据得到的脱落涡旋个数和出现频率较卫星观测结果要明显偏低。此外,由OFES模式数据得到的脱落涡旋三维结构表明,黑潮控制区和黑潮西侧边缘生成的脱落冷涡的流场垂向影响深度差异较大,而脱落暖涡的流场垂向影响深度一般达水深1000 m以深,脱落涡旋的位势温度的垂向影响深度与该涡的流场垂向影响深度相当,其盐度的垂向影响深度则较浅;脱落涡旋的温盐结构受黑潮的影响较大。  相似文献   

11.
综述东海和琉球群岛以东海域若干气旋型和反气旋型涡旋的研究.对东海陆架、200m以浅海域,主要讨论了东海西南部反气旋涡、济州岛西南气旋式涡和长江口东北气旋式冷涡.东海两侧和陆坡附近出现了各种不同尺度的涡旋,其动力原因之一是与东海黑潮弯曲现象有很大关系,其次也与地形、琉球群岛存在等有关.东海黑潮有两种类型弯曲:黑潮锋弯曲和黑潮路径弯曲.黑潮第一种弯曲出现了锋面涡旋,评述了锋面涡旋的存在时间尺度与空间尺度和结构等;也指出了黑潮第二种弯曲,即路径弯曲时在其两侧出现了中尺度气旋式和反气旋涡,讨论了它们的变化的特性.特别讨论了冲绳北段黑潮弯曲路径和中尺度涡的相互作用,着重指出,当气旋式涡在冲绳海槽北段成长,并充分地发展,其周期约在1~3个月时,它的空间尺度成长到约为200km(此尺度相当于冲绳海槽的纬向尺度)时,黑潮路径从北段转移到南段.也分析了东海黑潮流量和其附近中尺度涡的相互作用.最后指出在琉球群岛以东、以南海域,经常出现各种不同的中尺度反气旋式和气旋式涡,讨论了它们在时间与空间尺度上变化的特征.  相似文献   

12.
两个西边界流延伸体区域中尺度涡统计特征分析   总被引:3,自引:2,他引:1  
黑潮和湾流是世界大洋中最典型的两支西边界流,黑潮延伸体(Kuroshio Extention,KE)和湾流延伸体(Gulf Stream Extention,GSE)区域中尺度涡活动十分活跃。本文综合利用卫星高度计资料和Argo浮标资料,对KE和GSE区域中尺度涡的表层特征及其对温盐影响进行了统计研究和对比分析。结果表明:黑潮和湾流主轴附近为涡旋频率的高值区,主轴南北两侧分别以气旋涡和反气旋涡数量占多,主轴附近的涡旋强度明显大于其他区域;两个区域的涡旋以西向移动为主,气旋涡和反气旋涡都具有向南(赤道)偏离的趋势;两个区域的涡旋数量都以夏、秋季较多,涡旋强度都在春、夏季较大,且GSE区域涡旋强度明显大于KE区域;气旋涡(反气旋涡)引起内部明显的温度负(正)异常,KE区域气旋涡(反气旋涡)内部呈"负-正"("正-负")上下层相反的盐度异常分布,GSE区域气旋涡(反气旋涡)在各层呈现较为一致的盐度负(正)异常;两个区域中尺度涡对温盐场的平均影响深度可达1 000×104 Pa以上。  相似文献   

13.
The spatial distribution of eddy diffusivity, basic characteristics of coherent mesoscale eddies and their relationship are analyzed from numerical model outputs in the Southern Ocean. Mesoscale fluctuation information is obtained by a temporal-spatial filtering method, and the eddy diffusivity is calculated using a linear regression analysis between isoneutral thickness flux and large-scale isoneutral thickness gradient. The eddy diffusivity is on the order of O (103 m2/s) with a significant spatial variation, and it is larger in the area with strong coherent mesoscale eddy activity. The mesoscale eddies are mainly located in the upper ocean layer, with the average intensity no larger than 0.2. The mean radius of the coherent mesoscale cyclonic (anticyclonic) eddy gradually decays from (121.2±10.4) km ((117.8±9.6) km) at 30°S to (43.9±5.3) km ((44.7±4.9) km) at 65°S. Their vertical penetration depths (lifespans) are deeper (longer) between the northern side of the Subpolar Antarctic Front and 48°S. The normalized eddy diffusivity and coherent mesoscale eddy activity show a significant positive correlation, indicating that coherent mesoscale eddy plays an important role in eddy diffusivity.  相似文献   

14.
Meso-scale eddies are important features in the South China Sea(SCS). The eddies with diameters of 50–200 km can greatly impact the transport of heat, momentum, and tracers. A high-resolution wave-tide-circulation coupled model was developed to simulate the meso-scale eddy in the SCS in this study. The aim of this study is to examine the model ability to simulate the meso-scale eddy in the SCS without data assimilations The simulated Sea Surface Height(SSH) anomalies agree with the observed the AVISO SSH anomalies well. The simulated subsurface temperature profiles agree with the CTD observation data from the ROSE(Responses of Marine Hazards to climate change in the Western Pacific) project. The simulated upper-ocean currents also agree with the main circulation based on observations. A warm eddy is identified in winter in the northern SCS. The position and domain of the simulated eddy are confirmed by the observed sea surface height data from the AVISO. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilation.The three-dimensional structure of the meso-scale eddy in the SCS is analyzed using the model result. It is found that the eddy center is tilted vertically, which agrees with the observation. It is also found that the velocity center of the eddy does not coincide with the temperature center of the eddy. The result shows that the model has the ability to simulate the meso-scale eddy in the SCS without data assimilations. Further study on the forming mechanism and the three-dimensional structure of the meso-scale eddies will be carried out using the model result and cruise observation data in the near future.  相似文献   

15.
在前人的工作中,拉格朗日分析法被用来演示大尺度环流,同时拉格朗日拟序结构可以较好的演示中尺度涡两维结构的发展过程。然而,很少研究关注怎么利用拉格朗日分析法针对中尺度涡三维结构进行演示。与以往利用欧拉方法研究中尺度涡三维结构的工作不同,我们利用拉格朗日分析法,从另一个视角来研究涡旋结构。我们在海山上方模拟出一个理想的气旋涡,涡旋内的下沉流和涡旋旁的上升流形成一个闭合的环流。这种结构很难从欧拉角度来演示。然而,粒子的运动轨迹很好地展示了整个循环:流体在涡旋中旋转下沉,汇聚到底层的上升流区,并通过上升流返回到海表面。我们也将拉格朗日分析法应用于真实的模拟结果中。作为中国南海的一个重要现象,靠近越南中部的海域中的偶极子(反气旋涡/气旋涡),关于其结构的研究已经比较成熟了,但这些研究主要关注的是海面过程。通过拉格朗日分析,我们很好的演示了偶极子的三维结构:流体在反气旋涡(气旋涡)内部旋转上升(下沉)。更重要的是,粒子的轨迹表明,这两个涡旋之间不存在水团交换,因为强边界急流将它们彼此分开。以上结论均得到了计算误差估计的可信度支持。尽管在强辐散流和强垂直扩散流中,计算误差逐渐增大,但是在一定的时间步长和积分周期内,计算误差始终保持在一个较小的值。  相似文献   

16.
Global observations of nonlinear mesoscale eddies   总被引:51,自引:0,他引:51  
Sixteen years of sea-surface height (SSH) fields constructed by merging the measurements from two simultaneously operating altimeters are analyzed to investigate mesoscale variability in the global ocean. The prevalence of coherent mesoscale features (referred to here as “eddies”) with radius scales of O(100 km) is readily apparent in these high-resolution SSH fields. An automated procedure for identifying and tracking mesoscale features based on their SSH signatures yields 35,891 eddies with lifetimes ?16 weeks. These long-lived eddies, comprising approximately 1.15 million individual eddy observations, have an average lifetime of 32 weeks and an average propagation distance of 550 km. Their mean amplitude and a speed-based radius scale as defined by the automated procedure are 8 cm and 90 km, respectively.The tracked eddies are found to originate nearly everywhere in the World Ocean, consistent with previous conclusions that virtually all of the World Ocean is baroclinically unstable. Overall, there is a slight preference for cyclonic eddies. However, there is a preference for the eddies with long lifetimes and large propagation distances to be anticyclonic. In the southern hemisphere, the distributions of the amplitudes and rotational speeds of eddies are more skewed toward large values for cyclonic eddies than for anticyclonic eddies. As a result, eddies with amplitudes >10 cm and rotational speeds >20 cm s−1 are preferentially cyclonic in the southern hemisphere. By contrast, there is a slight preference for anticyclonic eddies for nearly all amplitudes and rotational speeds in the northern hemisphere.On average, there is no evidence of anisotropy of these eddies. Their average shape is well represented as Gaussian within the central 2/3 of the eddy, but the implied radius of maximum rotational speed is 64% smaller than the observed radius of maximum speed. In part because of this mismatch between the radii of maximum axial speed in the observations and the Gaussian approximation, a case is made that a quadratic function that is a very close approximation of the mode profile of the eddy (i.e., the most frequently occurring value at each radius) is a better representation of the composite shape of the eddies. This would imply that the relative vorticity is nearly constant within the interiors of most eddies, i.e., the fluid motion consists approximately of solid-body rotation.Perhaps the most significant conclusion of this study is that essentially all of the observed mesoscale features outside of the tropical band 20°S-20°N are nonlinear by the metric U/c, where U is the maximum circum-average geostrophic speed within the eddy interior and c is the translation speed of the eddy. A value of U/c > 1 implies that there is trapped fluid within the eddy interior. Many of the extratropical eddies are highly nonlinear, with 48% having U/c > 5 and 21% having U/c > 10. Even in the tropics, approximately 90% of the observed mesoscale features are nonlinear by this measure.Two other nondimensional parameters also indicate strong degrees of nonlinearity in the tracked eddies. The distributions of all three measures of nonlinearity are more skewed toward large values for cyclonic eddies than for anticyclonic eddies in the southern hemisphere extratropics but the opposite is found in the northern hemisphere extratropics. There is thus a preference for highly nonlinear extratropical eddies to be cyclonic in the southern hemisphere but anticyclonic in the northern hemisphere.Further evidence in support of the interpretation of the observed features as nonlinear eddies is the fact that they propagate nearly due west with small opposing meridional deflections of cyclones and anticyclones (poleward and equatorward, respectively) and with propagation speeds that are nearly equal to the long baroclinic Rossby wave phase speed. These characteristics are consistent with theoretical expectations for large, nonlinear eddies. While there is no apparent dependence of propagation speed on eddy polarity, the eddy speeds relative to the local long Rossby wave phase speeds are found to be about 20% faster in the southern hemisphere than in the northern hemisphere. The distributions of the propagation directions of cyclones and anticyclones are essentially the same, except mirrored about a central azimuth angle of about 1.5° equatorward. This small, but we believe statistically significant, equatorward rotation of the central azimuth may be evidence of the effects of ambient currents (meridional advection or the effects of vertical shear on the potential vorticity gradient vector) on the propagation directions of the eddies.While the results presented here are persuasive evidence that most of the observed westward-propagating SSH variability consists of isolated nonlinear mesoscale eddies, it is shown that the eddy propagation speeds are about 25% slower than the westward propagation speeds of features in the SSH field that have scales larger than those of the tracked eddies. This scale dependence of the propagation speed may be evidence for the existence of dispersion and the presence of features that obey linear Rossby wave dynamics and have larger scales and faster propagation speeds than the nonlinear eddies. The amplitudes of these larger-scale signals are evidently smaller than those of the mesoscale eddy field since they are not easily isolated from the energetic nonlinear eddies.  相似文献   

17.
In general, a mesoscale cyclonic (anticyclonic) eddy has a colder (warmer) core, and it is considered as a cold (warm) eddy. However, recently research found that there are a number of “abnormal” mesoscale cyclonic (anticyclonic) eddies associated with warm (cold) cores in the South China Sea (SCS). These “abnormal” eddies pose a challenge to previous works on eddy detection, characteristic analysis, eddy-induced heat and salt transports, and even on mesoscale eddy dynamics. Based on a 9-year (2000–2008) numerical modelling data, the cyclonic warm-core eddies (CWEs) and anticyclonic cold-core eddies (ACEs) in the SCS are analyzed. This study found that the highest incidence area of the “abnormal” eddies is the northwest of Luzon Strait. In terms of the eddy snapshot counting method, 8 620 CWEs and 9 879 ACEs are detected, accounting for 14.6% and 15.8% of the total eddy number, respectively. The size of the “abnormal” eddies is usually smaller than that of the “normal” eddies, with the radius only around 50 km. In the generation time aspect, they usually appear within the 0.1–0.3 interval in the normalized eddy lifespan. The survival time of CWEs (ACEs) occupies 16.3% (17.1%) of the total eddy lifespan. Based on two case studies, the intrusion of Kuroshio warm water is considered as a key mechanism for the generation of these “abnormal” eddies near the northeastern SCS.  相似文献   

18.
In this paper we summarise the photo-physiological responses of phytoplankton to upwelling of macronutrients in mesoscale eddies in the subtropical North Atlantic (EDDIES project, Sargasso Sea) and subtropical North Pacific (E-FLUX project, Hawaii). The observations, obtained on two sets of cruises over 2 years, occupied six cyclonic eddies and two mode-water eddies. The photosynthetic physiological parameters were measured using a bench-top fluorescence induction and relaxation (FIRe) system and a submersible in situ fast repetition rate fluorometer (FRRF) deployed on an undulating towed vehicle. Both of these instruments were used to provide highly sensitive and well-resolved data on community responses. The responses are dependent on both the type of eddy and its stage of development. Our results indicate that, while cyclonic eddies in the Atlantic and Pacific can increase primary photosynthetic production early in their development, mode-water eddies in the subtropical North Atlantic can support patchy blooms of large diatoms for long periods of time (more than 3 months).  相似文献   

19.
钱思佳  于方杰  陈戈 《海洋科学》2021,45(11):10-19
本文使用基于热成风速度的涡旋识别拓展方法,通过海表面温度数据对黑潮延伸体区域50~100 km涡旋进行研究,发现50~100 km涡旋主要分布在黑潮延伸体流轴两侧,气旋涡和反气旋涡的寿命、半径分布具有一致性。气旋涡多出现在35°N以北,反气旋涡在35°N以南比较集中,与尺度较小的中尺度涡旋分布特征较为相似。冬夏两季涡旋地理分布存在一定差异,主要与不同季节该区域海表温度梯度及风应力旋度的变化有关。35°N以南50~100 km涡旋数量的季节性变化与风速大小的季节性变化存在明显的正相关性。35°N以南50~100 km涡旋三倍半径内风速异常和风应力旋度归一化表明,气旋涡对应风速负异常而反气旋涡对应风速正异常,反气旋涡的产生依赖于风应力负旋度,气旋涡的生成与风应力正旋度有关。  相似文献   

20.
基于ROMS和4DVAR的沿轨与网格化SSH数据同化效果评价   总被引:1,自引:1,他引:0  
Remote sensing products are significant in the data assimilation of an ocean model. Considering the resolution and space coverage of different remote sensing data, two types of sea surface height(SSH) product are employed in the assimilation, including the gridded products from AVISO and the original along-track observations used in the generation. To explore their impact on the assimilation results, an experiment focus on the South China Sea(SCS) is conducted based on the Regional Ocean Modeling System(ROMS) and the four-dimensional variational data assimilation(4 DVAR) technology. The comparison with EN4 data set and Argo profile indicates that, the along-track SSH assimilation result presents to be more accurate than the gridded SSH assimilation, because some noises may have been introduced in the merging process. Moreover, the mesoscale eddy detection capability of the assimilation results is analyzed by a vector geometry–based algorithm. It is verified that, the assimilation of the gridded SSH shows superiority in describing the eddy's characteristics, since the complete structure of the ocean surface has been reconstructed by the original data merging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号