首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Coastal Engineering》2001,42(1):53-86
A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence is described by large eddy simulation where the larger turbulent features are simulated by solving the flow equations, and the small scale turbulence that is not resolved by the flow model is represented by a sub-grid model. A simple Smagorinsky sub-grid model has been used for the present simulations. The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved. The surface is still specified to be uniform in the transverse (alongshore) direction, and it is only the flow field that is three-dimensional.The turbulent structures are investigated under different breaker types, spilling, weak plungers and strong plungers. The model is able to reproduce complicated flow phenomena such as obliquely descending eddies. The turbulent kinetic energy is found by averaging over the transverse direction. In spilling breakers, the turbulence is generated in a series of eddies in the shear layer under the surface roller. After the passage of the roller the turbulence spreads downwards. In the strong plunging breaker, the turbulence originates to a large degree from the topologically generated vorticity. The turbulence generated at the plunge point is almost immediately distributed over the entire water depth by large organised vortices. Away from the bed, the length scale of the turbulence (the characteristic size of the eddies resolved by the model) is similar in the horizontal and the vertical direction. It is found to be of the order one half of the water depth.  相似文献   

2.
Coastal disposal of waste water can be idealized as the problem of a jet under random waves. Understanding of this phenomenon is important for engineering design and environmental impact assessment. The present study aims to simulate such phenomenon by using a 3D numerical model based on the solution of the spatially filtered and σ-transformed Navier–Stokes equations with dynamic sub-grid scale model of turbulence. The numerical solution procedures are split into three steps: advection, diffusion and pressure propagation, and a Lagrange–Euler method is used to track the free surface. Cases of vertical jet in stagnant water, pure random waves and vertical jet in random waves are simulated with the same grid system for comparative study. Different methods of generating jet inflow turbulence have been tested and the method of jet azimuthal modes is found to be the optimum. The numerical results reproduce the distinct characteristics of jet in waves, including faster decay of centerline velocity, wider lateral spreading and the occurrence of wave tractive mechanism.  相似文献   

3.
In this work, the large-wave simulation (LWS) method is adapted for application in spilling wave breaking over a constant slope beach. According to LWS, large scales of velocities, pressure and free-surface elevation are numerically resolved, while the corresponding unresolved scale effects are taken into consideration by a subgrid scale (SGS) model for wave and eddy stresses. The model may be not fully applicable in very shallow water, close to the shoreline, where the unresolved, turbulent, free-surface oscillation is of the same order with the water depth. Time integration of the Euler equations is achieved by a two-stage fractional scheme, combined with a hybrid scheme for spatial discretization, consisting of finite difference and pseudospectral approximation methods. Model parameters are calibrated by comparison to available experimental data of free-surface elevation and velocities in the surf zone for cross-shore incoming waves. The action of the wave SGS stresses in the outer coastal and surf zones initiates breaking and generates appropriate vorticity, in the form of an eddy structure (surface roller), at the breaking wavefront. At incipient breaking, both advection and gravity contribute to the vorticity flux at the free surface, while only after the full development of the surface roller, the effect of advection becomes stronger. The SGS model is also utilized to simulate propagation, refraction and breaking of oblique incoming waves. The gradual breaking and dissipation of wave crestlines and the surface roller structure along the breaking wavefront are automatically captured without any empirical input, such as data for the roller shape or the wave propagation angle at breaking.  相似文献   

4.
5.
《Coastal Engineering》2004,51(1):53-80
In this paper, a two-dimensional multi-scale turbulence model is proposed to study breaking waves. The purpose of developing this model is to produce a relatively accurate model with moderate computer requirements. The free surface is tracked by the VOF technique, the log-law profile for the mean velocity is applied at the bottom. Comparing with the Reynolds-Averaged Navier-Stokes models (RANS), the present model shows improving agreement with experimental measurements in terms of surface elevations, particle velocities, wave height distributions and undertow profiles. The subgrid scale (SGS) turbulent transport mechanism is also discussed in the paper. It is found that turbulent production and dissipation are of the same order, but turbulent production is primarily located at the wavefront and above the wave trough, whereas turbulent dissipation is primarily located at the back face of a wave, indicating that in these regions, the assumption of equilibrium is not correct. Below the trough level, the local equilibrium assumption is reasonable. Turbulent convection and diffusion are of the same order at the trough level. Above the trough level, turbulent convection dominates. Under the spilling breaking wave, turbulent kinetic energy is continue to dissipate in the bore region, whereas under the plunging breaking wave, the turbulent kinetic energy is dissipated very rapidly within one wave period.  相似文献   

6.
This paper presents measurements and analysis of fluid velocity within the context of spilling waves. The data have been collected using 2-D Laser Doppler Velocimetry in pre-breaking monochromatic waves generated in a wave tank. The analysis is performed using orthogonal wavelets and, in addition to the classical criterion adopted in applying Taylor's hypothesis, a new algorithm is proposed for the eduction of eddies at different length scales. The contribution of different scale vortices is computed, and phase is resolved. Microvortices (smaller than the breaker height but larger than the dissipative vortices) and mid-size vortices (with length ranging from the breaker height to the wave length) carry out most turbulence energy under wave crest. The phase average vorticity and strain rate is computed at different wave lengths, with the analysis of intermittence. The intermittency factor shows spikes in the wave crest, especially for turbulence in small vortices.  相似文献   

7.
Large Eddy Simulation for Plunge Breaker and Sediment Suspension   总被引:1,自引:1,他引:1  
BAI  Yuchuan 《中国海洋工程》2002,16(2):151-164
Breaking waves are a powerful agent for generating turbulence that plays an important role in many fluid dynamical processes, particularly in the mixing of materials. Breaking waves can dislodge sediment and throw it into suspension, which will then be carried by wave-induced steady current and tidal flow. In order to investigate sediment suspension by breaking waves, a numerical model based on large-eddy-simulation (LES) is developed. This numerical model can be used to simulate wave breaking and sediment suspension. The model consists of a free-surface model using the surface marker method combined with a two-dimensional model that solves the flow equations. The turbulence and the turbulent diffusion are described by a large-eddy-simulation (LES) method where the large turbulence features are simulated by solving the flow equations, and a subgrid model represents the small-scale turbulence that is not resolved by the flow model. A dynamic eddy viscosity subgrid scale stress model has been used for the  相似文献   

8.
海浪破碎对海洋上混合层中湍能量收支的影响   总被引:2,自引:1,他引:2  
海浪破碎产生一向下输入的湍动能通量,在近海表处形成一湍流生成明显增加的次层,加强了海洋上混合层中的湍流垂向混合。为了研究海浪破碎对混合层中湍能量收支的影响,文中分析了海浪破碎对海洋上混合层中湍流生成的影响机制,采用垂向一维湍封闭混合模式,通过改变湍动能方程的上边界条件,引入了海浪破碎产生的湍动能通量,并分别对不同风速下海浪破碎的影响进行了数值研究,分析了混合层中湍能量收支的变化。当考虑海浪破碎影响时,近海表次层中的垂直扩散项和耗散项都有显著的增加,该次层中被耗散的湍动能占整个混合层中耗散的总的湍能量的92.0%,比无海浪破碎影响的结果增加了近1倍;由于平均流场切变减小,混合层中的湍流剪切生成减小了3.5%,形成一种存在于湍动能的耗散和垂直扩散之间的局部平衡关系。在该次层以下,局部平衡关系与壁层定律的结论一致,即湍动能的剪切生成与耗散相平衡。研究结果表明,海浪破碎在海表产生的湍动能通量影响了海洋上混合层中的各项湍能量收支间的局部平衡关系。  相似文献   

9.
Nearshore shoaling and breaking waves can drive a complex circulation system of wave-induced currents. In the cross-shore direction, the local vertical imbalance between the gradient of radiation stress and that of pressure due to the setup drives an offshore flow near the bottom, called ‘undertow’, which plays a significant role in the beach profile evolution and the structure stability in coastal regions. A 1DV undertow model was developed based on the relationship between the turbulent shear stress and t...  相似文献   

10.
结合椭圆型缓坡方程模拟近岸波流场   总被引:6,自引:3,他引:6  
波浪向近岸传播的过程中,由波浪破碎效应所产生的近岸波流场是近岸海域关键的水动力学因素之一.结合近岸波浪场的椭圆型缓坡方程和近岸波流场数学模型对近岸波浪场及由斜向入射波浪破碎后所形成的近岸波流场进行了数值模拟.计算中考虑到波浪向近岸传播中由于波浪的折射、绕射、反射等效应使局部复杂区域波向不易确定,采用结合椭圆型缓坡方程所给出的波浪辐射应力公式来计算波浪产生的辐射应力,在此基础上耦合椭圆型缓坡方程和近岸波流场数学模型对近岸波流场进行数值模拟,从而使模型综合考虑了波浪的折射、绕射、反射等效应且避免了对波向角的直接求解,可以应用于相对较复杂区域的近岸波流场模拟.  相似文献   

11.
The characteristics of wave and turbulence velocities created by a broad-banded irregular wave train breaking on a 1:35 slope were studied in a laboratory wave flume. Water particle velocities were measured simultaneously with wave elevations at three cross-shore locations inside the surf zone. The measured data were separated into low-frequency and high-frequency time series using a Fourier filter. The measured velocities were further separated into organized wave-induced velocities and turbulent velocity fluctuations by ensemble averaging. The broad-banded irregular waves created a wide surf zone that was dominated by spilling type breakers. A wave-by-wave analysis was carried out to obtain the probability distributions of individual wave heights, wave periods, peak wave velocities, and wave-averaged turbulent kinetic energies and Reynolds stresses. The results showed that there was a consistent increase in the kurtosis of the vertical velocity distribution from the surface to the bottom. The abnormally large downward velocities were produced by plunging breakers that occurred from time to time. It was found that the mean of the highest one-third wave-averaged turbulent kinetic energy values in the irregular waves was about the same as the time-averaged turbulent kinetic energy in a regular wave with similar deep-water wave height to wavelength ratio. It was also found that the correlation coefficient of the Reynolds stress varied strongly with turbulence intensity. Good correlation between u′ and w′ was obtained when the turbulence intensity was high; the correlation coefficient was about 0.3–0.5. The Reynolds stress correlation coefficient decreased over a wave cycle, and with distance from the water surface. Under the irregular breaking waves, turbulent kinetic energy was transported downward and landward by turbulent velocity fluctuations and wave velocities, and upward and seaward by the undertow. The undertow in the irregular waves was similar in vertical structure but lower in magnitude than in regular waves, and the horizontal velocity profiles under the low-frequency waves were approximately uniform.  相似文献   

12.
Measurements are presented of the water particle kinematics of focused wave groups generated in the U.K. Coastal Research Facility. Single and repeated wave groups are considered at normal and 20° incidence to a 1:20 plane beach. The single focused wave groups model extreme transient events without the complication of reflections during the data acquisition process. A symmetry-based separation of harmonics method is used to interpret the water particle kinematics at the point of focus. Although the largest component is linear, there are also considerable second order kinematics terms (both low frequency and high frequency). Away from the free surface, the 2nd order difference contribution to the kinematics is a return current opposed to the direction of wave advance. For repeated wave groups, the measured kinematics confirms the presence of a low frequency free wave, followed by higher frequency waves of the main group and trailing higher order harmonic waves. In the breaker and surf zones, there is also evidence of the saw-tooth behaviour of broken waves, followed by scatter due to breaker-induced turbulence. Pulsatile wave breaking of repeated wave groups at oblique incidence is found to drive a longshore current.  相似文献   

13.
任兴月  陶军  彭伟 《海洋工程》2018,36(4):78-87
为了研究斜向入射波浪,基于三维不可压缩两相流模型,开发了一套圆形数值波浪水池数值模型。在圆形波浪水池中,通过源项造波法成功生成了任意入射方向的波浪,并且利用人工摩擦项模拟阻尼区以数值耗散反射波浪。模型基于嵌入式多块网格体系,采用FVM法(finite volume method)离散Navier-Stokes方程,VOF法(volume of fluid)追踪自由水面。试验结果表明,斜向入射波浪的模拟结果与理论值基本一致,圆形波浪水池在模拟斜向入射波浪时,有效区域的面积较传统波浪水池显著增大,而且有效区域受波浪入射角度的影响也较小。同时,通过叠加多列斜向入射波浪,模拟出了多向交叉波列,并通过与理论结果对比,发现其具有较高的精度。  相似文献   

14.
为了探究激波捕捉类Boussinesq模型在模拟岛礁地形上规则波和不规则波传播的可行性,采用基于完全非线性Boussinesq方程并具有激波捕捉能力的数值模型Funwave-TVD对规则波和不规则波在岛礁地形上的传播进行了数值模拟,通过与试验数据对比,分析模型中空间步长的影响,验证模型在模拟波高、平均水位分布以及波谱空间演变的能力,结果表明:采用合适的空间步长,模型能较好地模拟规则波和不规则波在岛礁地形上的传播和演化过程。对于规则波,较小的空间步长可改善破碎点处波高峰值的预测,并能更好地预测波浪破碎后波高的空间分布,相比结合经验破碎的Boussinesq模型,Funwave-TVD能更好地模拟规则波在岛礁地形上的破碎,以及破碎以后行进涌波的再生成过程;对于不规则波,Funwave-TVD总体而言能较好地模拟涌浪有效波高、次重力波的生成及空间演化和平均水位,但会低估礁坪上次重力波波高,较粗的空间步长也会低估礁坪上涌浪有效波高。  相似文献   

15.
为研究孤立波作用下结构物周围流场特征,基于无网格SPH方法,建立孤立波与海洋结构物相互作用模型,对不同波幅孤立波作用下部分淹没矩形结构物周围波面、流速、涡量及结构受力特征进行计算分析,探索了相对波高对非淹没结构物周围流场的影响规律。结果表明:流场特征与相对波高密切相关,相对波高较小时,波面、流速、涡量及结构荷载均较为光滑,相对波高在0.2以上时,波峰爬升至结构物顶部并在越过结构物后与水槽内水体碰撞造成流场波动,波面、流速、涡量及结构荷载的波动幅度随着相对波高增大而增大,流场更加复杂,结构物水平和垂向负压也越大,且结构物周围涡分布逐渐向深度方向和下游方向发展。  相似文献   

16.
Three-dimensional numerical modeling of nearshore circulation   总被引:1,自引:0,他引:1  
  相似文献   

17.
A process-based 3D numerical model for surfzone hydrodynamics and beach evolution was established. Comparisons between the experimental data and model results proved that the model could effectively describe the hydrodynamics, sediment transport feature and sandbar migration process in the surfzone with satisfactory precision. A series of numerical simulations on the wave breaking and shoaling up to a barred beach were carried out based on the model system. Analyzed from the model results, the wave-induced current system in the surfzone consists of two major processes, which are the phase-averaged undertow caused by wave breaking and the net drift caused by both of the nonlinear wave motion and surface roller effect. When storm waves come to the barred beach, the strong offshore undertow along the beach suppresses the onshore net drift, making the initial sandbar migrate to the seaside. Under the condition of calm wave environment, both the undertow and net drift flow to the shoreline at the offshore side of the sandbar, and then push the initial sandbar to the shoreline. The consideration of surface roller has significant impact on the modeling results of the sandbar migration. As the roller transfer rate increases, the sandbar moves onshore especially under the storm wave condition.  相似文献   

18.
A vertical two-dimensional numerical model has been applied to solving the Reynolds Averaged Navier- Stokes (RANS} equations in the simulation of current and wave propagation through vegetated and non- vegetated waters. The k-e model is used for turbulence closure of RANS equations. The effect of vegeta- tion is simulated by adding the drag force of vegetation in the flow momentum equations and turbulence model. To solve the modified N-S equations, the finite difference method is used with the staggered grid system to solver equations. The Youngs' fractional volume of fluid (VOF) is applied tracking the free sur- face with second-order accuracy. The model has been tested by simulating dam break wave, pure current with vegetation, solitary wave runup on vegetated and non-vegetated channel, regular and random waves over a vegetated field. The model reasonably well reproduces these experimental observations, the model- ing approach presented herein should be useful in simulating nearshore processes in coastal domains with vegetation effects.  相似文献   

19.
Simulation of the ocean surface mixed layer under the wave breaking   总被引:6,自引:4,他引:2  
A one-dimensional mixed-layer model, including a Mellor-Yamada level 2.5 turbulence closure scheme, was implemented to investigate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic energy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corresponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the temperature gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.  相似文献   

20.
By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three-dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号