首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
An optimal interpolation assimilation model for satellite altimetry data is developed based on Princeton Ocean Model (POM), which is applied in a quasi-global domain, by the method of isotropic correlation between sea level anomaly (SLA) and sea temperature anomaly. The perfor- mance of this assimilation model is validated by the modeled results of SLA and the current patterns. Comparisons between modeling and satellite data show that both the magnitudes and distribution patterns of the simulated SLA are improved by assimilation. The most signiˉcant improvement is that meso-scale systems, e.g., eddies, are well reconstructed. The evolution of an eddy located in the northwest Paciˉc Ocean is traced by using the assimilation model. Model results show that during three months the eddy migrated southwestward for about 6 degrees before merging into the Kuroshio. The three dimensional structure of this eddy on 12 August 2001 is further analyzed. The strength of this warm, cyclonic eddy decreases with the increase of depth. The eddy shows di?erent horizontal patterns at di?erent layers, and the SLA and temperature ˉelds agree with each other well. This study suggests that this kind of data assimilation is economic and reliable for eddy reconstruction, and can be used as a promising technique in further studies of ocean eddies as well as other ˉne circulation structures.  相似文献   

2.
The sea-level anomaly (SLA) from a satellite altimeter has a high accuracy and can be used to improve ocean state estimation by assimilation techniques. However, the lack of an accurate mean dynamic topography (MDT) is still a bothersome issue in an ocean data assimilation. The previous studies showed that the errors in MDT have significant impacts on assimilation results, especially on the time-mean components of ocean states and on the time variant parts of states via nonlinear ocean dynamics. The temporal-spatial differences of three MDTs and their impacts on the SLA analysis are focused on in the South China Sea (SCS). The theoretical analysis shows that even for linear models, the errors in MDT have impacts on the SLA analysis using a sequential data assimilation scheme. Assimilation experiments, based on EnOI scheme and HYCOM, with three MDTs from July 2003 to June 2004 also show that the SLA assimilation is very sensitive to the choice of different MDTs in the SCS with obvious differences between the experimental results and observations in the centre of the SCS and in the vicinity of the Philippine Islands. A new MDT for assimilation of SLA data in the SCS was proposed. The results from the assimilation experiment with this new MDT show a marked reduction (increase) in the RMSEs (correlation coefficient) between the experimental and observed SLA. Furthermore, the subsurface temperature field is also improved with this new MDT in the SCS.  相似文献   

3.
OSTIA数据在中国近海业务化环流模型中的同化应用   总被引:3,自引:0,他引:3  
The prediction of sea surface temperature(SST) is an essential task for an operational ocean circulation model. A sea surface heat flux, an initial temperature field, and boundary conditions directly affect the accuracy of a SST simulation. Here two quick and convenient data assimilation methods are employed to improve the SST simulation in the domain of the Bohai Sea, the Yellow Sea and the East China Sea(BYECS). One is based on a surface net heat flux correction, named as Qcorrection(QC), which nudges the flux correction to the model equation; the other is ensemble optimal interpolation(En OI), which optimizes the model initial field. Based on such two methods, the SST data obtained from the operational SST and sea ice analysis(OSTIA) system are assimilated into an operational circulation model for the coastal seas of China. The results of the simulated SST based on four experiments, in 2011, have been analyzed. By comparing with the OSTIA SST, the domain averaged root mean square error(RMSE) of the four experiments is 1.74, 1.16, 1.30 and 0.91°C, respectively; the improvements of assimilation experiments Exps 2, 3 and 4 are about 33.3%, 25.3%, and 47.7%, respectively.Although both two methods are effective in assimilating the SST, the En OI shows more advantages than the QC,and the best result is achieved when the two methods are combined. Comparing with the observational data from coastal buoy stations, show that assimilating the high-resolution satellite SST products can effectively improve the SST prediction skill in coastal regions.  相似文献   

4.
Mesoscale eddies play an important role in modulating the ocean circulation. Many previous studies on the threedimensional structure of mesoscale eddies were mainly based on composite analysis, and there are few targeted observations for individual eddies. A cyclonic eddy surveyed during an oceanographic cruise in the Northwest Pacific Ocean is investigated in this study. The three-dimensional structure of this cyclonic eddy is revealed by observations and simulated by the four-dimensional variational data assimilation(4 DVAR) system combined with the Regional Ocean Modeling System. The observation and assimilation results together present the characteristics of the cyclonic eddy. The cold eddy has an obvious dual-core structure of temperature anomaly.One core is at 50–150 m and another is at 300–550 m, which both have the average temperature anomaly of approximately-3.5°C. The salinity anomaly core is between 250 m and 500 m, which is approximately-0.3. The horizontal velocity structure is axis-asymmetric and it is enhanced on the eastern side of the cold eddy. In the assimilation experiment, sea level anomaly, sea surface temperature, and in situ measurements are assimilated into the system, and the results of assimilation are close to the observations. Based on the high-resolution assimilation output results, the study also diagnoses the vertical velocity in the mesoscale eddy, which reaches the maximum of approximately 10 m/d. The larger vertical velocity is found to be distributed in the range of 0.5 to 1 time of the normalized radius of the eddy. The validation of the simulation result shows that the 4 DVAR method is effective to reconstruct the three-dimensional structure of mesoscale eddy and the research is an application to study the mesoscale eddy in the Northwest Pacific by combining observation and assimilation methods.  相似文献   

5.
In order to evaluate the assimilation results from a global high resolution ocean model, the buoy observations from tropical atmosphere ocean(TAO) during August 2014 to July 2015 are employed. The horizontal resolution of wave-tide-circulation coupled ocean model developed by The First Institute of Oceanography(FIOCOM model) is 0.1°×0.1°, and ensemble adjustment Kalman filter is used to assimilate the sea surface temperature(SST), sea level anomaly(SLA) and Argo temperature/salinity profiles. The simulation results with and without data assimilation are examined. First, the overall statistic errors of model results are analyzed. The scatter diagrams of model simulations versus observations and corresponding error probability density distribution show that the errors of all the observed variables, including the temperature, isotherm depth of 20°C(D20), salinity and two horizontal component of velocity are reduced to some extent with a maximum improvement of 54% after assimilation. Second, time-averaged variables are used to investigate the horizontal and vertical structures of the model results. Owing to the data assimilation, the biases of the time-averaged distribution are reduced more than70% for the temperature and D20 especially in the eastern Pacific. The obvious improvement of D20 which represents the upper mixed layer depth indicates that the structure of the temperature after the data assimilation becomes more close to the reality and the vertical structure of the upper ocean becomes more reasonable. At last,the physical processes of time series are compared with observations. The time evolution processes of all variables after the data assimilation are more consistent with the observations. The temperature bias and RMSE of D20 are reduced by 76% and 56% respectively with the data assimilation. More events during this period are also reproduced after the data assimilation. Under the condition of strong 2014/2016 El Ni?o, the Equatorial Undercurrent(EUC) from the TAO is gradually increased during August to November in 2014, and followed by a decreasing process. Since the improvement of the structure in the upper ocean, these events of the EUC can be clearly found in the assimilation results. In conclusion, the data assimilation in this global high resolution model has successfully reduced the model biases and improved the structures of the upper ocean, and the physical processes in reality can be well produced.  相似文献   

6.
An important goal in ocean colour remote sensing is to accurately detect different phytoplank- ton groups with the potential uses including the validation of multi-phytoplankton carbon cycle models; synoptically monitoring the health of our oceans, and improving our understanding of the bio-geochemical interactions between phytoplankton and their environment. In this paper a new algorithm is developed for detecting three dominant phytoplankton size classes based on distinct differences in their optical signatures. The technique is validated against an independent cou- pled satellite reflectance and in situ pigment dataset and run on the 10-year NASA Sea viewing Wide Field of view Sensor (SeaWiFS) data series. Results indicate that on average 3.6% of the global oceanic surface layer is dominated by microplankton, 18.0% by nanoplankton and 78.4% by picoplankton. Results, however, are seen to vary depending on season and ocean basin.  相似文献   

7.
Dissolved organic carbon(DOC) and particulate organic carbon(POC) are basic variables for the ocean carbon cycle.Knowledge of the distribution and inventory of these variables is important for a better estimation and understanding of the global carbon cycle.Owing to its considerable advantages in spatial and temporal coverage,remote sensing data provide estimates of DOC and POC inventories,which are able to give a synthetic view for the distribution and transportation of carbon pools.To estimate organic carbon inventories using remote sensing involves integration of the surface concentration and vertical profile models,and the development of these models is critical to the accuracy of estimates.Hence,the distribution and control factors of DOC and POC in the ocean first are briefly summarized,and then studies of DOC and POC inventories and flux estimations are reviewed,most of which are based on field data and few of which consider the vertical distributions of POC or DOC.There is some research on the estimation of POC inventory by remote sensing,mainly in the open ocean,in which three kinds of vertical profile models have been proposed:the uniform,exponential decay,and Gauss models.However,research on remote-sensing estimation of the DOC inventory remains lacking.A synthetic review of approaches used to estimate the organic carbon inventories is offered and the future development of methods is discussed for such estimates using remote sensing data in coastal waters.  相似文献   

8.
The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy and ocean wave spectrum is established based on the definition of entropy and a twoscale scattering model of the ocean surface.It is the first time that the polarimetric entropy of the ocean surface is presented in theory.Meanwhile,the relationships among the fully polarimetric entropy and the parameters related to radar and ocean are discussed.The study is the basis of further monitoring targets on the ocean surface and deriving oceanic information with the entropy from the ocean surface.The contrast enhancement between human-made targets and the ocean surface with the entropy is presented with quad-pol airborne synthetic aperture radar(AIRSAR) data.  相似文献   

9.
The ensemble optimal interpolation (EnOI) is applied to the regional ocean modeling system (ROMS) with the ability to assimilate the along-track sea level anomaly (TSLA). This system is tested with an eddy-resolving system of the South China Sea (SCS). Background errors are derived from a running seasonal ensemble to account for the seasonal variability within the SCS. A fifth-order localization function with a 250 km localization radius is chosen to reduce the negative effects of sampling errors. The data assimilation system is tested from January 2004 to December 2006. The results show that the root mean square deviation (RMSD) of the sea level anomaly decreased from 10.57 to 6.70 cm, which represents a 36.6% reduction of error. The data assimilation reduces error for temperature within the upper 800 m and for salinity within the upper 200 m, although error degrades slightly at deeper depths. Surface currents are in better agreement with trajectories of surface drifters after data assimilation. The variance of sea level improves significantly in terms of both the amplitude and position of the strong and weak variance regions after assimilating TSLA. Results with AGE error (AGE) perform better than no AGE error (NoAGE) when considering the improvements of the temperature and the salinity. Furthermore, reasons for the extremely strong variability in the northern SCS in high resolution models are investigated. The results demonstrate that the strong variability of sea level in the high resolution model is caused by an extremely strong Kuroshio intrusion. Therefore, it is demonstrated that it is necessary to assimilate the TSLA in order to better simulate the SCS with high resolution models.  相似文献   

10.
Reconstruction of incomplete satellite SST data sets based on EOF method   总被引:1,自引:0,他引:1  
As for the satellite remote sensing data obtained by the visible and infrared bands inversion, the clouds coverage in the sky over the ocean often results in missing data of inversion products on a large scale, and thin clouds di?cult to be detected would cause the data of the inversion products to be abnormal. Alvera et al.(2005) proposed a method for the reconstruction of missing data based on an Empirical Orthogonal Functions (EOF) decomposition, but his method couldn’t process these images presenting ex...  相似文献   

11.
基于ROMS模式的南海SST与SSH四维变分同化研究   总被引:1,自引:0,他引:1  
卫星遥感观测获得了大量高分辨率的海面实时信息,包括海面温度(SST)和海面高度(SSH)等,同化进入数值模式可有效提升模拟精度。本文基于ROMS模式与四维变分同化方法(4DVAR),使用AVHRR SST和AVISO SSH数据,开展了南海区域同化实验。为检验同化的效果,分别利用HYCOM再分析资料和Argo温盐实测数据分析了同化结果的海面高度、流场及温盐剖面的精度。对比结果表明,SST和SSH的同化能够改善ROMS的模拟结果:同化后海面高度场能够更为准确地捕捉海洋的中尺度特征,与HYCOM海面高度再分析资料相比,平均绝对偏差和均方根误差分别为0.054 m和0.066 m;与HYCOM 10 m层流场相比,东向与北向流速平均绝对偏差分别为0.12 m/s和0.11 m/s,相比未同化均提升约0.01 m/s;温盐同化结果与Argo温盐实测具有较高的一致性,温度和盐度平均绝对偏差为0.45℃、0.077,均方根误差为0.91℃、0.11,单个的温盐廓线对比说明,同化结果与HYCOM再分析资料精度相当。  相似文献   

12.
Satellite-measured along-track and gridded sea surface height (SSH) anomaly products from AVISO are compared with in situ SSH anomaly measurements from an array of 43 pressure-recording inverted echo sounders (PIESs) in the Kuroshio Extension. PIESs measure bottom pressure (P bot) and round-trip acoustic travel time from the sea floor to the sea surface (τ). The P bot and τ measurements are used to estimate, respectively, the mass-loading and steric height variations in SSH anomaly. All comparisons are made after accurate removal of tidal components from all data. Overall good correlations are found between along-track and PIES-derived SSH anomalies with mean correlation coefficient of 0.97. Comparisons between the two measurements reveal that the mass-loading component estimated from P bot is relatively small in this geographical region. It improves regression coefficients about 5?% and decreases mean root-mean-squared (rms) differences from 7.8 to 6.4?cm. The AVISO up-to-date gridded product, which merges all available satellite measurements of Jason-1, Envisat, Geosat Follow-On, and TOPEX/Poseidon interlaced, shows better correlations and smaller rms differences than the AVISO reference gridded product, which merges only Jason-1 and Envisat. Especially, the up-to-date gridded product reveals 6.8?cm rms improvement on average at sites away from Jason-1 ground tracks. Gridded products exhibit low correlation (0.75–0.9) with PIES-derived SSH in a subregion where the SSH fluctuations have relatively high energy at periods shorter than 20?days.  相似文献   

13.
D. STAMMER  J. THEISS 《Marine Geodesy》2013,36(3-4):551-575
Using a parallel-track approach to estimate geostrophic surface velocities, an estimate of the statistics of ocean geostrophic surface currents and momentum stresses is provided on a 10 km along-track resolution from the first 49 repeat cycles (16 months) of the Jason-TOPEX/Poseidon tandem altimetric sea surface height (SSH) data. Results are compared with estimates obtained in a traditional way from along-track SSH data at crossover points and with in situ, Acoustic Doppler Current Profiler (ADCP) measurements obtained on board the VOS Oleander along a nominal path connecting Bermuda with the U.S. mainland. Agreements with the Oleander data are reasonable when simultaneous (in space and time) sampling is available. However, amplitudes of parallel-track geostrophic velocity variances are about 25% lower as compared to Oleander measurements which represent geostrophic and ageostrophic flow components. Estimates of velocity variances show clear signs of an anisotropic eddy field in the vicinity of all major current systems. At the same time estimates of Reynolds stresses and eddy momentum fluxes show a convergence of eddy momentum in all those regions, suggesting a forcing of the mean flow by the eddy field there.  相似文献   

14.
Using a parallel-track approach to estimate geostrophic surface velocities, an estimate of the statistics of ocean geostrophic surface currents and momentum stresses is provided on a 10 km along-track resolution from the first 49 repeat cycles (16 months) of the Jason-TOPEX/Poseidon tandem altimetric sea surface height (SSH) data. Results are compared with estimates obtained in a traditional way from along-track SSH data at crossover points and with in situ, Acoustic Doppler Current Profiler (ADCP) measurements obtained on board the VOS Oleander along a nominal path connecting Bermuda with the U.S. mainland. Agreements with the Oleander data are reasonable when simultaneous (in space and time) sampling is available. However, amplitudes of parallel-track geostrophic velocity variances are about 25% lower as compared to Oleander measurements which represent geostrophic and ageostrophic flow components. Estimates of velocity variances show clear signs of an anisotropic eddy field in the vicinity of all major current systems. At the same time estimates of Reynolds stresses and eddy momentum fluxes show a convergence of eddy momentum in all those regions, suggesting a forcing of the mean flow by the eddy field there.  相似文献   

15.
基于大涡模拟和局部滤波同化方法的海洋环流模式   总被引:2,自引:1,他引:2  
结合最小二乘法极值原理,提出了一种基于局部谱展开的滤波同化方法,把测量数据和数值计算过程中出现的高频短波滤掉,并将高度计数据同化到了求解过程中.结果既增加了数值稳定性,又提高了数值模拟的准确性.针对在海洋环流问题中水平的流动性质和垂直的不同的特点,我们还将大涡模拟的思想和直接涡黏的思想分别应用于水平方向和垂直方向,给出的方法是一种适用于海洋环流和浅水环流问题的大涡模拟湍流模式.对热带和北太平洋一年四季非定常季风作用下环流的数值模拟表明,提出的方法非常有效,数值结果与实际相当吻合.  相似文献   

16.
An ensemble optimal interpolation (EnOI) data assimilation method is applied in the BCC_CSM1.1 to investigate the impact of ocean data assimilations on seasonal forecasts in an idealized twin experiment framework. Pseudo-observations of sea surface temperature (SST), sea surface height (SSH), sea surface salinity (SSS), temperature and salinity (T/S) profiles were first generated in a free model run. Then, a series of sensitivity tests initialized with predefined bias were conducted for a one-year period; this involved a free run (CTR) and seven assimilation runs. These tests allowed us to check the analysis field accuracy against the “truth”. As expected, data assimilation improved all investigated quantities; the joint assimilation of all variables gave more improved results than assimilating them separately. One-year predictions initialized from the seven runs and CTR were then conducted and compared. The forecasts initialized from joint assimilation of surface data produced comparable SST root mean square errors to that from assimilation of T/S profiles, but the assimilation of T/S profiles is crucial to reduce subsurface deficiencies. The ocean surface currents in the tropics were better predicted when initial conditions produced by assimilating T/S profiles, while surface data assimilation became more important at higher latitudes, particularly near the western boundary currents. The predictions of ocean heat content and mixed layer depth are significantly improved initialized from the joint assimilation of all the variables. Finally, a central Pacific El Ni?o was well predicted from the joint assimilation of surface data, indicating the importance of joint assimilation of SST, SSH, and SSS for ENSO predictions.  相似文献   

17.
A new method of assimilating sea surface height (SSH) data into ocean models is introduced and tested. Many features observable by satellite altimetry are approximated by the first baroclinic mode over much of the ocean, especially in the lower (but non-equatorial) and mid latitude regions. Based on this dynamical trait, a reduced-dynamics adjoint technique is developed and implemented with a three-dimensional model using vertical normal mode decomposition. To reduce the complexity of the variational data assimilation problem, the adjoint equations are based on a one-active-layer reduced-gravity model, which approximates the first baroclinic mode, as opposed to the full three-dimensional model equations. The reduced dimensionality of the adjoint model leads to lower computational cost than a traditional variational data assimilation algorithm. The technique is applicable to regions of the ocean where the SSH variability is dominated by the first baroclinic mode. The adjustment of the first baroclinic mode model fields dynamically transfers the SSH information to the deep ocean layers. The technique is developed in a modular fashion that can be readily implemented with many three-dimensional ocean models. For this study, the method is tested with the Navy Coastal Ocean Model (NCOM) configured to simulate the Gulf of Mexico.  相似文献   

18.
资料同化技术的发展及其在海洋科学中的应用   总被引:4,自引:0,他引:4  
李宏  许建平 《海洋通报》2011,30(4):463-472
同顾了资料同化技术,特别是基于最优控制和统计估计这两大理论基础发展起来的几种资料同化方法的研究进展,以及这些方法在海洋科学研究中的应用现状.可以看到,由于海洋观测资料(如地转海洋学实时观测阵(Array for Real-time Geostrophic Oceanography,Argo)、热带大气海洋阵列(Trop...  相似文献   

19.
集合卡尔曼滤波(Ensemble Kalman filter, EnKF)是一种国内外广泛使用的海洋资料同化方案, 用集合成员的状态集合表征模式的背景误差协方差, 结合观测误差协方差, 计算卡尔曼增益矩阵, 有效地将观测信息添加到模式初始场中。由于季节、年际预测很大程度上受到初始场的影响, 因此资料同化可以提高模式的预测性能。本文在NUIST-CFS1.0预测系统逐日SST nudging的初始化方案上, 利用EnKF在每个月末将全场(full field)海表温度(sea surface temperature, SST)、温盐廓线(in-situ temperature and salinity profiles, T-S profiles)以及卫星观测海平面高度异常(sea level anomalies, SLA)观测资料同化到模式初始场中, 对比分析了无海洋资料同化以及加入同化后初始场的区别、加入海洋资料同化后模式提前1~24个月预测性能的差异以及对于厄尔尼诺-南方涛动(El Niño-southern oscillation, ENSO)预测技巧的影响。结果表明, 加入海洋资料同化能有效地改进初始场, 并且呈现随深度增加初始场改进越显著的特征。加入同化后, 对全球SST、次表层海水温度的平均预测技巧均有一定的提高, 也表现出随深度增加预测技巧改进越明显的特征。但加入海洋资料同化后, 模式对ENSO的预测技巧有所下降, 可能是由于模式误差的存在, 使得同化后的预测初始场从接近观测的状态又逐渐恢复到与模式动力相匹配的状态, 加剧了赤道太平洋冷舌偏西、中东部偏暖的气候平均态漂移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号