首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
1998年南海夏季风爆发前环流的三维海流诊断计算的研究   总被引:1,自引:0,他引:1  
基于1998年南海夏季风爆发前航次(4月22日至5月24日)获得的水文资料和NCEP提供的风场资料,采用三维海流诊断模式计算南海环流,结合同时期高度计资料T/P推得的水位高度距平分布,获得了一致的南海环流的流态,主要环流特性概括如下:(1)黑潮入侵南海较弱,黑潮的大部分绕过吕宋海峡作反气旋弯曲,向东北方向流向台湾以东,但小部分在300m以浅向西入侵,并局限于中国大陆以南较狭窄的陆架坡内,不扩展到所有的西边界,这与Qu的观点一致.(2)南海北部环流,在300m以浅主要由海盆尺度的气旋环流支配,它以两个气旋式涡C1与C2为核心组成.在300m以深,南海北部环流被反气旋环流以暖涡W4为核心分离成两个尺度不大、分别以气旋涡C2和C3为核心的环流.冬季时海盆尺度气旋式环流的范围比4~5月大得多.(3)南海中部环流,主要由海盆尺度的反气旋环流支配.在300m以浅海盆尺度的反气旋式环流分别以暖涡W1,W2和W3为核心组成.在反气旋式涡W1东南存在一个以C1为核心气旋式环流.但在300m以深,海盆尺度的反气旋环流分别以暖涡W1,W2和W4为核心组成,并向北扩展到20°N.(4)在越南以东近岸存在一支较强的沿岸北向流,其强度比6月时沿岸的北向流强.这支较强的北向的沿岸流一直可达17°15'N附近,比6月时更往北大约3°15'.(5)产生1998年4~5月南海环流的动力机制有两个:最重要的动力因子为斜压场与地形相互作用项,其次为东南风作用下风应力与地形相互作用项.Sverdrup关系在南海环流不满足.  相似文献   

2.
1998年冬季南海环流的三维结构   总被引:10,自引:3,他引:7  
利用1998年11月28日至12月27日南海的调查资料,采用三维海流诊断模式,计算了冬季南海三维海流,所得结果如下:(1)冬季南海环流系统方面:1)南海北部,在吕宋西北海域分别存在一个气旋式、反气旋式涡.2)南海中部,在越南近岸存在较强的、南向的西边界射流.其以东海域出现较强的气旋式环流.南海中部东侧海域存在一个较弱的反气旋式环流.3)南海南部,一般流速较弱.在112°E以西受反气旋式环流所控制,加里曼丹岛西北海域存在气旋性环流.由于受调查海域所限,这两个环流只部分出现.(2)上述环流系统与200 m层水平温度、密度分布对应较好.(3)南海冬季环流垂向速度分布方面:1)表层,南海北部,在吕宋西北为范围较大的上升流海区.而在东沙群岛附近海域出现了下降流.海南岛以南及东南海域也存在下降流.南海中部,越南以东海域出现范围较大的下降流,其以东为上升流海域,而在巴拉望岛西北海域又出现下降流.南海南部,基本上被上升流海域所控制.2)次表层与表层不同,例如在次表层,海南岛东南部海域出现上升流.中层和深层垂向速度分布与次表层相似.(4)关于南海垂向速度分量分布的动力原因:在表层,风应力旋度场起着主要作用;在次表层,β效应与斜压场相互作用是重要的动力因子,而风应力旋度场和β效应与正压场相互作用也有一定影响;在南海中部等区域的中层以及在南海的深层,主要受B效应与斜压场相互作用和B效应与正压场相互作用的共同作用.  相似文献   

3.
2000年夏季南海环流的改进逆方法计算   总被引:9,自引:3,他引:9  
基于2000年8月航次在南海调查资料,采用改进逆方法,并结合TOPEX/ERS分析的SSH分布,获得以下的主要结果:(1)南海中部和西南部环流系统主要受反气旋环流所支配.主要有越南东南反气旋涡W1,其水平尺度约为300km,垂向深度可达1000m以深,流速很强,其最大流速为79cm/s左右,还有暖涡W2以及吕宋岛西南反气旋涡环流系统W3.其次,在反气旋涡W1与W2之间还存在气旋式涡C1.其水平尺度比暖涡W1小得多,流速也较强.两涡W1与C1之间存在一支南向流,它们组成一个准偶极子.(2)在暖涡W1的西侧存在西边界流,即北向射流,其流速很强,约在12°N流向转向东北.(3)南海北部环流系统主要受气旋环流所支配.在断面N2附近及以北存在一个气旋式环流系统.其次,在海南岛东南存在一个尺度不大的反气旋环流系统.(4)南海东南部环流系统主要受气旋环流所支配.主要有在巴拉望岛以西存在尺度较大的气旋环流系统,以及暖涡W1东南存在一个气旋环流系统.其次,在加里曼丹岛西北还存在范围不大的反气旋环流.(5)比较1998年夏季航次与2000年夏季航次时计算结果,虽然它们在定量上有些变化与差别,但在定性上它们的环流结构有十分相似之处.这表明,南海环流具有明显的季节特性.(6)比较2000年夏季南海水文结构,流函数分布以及TOPEX/ERS的SSH分布,它们在定性上十分吻合.  相似文献   

4.
南海是个准封闭的辽阔海域,它的尺度足以形成独立的水平环流和涡旋。徐锡祯等人(1980)利用最近50年约六千个站次的历史资料,研究了整个南海四季表层及深层的平均水平环流模式,指出东沙群岛东北方有一个反气旋性的暖涡,西南方有一个气旋性的冷涡。冷涡夏强冬弱;暖涡相反,冬强夏弱。1979—1982年,本所进行了南海东北部海区海洋学综合调查,郭忠信、仇德忠等(1984,1985)用实测资料计算表明,在东沙群岛东北方确实有一个反气旋性的暖涡,冬强夏弱,西南方有一个气旋性的冷涡,  相似文献   

5.
1998年冬季南海上层环流诊断计算   总被引:12,自引:2,他引:12  
基于1998年11月28日至12月27日的调查航次的CTD资料,采用P矢量方法对调查期间南海环流进行了诊断计算,也对比了在此期间TOPEX/ERS卫星高度计SSH的资料,得到了1998年冬季南海上层环流的以下一些重要特征.(1)南海中部环流系统主要特征:在冬季越南近岸出现西边界南向射流.这支沿岸南向射流以东、114°E以西存在一个尺度大的、显著气旋式环流,它位于南自10°N左右北至16°N附近区域.在区域东中部存在一个尺度不大的、较弱的反气旋暖涡.该反气旋涡中心约位于14°N附近.在上述强的气旋式环流涡与较弱的反气旋式环流涡之间,存在一支强的、逆风方向的,即偏东北方向的海流.上述是冬季南海中部基本流态,并与200m处水平温度分布与密度分布有很好的对应.产生上述基本流态的动力原因有两个:1)在偏东北季风作用下,与地形变化相互作用,是本文首次提出的,并指出,其动力原因与冬季黄海暖流形成机制有相似之处;2)由于斜压场与地形的联合效应(JEBAT).(2)在海区南部存在一个反气旋式环流,在加里曼丹岛西北还有一个尺度不大、冷的气旋式涡.(3)南海北部环流系统:1)在吕宋岛西北明显地存在一个气旋环流系统,并有3个冷水中心;2)在此气旋式环流系统的一个冷水中心(约19°30'N,119°30'E)以西,存在一个反气旋式涡;3)在海南岛以南出现一个暖的、反气旋式环流;4)在南海北部,114°E以东、广东沿岸外侧存在一支东北向流.这是管秉贤首次指出的,冬季时出现南海暖流.(4)上述1998年冬季南海上层环流的一些重要特征都与此期间TOPEX/ERS-2卫星高度计SSH分布有较好的相对应.  相似文献   

6.
基于2000年8月在南海调查航次得到的水文资料,首次采用广义随底坐标形式的改进POM模式对南海夏季环流进行了数值研究.用正交曲线性水平网格覆盖观测区域,在垂向上对近表海面层次采用近似z坐标,而近底层则为随底坐标.在计算海区实际地形及假设的水平均匀而垂直层化的密度分布下,实施的两个数值计算试验表明,本模式采用的垂直坐标方案比传统的σ坐标方案优越,随底坐标模式因压力梯度项在起伏地形下产生的系统计算误差将变得十分的微小.在南海2000年夏季环流的实际计算中,首先对观测资料进行了60d的诊断计算,然后在诊断已得到的动力场结果基础上,又进行了10d左右的预报运行得到半诊断结果.从计算结果来看,它依赖于参数Cvis与Cdif的选择,特别是参数Cvis,文中取值为Cvis=Cdif=008.比较诊断与半诊断两个计算过程的结果,它们在定性上较为一致,在定量上有些差别.这是因为半诊断计算的方法对密度场作适当的动力调整,使其与地形、风场等更加匹配.在大尺度环流结构不受影响的情况下,尽可能地消除了小尺度噪声,可使计算得到的流场更为清晰.2000年8月南海计算区域环流的最大特点是多涡结构,其中有些反气旋暖涡和气旋式冷涡相间分布.在越南东南海域自表层至1000m水层稳定存在着一个显著的反气旋暖涡,其中心位置在11°51'N,112°07'E(诊断计算),水平尺度约为300km.此暖涡以东存在一个气旋式冷涡,这两个冷、暖涡是研究海区夏季环流的重要环流特征之一.在计算区域东北部夏季环流以反气旋环流系统为主;在计算区域东南部夏季环流以气旋系统为主;南海夏季环流分布,明显出现西部强化特征.  相似文献   

7.
1995与1996年夏季琉球群岛两侧海流   总被引:4,自引:3,他引:4  
基于1995,1996年夏季日本调查船的观测资料,采用P矢量方法对琉球群岛两侧的海流进行了计算.结果表明:黑潮为琉球群岛以西海域的一支东北向强流,1996年夏季的流速比1995年夏季的强,在深层出现南向逆流.黑潮东、西两侧分别存在一个反气旋式暖涡和一个弱的气旋式冷涡.1995年夏季,琉球群岛以东,从表层至以下层都存在一支沿岸北上的海流,即琉球海流.该海流来自黑潮分支,为本海区的一个主要物理特征.琉球海流以下出现弱的南向流.冲绳岛以东海域,在25°~25°30'N,128°30'~129°10'E附近从表层至700m水深存在一个中尺度的反气旋式暖涡.在温、盐水平分布图上,对应的出现一个较高温、低密水块.1996年夏季,冲绳岛西南海域存在一个中尺度的反气旋式暖涡和一个气旋式冷涡,形成一个偶极子,中间为较强的南向流,该现象为本海区的一个重要物理特征,属首次报道.冲绳岛以东表层主要被南向流控制,琉球海流不明显.200m以深在近岸出现北向流,这表明琉球海流的核心位于次表层.琉球海流的下面出现南向流.计算海区东北部从表层到700m水深出现一个中尺度的反气旋式暖涡,与1995年夏季时比较,其位置向北移动.此外在1996年夏季从近表层到深层,垂直方向和水平方向上的等温线、等盐线波动很大,例如在C断面上冷、暖涡相间出现,且暖  相似文献   

8.
1998年夏季季风爆发前后南海环流的多涡特征   总被引:10,自引:0,他引:10  
利用南海季风实验(SCSMEX-IOP1、IOP2)期间(1998年4月底-7月初)所获得的温盐深(CTD)、声学多普勒流速剖面仪(ADCP)资料及TOPEX/POSEIDON卫星高度计遥感资料,分析了南海表层、1.0MPa层和3.0MPa层得力势异常场的分布格局,探讨了夏季季风爆发前后南海的环流特征。结果表明:在夏季季风爆发前(IOP1期间)南海北部以气旋试流动为主,并在此气旋式环流的东部镶嵌着一个较小的反气旋型涡;南海中部和南部以反气旋式流动为主,其中越南以东海域存在着两个南北对峙分布的反气旋型涡,在它们的东侧伴随一气旋型涡。季风爆发后(IPO2期间),南海北部仍然以气旋式流动为主,黑潮水越过巴士海峡南北中线,一部分可能入侵南海北部,另一部分向东北折回黑潮主干;南海中部和南部仍以反气旋式流动为主,越南以东海域北部的反气旋型涡消失,但南西的反气旋型涡加强,与IOP1类似,仍伴随着一个气旋型涡。总体而方,强流区出现在巴士海峡西北侧和南海西部(尤其是越东南东沿岸),南海东部和东南部为弱流区。  相似文献   

9.
综述了南海和台湾以东海域若干气旋型和反气旋型涡旋研究.在南海存在着许多活跃的中尺度涡,我们分别对南海中、南部海域和南海北部海域中尺度涡作了评述.在南海北部海域,目前最感兴趣的问题为:南海水与西菲律宾海通过吕宋海峡的交换的物理过程,以及黑潮是否以反气旋流套形式进入南海.这些问题目前尚不清楚,尤其是这些问题的机理.这些问题必须通过今后深入和细致的、长时间的海流和水文观测,以及长时间卫星遥感观测资料的论证才能逐渐认识清楚.台湾以东海域,黑潮两侧经常出现中尺度涡,而且变化较大而复杂.文中着重讨论兰屿冷涡和台湾东北的气旋式冷涡.  相似文献   

10.
越南离岸流跨海盆特征初步分析   总被引:3,自引:0,他引:3  
刘岩松  于非  刁新源  南峰 《海洋科学》2014,38(7):95-102
为了更加清晰地分析南海的环流结构,本文利用南海表层卫星跟踪漂流浮标轨迹,结合卫星高度计资料,分析了南海中、南部跨海盆尺度海流。结果表明,2011年9~10月,越南沿岸流向南,并分别在11.5°N和8.5°N(等深线出现弯曲处)转向东形成越南离岸流。之后,这支离岸流在11°~16°N呈现蛇形路径,从越南东岸跨越南海南部海盆到达菲律宾西岸。分析卫星高度计数据,结果表明,秋季南海中北部被气旋式环流控制,气旋式环流南部为东向流,可从越南东部一直到菲律宾沿岸,从而决定了越南离岸流跨海盆的特征。越南离岸流的蛇形路径主要是由反气旋-气旋-反气旋-气旋交错出现的中尺度涡决定的。  相似文献   

11.
On the basis of hydrographic data obtained from 12 June to 6 July, 1998, the three-dimensional structure of circulation in the South China Sea (SCS) is computed using a three-dimensional diagnostic model. The combination of sea surface height anomaly from altimeter data and numerical results provides a consistent circulation pattern for the SCS, and the main circulation features can be summarized as follows: In the northern SCS there are a cyclonic eddy C1 near Dongsha Islands and an anti-cyclonic eddy W1 west of Luzon Island. In the central SCS a strong anti-cyclonic eddy W3 and a cyclonic eddy C3 compose a quasi-dipole southeast of Vietnam. A coastal northward jet is present at the western boundary near the Vietnam coast above 300 m level. This northward coastal jet flows northward and turns eastward at about 14°N, and then flows southeastward into the area between eddies W3 and C3. In the southern SCS the current is weaker. The most important dynamic mechanism underlying the circulation in the SCS is the joint effect of the baroclinicity and relief (JEBAR), and the second dynamical mechanism is the interaction between the wind stress and relief (IBWSR). Comparison of the characters of circulation in the SCS during summer 2000 with that during summer 1998 reveals no obvious variability of the main characteristics.  相似文献   

12.
On the basis of hydrographic data obtained in August 2000 cruise, the circulation in the South China Sea (SCS) is computed by the modified inverse method in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of summer circulation in the SCS, the diagnostic model (Yuan et al. 1982. Acta Oceanologica Sinica,4(1):1-11; Yuan and Su. 1992. Numerical Computation of Physical Oceanography.474-542) is used to simulate numerically the summer circulation in the SCS. The following results  相似文献   

13.
The wind data from NCEP and hydrographic data obtained from April 22–May 24, 1998 have been used to compute the circulation in the South China Sea (SCS) using three dimensional diagnostic models. The main numerical results with SSHA derived from T/P altimeter are as follows: most of intruded Kuroshio bypasses. However, a part of Kuroshio intrudes westward above 300 m levels. This intruded westward flow is narrowly confined to the continental slope south of China, in agreement with the findings of Qu et al. (2000). The basin-scale cyclonic gyre dominates in the northern SCS and consists of two cyclonic eddies, C2 and C3, above 300 m levels. However, it is separated into two parts by an anti-cyclonic eddy, W4, below 300 m. The basin-scale anti-cyclonic gyre dominates in the central SCS and consists of three anti-cyclonic eddies, W1, W2 and W3, above 300 m levels. However, below 300 m it consists of the anti-cyclonic eddies W1, W2 and W4 and extends northward to near 20°N. A northward coastal jet is present near the coast of Vietnam at depths above 300 m, and develops northward further to about a distance of 3°15′ N than that in cruise 2. The most important dynamical mechanism is due to the joint effect of the baroclinity and relief. The second dynamical mechanism is due to the interaction between the wind stress and relief. The topography effect is more important than the β effect. The Sverdrup relation cannot be satisfied in the SCS.  相似文献   

14.
On the basis of hydrographic data obtained from 28 November to 27 December, 1998, the three-dimensional structure of circulation in the South China Sea (SCS) is computed using a three-dimensional diagnostic model. The combination of sea surface height anomaly from altimeter data and numerical results provides a consistent circulation pattern for the SCS, and main circulation features can be summarized as follows: in the northern SCS there are a cold and cyclonic circulation C1 with two cores C1-1 and C1-2 northwest of Luzon and an anticyclonic eddy (W1) near Dongsha Islands. In the central SCS there is a stronger cyclonic circulation C2 with two cores C2-1 and C2-2 east of Vietnam and a weaker anticyclonic eddy W2 northwest of Palawan Island. A stronger coastal southward jet presents west of the eddy C2 and turns to the southeast in the region southwest of eddy C2-2, and it then turns to flow eastward in the region south of eddy C2-2. In the southern SCS there are a weak cyclonic eddy C3 northwest of Borneo and an anti-cyclonic circulation W3 in the subsurface layer. The net westward volume transport through section CD at 119.125°E from 18.975° to 21.725°N is about 10.3 × 106 m3s−1 in the layer above 400 m level. The most important dynamic mechanism generating the circulation in the SCS is a joint effect of the baroclinicity and relief (JEBAR), and the second dynamical mechanism is an interaction between the wind stress and relief (IBWSR). The strong upwelling occurs off northwest Luzon.  相似文献   

15.
On the basis of hydrographic data obtained in November 28 to December 27, 1998 cruise, the calculation of the circulation in the South China Sea (SCS) is made by using the P-vector method, in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of winter circulation in the SCS, the diagnostic model (Yuan et al., 1982; Yuan and Su, 1992) is used to simulate numerically the winter circulation in the SCS. The following results have been obtained.(1) The main characteristics of the circulation systems in the central SCS are as follows: A coastal southward jet in winter is present at the western boundary near the coast of Vietnam; there is a stronger cyclonic circulation with a larger horizontal scale east of this coastal southward jet and west of 114°E; there is a weaker anti-cyclonic circulation in the central part of eastern SCS; there is a stronger and northeastward flow opposing the northeasterly monsoon between above a stronger cyclonic circulation and a weaker anti-cyclonic circulation.(2) The circulation systems in the northern SCS are as follows: 1)There is a cyclonic circulation system northwest of Luzon, and it has three centers of the cold water; 2) There is an anti-cyclonic eddy. Its center is located near(20°N, 116°40' E); 3)There is a warm and anti-cyclonic circulation south of Hainan Island; 4) There is a northeastward flow, the South China Sea Warm Current, in winter off Guangdong coast in the northern SCS.(3) In the southem SCS there is an anti-cyclonic circulation, and also there is a smaller scale cold water and cyclonic eddy.(4) The above pattern of winter circulation in the SCS agrees qualitatively with the horizontal distribution of temperature at 200 m level.(5) The dynamical mechanism which produces the above basic pattern of winter circulation is because of the following two causes: 1) The joint effect of the baroclinity and relief (JEBAR) is an essential dynamical cause; 2) The interaction between the wind stress and bottom topographic (IBWT) under the strong northeasterly monsoon is the next important dynamical mechanism.(6) Comparing the hydrographic structure and the horizontal distribution of velocity with the SSH data from TOPEX/ERS-2 analysis in the SCS during December of 1998, it is found that they agree qualitatively.  相似文献   

16.
On the basis of hydrographic data obtained in November 28 to December 27, 1998 cruise, the calculation of the circulation in the South China Sea (SCS) is made by using the P-vector method, in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of winter circulation in the SCS, the diagnostic model (Yuan et al., 1982; Yuan and Su, 1992) is used to simulate numerically the winter circulation in the SCS. The following results have been obtained. (1) The main characteristics of the circulation systems in the central SCS are as follows: A coastal southward jet in winter is present at the western boundary near the coast of Vietnam; there is a stronger cyclonic circulation with a larger horizontal scale east of this coastal southward jet and west of 114°E; there is a weaker anti-cyclonic circulation in the central part of eastern SCS; there is a stronger and northeastward flow opposing the northeasterly monsoon between above a stronger cyclonic c  相似文献   

17.
南海的季节环流─TOPEX/POSEIDON卫星测高应用研究   总被引:57,自引:8,他引:49  
应用1992~1996年的TOPEX/POSEIDON卫星高度计遥感资料,研究了冬、夏季风强盛期多年平均的南海上层环流结构。研究结果表明,南海上层流结构呈明显的季节变化,在很大程度上受该海区冬、夏交替的季风支配。冬季总环流呈气旋型,并发育有两个次海盆尺度气旋型环流;夏季总环流大致呈反气旋型、但在南海东部18°N以南海域未见明显流系发育。研究还表明,南海环流的西向强化趋势明显,无论冬、夏在中南半岛沿岸和巽他陆架外缘均存在急流,其流向冬、夏相反,是南海上层环流中最强劲的一支。鉴于该海流的动力特征与海洋动力学中定义的漂流不同,有相当大的地转成分,建议称为“南海季风急流(South China Sea MonsoonJet)”.冬季南下的季风急流在南海南部受巽他陆架阻挡折向东北,沿加里曼丹岛和巴拉望岛外海有较强东北向流发育。夏季北上的季风急流在海南岛东南分为两支:北支沿陆架北上,似为传统意义上的南海暖流;南支沿18°N向东横穿南海后折向东北;二者之间(陆架坡折附近)为弱流区。两分支在汕头外海汇合后,南海暖流流速增强。就多年平均而言,黑潮只在冬季侵入南海东北部,并在南海北部诱生一个次海盆尺度的气旋型环流,这时南海暖流只出现在汕头以东海域.夏季南海北部完全受东北向流控制,未见黑潮入侵迹象.用卫星跟踪海面漂流浮标观测进行的对比验证表明,以上遥感分析结果与海上观测一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号