首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
在对缓坡方程和Boussinesq方程研究的基础上,从方程的基本形式和特征以及频散关系等方面对二者进行了分析和比较,明确了线性缓坡方程在频散性上要好于非线性Boussinesq方程。此外还对Boussinesq型模型与抛物型缓坡方程模型在Berkhoff椭圆地形的计算结果及其精度也进行比较,计算结果与实测数据吻合很好,说明这两种模型都可以用于模拟近岸波浪传播过程所发生的各种变形。但由于各自控制方程对各物理过程的处理不同,因此各有特征。  相似文献   

2.
A new form of higher order Boussinesq equations   总被引:3,自引:0,他引:3  
On the basis of the higher order Boussinesq equations derived by the author (1999), a new form of higher order Boussinesq equations is developed through replacing the depth-averaged velocity vector by a new velocity vector in the equations in order to increase the accuracy of the linear dispersion, shoaling property and nonlinear characteristics of the equations. The dispersion of the new equations is accurate to a [4/4] Pade expansion in kh. Compared to the previous higher order Boussinesq equations, the accuracy of quadratic transfer functions is improved and the shoaling property of the equations have higher accuracy from shallow water to deep water.  相似文献   

3.
通过改进二阶全非线性 Boussinesq 波浪方程中的色散项,得到了一组没有改变原方程的数学形式但适用于更大变化水深的新方程,其色散性能和变浅性能都比原方程有了很大改进,所适用的水深范围更大,能更好地描述从深水到近岸浅水处的波浪传播;并基于新方程建立了波浪数值模型,通过模拟波浪从浅水到深水的传播变形来验证新方程的有效性.  相似文献   

4.
含强水流高阶Boussinesq水波方程   总被引:13,自引:3,他引:10  
邹志利 《海洋学报》2000,22(4):41-50
采用摄动法并利用已建立的纯波情况下高阶Boussinesq方程,建立了可以考虑强水流与波浪相互作用的高阶Boussinesq方程.水流速度与波浪群速具有相同量级,且随时间和空间的变化尺度远大于波浪周期和波长.方程色散性近似到[4/4]阶Pade展开,对浅水情况方程可以是完全非线性的,可适用于波流相互作用的强非线性问题.通过将水流存在时波长和波幅的结果与一阶斯托克斯波结果对比,讨论了具有不同近似程度的3种含波流相互作用的Boussinesq方程的适用性.  相似文献   

5.
Two sets of higher-order Boussinesq-type equations for water waves   总被引:1,自引:0,他引:1  
Z.B. Liu  Z.C. Sun 《Ocean Engineering》2005,32(11-12):1296-1310
Based on the classical Boussinesq model by Peregrine [Peregrine, D.H., 1967. Long waves on a beach. J. Fluid Mech. 27 (4), 815–827], two parameters are introduced to improve dispersion and linear shoaling characteristics. The higher order non-linear terms are added to the modified Boussinesq equations. The non-linearity of the Boussinesq model is analyzed. A parameter related to h/L0 is used to improve the quadratic transfer function in relatively deep water. Since the dispersion characteristic of the modified Boussinesq equations with two parameters is only equal to the second-order Padé expansion of the linear dispersion relation, further improvement is done by introducing a new velocity vector to replace the depth-averaged one in the modified Boussinesq equations. The dispersion characteristic of the further modified Boussinesq equations is accurate to the fourth-order Padé approximation of the linear dispersion relation. Compared to the modified Boussinesq equations, the accuracy of quadratic transfer functions is improved and the shoaling characteristic of the equations has higher accuracy from shallow water to deep water.  相似文献   

6.
Higher order Boussinesq equations   总被引:2,自引:0,他引:2  
A new form of Boussinesq-type equations accurate to the third order are derived in this paper to improve the linear dispersion and nonlinearity characteristics in deeper water. Fourth spatial derivatives in the third order terms of the equations are transformed into second derivatives and present no difficulty in numerical computations. With the increase in accuracy of the equations, the nonlinear and dispersion characteristics of the equations are of one order of magnitude higher accuracy than those of the classical Boussinesq equations. The equations can serve as a fully nonlinear model for shallow water waves. The shoaling property of the equations is also of high accuracy through shallow water to deep water by introducing an extra source term into the second order continuity equation. An approach to increase the accuracy of the nonlinear characteristics of the new equations is introduced. The expression for the vertical distribution of the horizontal velocities is a fourth order polynomial.  相似文献   

7.
The transformation of irrotational surface gravity waves in an inviscid fluid can be studied by time stepping the kinematic and dynamic surface boundary conditions. This requires a closure providing the normal surface particle velocity in terms of the surface velocity potential or its tangential derivative. A convolution integral giving this closure as an explicit expression is derived for linear 1D waves over a mildly sloping bottom. The model has exact linear dispersion and shoaling properties. A discrete numerical model is developed for a spatially staggered uniform grid. The model involves a spatial derivative which is discretized by an arbitrary-order finite-difference scheme. Error control is attained by solving the discrete dispersion relation a priori and model results make a perfect match to this prediction. A procedure is developed by which the computational effort is minimized for a specific physical problem while adapting the numerical parameters under the constraint of a predefined tolerance of damping and dispersion error. Two computational examples show that accurate irregular-wave transformation on the kilometre scale can be computed in seconds. Thus, the method makes up a highly efficient basis for a forthcoming extension that includes nonlinearity at arbitrary order. The relation to Boussinesq equations, mild-slope wave equations, boundary integral equations and spectral methods is briefly discussed.  相似文献   

8.
非线性弱色散波内部流场的重构   总被引:1,自引:0,他引:1  
基于势流理论和级数直接求逆方法,本文建立了基于Bousinesq方程或Green-Naghdi方程给出的水深平均流速或某特征流速及波面信息重构非线性弱色散波内部流场的算法。以Bousinesq方程的孤立波解为例,用本反演方法计算了孤立波的表面水平流速及底部水平流速。结果表明本算法是有效的。本反演算法可用于获取非线性弱色散波的内部流场的详细信息。  相似文献   

9.
A set of optimum parameter α is obtained to evaluate the linear dispersion and shoaling properties in the extended Boussinesq equations of [Madsen and Sorensen, 1992 and Nwogu, 1993], and [Chen and Liu, 1995]. Optimum α values are determined to produce minimal errors in each wave property of phase velocity, group velocity, or shoaling coefficient relative to the analytical one given by the Stokes wave theory. Comparisons are made of the percent errors in phase velocity, group velocity, and shoaling coefficient produced by the Boussinesq equations with a different set of optimum α values. The case with a fixed value of α = −0.4 is also presented in the comparison. The comparisons reveal that the optimum α value tuned for a particular wave property gives in general poor results for other properties. Considering all the properties simultaneously, the fixed value of α = −0.4 may give overall accuracies in phase velocity and shoaling coefficient for all the types of Boussinesq equations selected in this study.  相似文献   

10.
《Coastal Engineering》2006,53(4):319-323
The literature contains empirical knowledge on whether the wave celerity or the group velocity should be used in the line source function for internal wave generation for at given set of Boussinesq or mild-slope equations. Theoretical derivations that confirm and explain these empirical findings are devised. For Boussinesq equations with, e.g. Padé[2,2]-type of dispersion relation some procedures for internal wave generation are affected by their excitation of an evanescent mode. This has some undesirable consequences, but the evanescent-mode excitation can be avoided by the use of an “internal flux boundary”.  相似文献   

11.
Boussinesq equations describing motions of internal waves in a two-fluid system with the presence of free surface are theoretically derived, and the associated essential properties are examined in this study. Eliminating the dependence on the vertical coordinate from all variables, four equations constitute the Boussinesq model with two flexible parameters, zu and zl, which indicate the specific elevations, respectively, in the upper and lower fluids. Similar to the Boussinesq model for a single-layer fluid, zu and zl are determined by matching the linear dispersion relation with Lamb's solution. This determines the optimal model. In the analysis stage, this problem is classified into two cases, the thicker-upper-layer case and the thicker-lower-case case, to avoid the possible divergence of wave properties as the thickness ratio grows. Since there exist two modes of motions that may be excited, cases of both modes are separately analyzed. Linear characteristics including the amplitude ratios and normalized particle velocities are analyzed. Second-order harmonic waves are examined to validate nonlinear behaviors of present model. Results of linear and nonlinear investigations show that the present model indeed extends the applicable range of traditional Boussinesq equations.  相似文献   

12.
Free internal waves are considered in a Boussinesq approximation in the situation when horizontal eddy viscosity and diffusion in a vertically inhomogeneous flow are taken into account. The dispersion relation and wave damping factor are found in a linear approximation. The Stokes drift velocity is determined in the second order of smallness based on the wave amplitude. It has been indicated that the Stokes drift velocity, transverse with respect to the wave propagation direction, differs from zero if the flow-rate transverse component depends on the vertical coordinate. Vertical momentum fluxes differ from zero and can be comparable with or exceed the corresponding turbulent fluxes if eddy viscosity and diffusion are taken into account.  相似文献   

13.
The form of Boussinesq equation derived by Nwogu (1993) using velocity at an arbitrary distance and surface elevation as variables is used to simulate wave surface elevation changes. In the numerical experiment, water depth was divided into five layers with six layer interfaces to simulate velocity at each layer interface. Besides, a physical experiment was carried out to validate numerical model and study solitary wave propagation.“Water column collapsing”method (WCCM) was used to generate solitary wave. A series of wave gauges around an impervious breakwater were set-up in the flume to measure the solitary wave shoaling, run-up, and breaking processes. The results show that the measured data and simulated data are in good agreement. Moreover, simulated and measured surface elevations were analyzed by the wavelet transform method. It shows that different wave frequencies stratified in the wavelet amplitude spectrum. Finally, horizontal and vertical velocities of each layer interface were analyzed in the process of solitary wave propagation through submerged breakwater.  相似文献   

14.
基于二阶非线性与色散的Boussinesq类方程,采用改善的Crank-Nicolson方法对不同情况下淹没潜堤上的波浪传播进行数值模拟。高阶方程与传统、改进型的Boussinesq方程计算结果进行比较,高阶方程的计算结果与实验吻合得更好。表明该高阶Boussinesq方程能够精确预测变水深、强非线性的复杂波况,可用于实际近岸海域波浪问题的计算。  相似文献   

15.
Based on the Boussinesq assumption,derived are couple equations of free surface elevationand horizontal velocities for horizontal irrotational flow,and analytical expressions of the correspondingpressure and vertical velocity.After the free surface elevation and horizontal velocity at a certain depth areobtained by numerical method,the pressure and vertical velocity distributions can be obtained by simplecalculation.The dispersion at different depths is the same at the O(ε)approximation.The waveamplitude will decrease with increasing time due to viscosity,but it will increase due to the matching ofviscosity and the bed slope.thus,flow is unstable.Numerical or analytical results show that the waveamplitude.velocity and length will increase as the current increases along the wave direction.but theamplitude will increase.and the wave velocity and length will decrease as the water depth decreases.  相似文献   

16.
祝会兵  蔡泽伟 《海洋工程》2003,21(3):106-109
利用一维Boussinesq方程描述了在浅水中的波浪运动以及破碎情况。在方程中引入了表面翻滚的概念,认为翻滚的水体是以波速运动的,翻滚的作用表现在水平速度的垂直分布上,产生了附加迁移动量项。通过对Airy波在浅水中运动以及破碎情况的研究,得出的一些结论与Schaeffer和合田的成果吻合良好。  相似文献   

17.
航道对多方向波传播影响   总被引:2,自引:0,他引:2  
应用Boussinesq方程对不同入射角、不同方向集中度的波浪与航道的相互作用进行模拟,得到了航道的折射影响规律以及不同入射角、不同方向集中度的波浪对航道作用的差别.结果对试验研究及工程实践有指导意义.  相似文献   

18.
The eruption of an underwater volcano can initiate the disturbances of the sea surface and subsequently generate a group of outward-propagating tsunamis. The theme of this study is to introduce a three-dimensional (3D) fully nonlinear wave model for the simulation of wave motions induced by a bottom jet. A boundary-fitted coordinate system is utilized to conveniently adjust grids according to the transient moving free surface. The governing Laplace equation of the velocity potential is solved by an implicit finite-difference scheme while a mixed explicit/implicit iteration procedure is applied to solve the free-surface boundary conditions. In addition, a set of generalized Boussinesq equations are solved for comparison with the fully nonlinear model. Good agreements in comparisons with the existing numerical and analytical solutions are achieved for cases investigated. Waves induced by three types of bottom jets: namely (1) sudden eruption, (2) initial transient, and (3) periodic transient are discussed in this paper. For the case of sudden erupted jet, a system of 3D outgoing waves as the cylindrical wave pattern are presented and discussed. For the initial transient types, it shows the transition in the incipient stage has a great influence on the initial rising of the water surface and the induced leading waves. Furthermore, an interesting up-down phenomenon in the center of disturbed free surface due to the type of periodic jet is revealed.  相似文献   

19.
Extended Boussinesq equations for rapidly varying topography   总被引:1,自引:0,他引:1  
We developed a new Boussinesq-type model which extends the equations of Madsen and Sørensen [1992. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly varying bathymetry. Coastal Engineering 18, 183-204.] by including both bottom curvature and squared bottom slope terms. Numerical experiments were conducted for wave reflection from the Booij's [1983. A note on the accuracy of the mild-slope equation. Coastal Engineering 7, 191-203] planar slope with different wave frequencies using several types of Boussinesq equations. Madsen and Sørensen's model results are accurate in the whole slopes in shallow waters, but inaccurate in intermediate water depths. Nwogu's [1993. Alternative form of Boussinesq equation for nearshore wave propagation. Journal of Waterway, Port, Coastal and Ocean Engineering 119, 618-638] model results are accurate up to 1:1 (V:H) slope, but significantly inaccurate for steep slopes. The present model results are accurate up to the slope of 1:1, but somewhat inaccurate for very steep slopes. Further, numerical experiments were conducted for wave reflections from a ripple patch and also a Gaussian-shaped trench. For the two cases, the results of Nwogu's model and the present model are accurate, because these models include the bottom curvature term which is important for the cases. However, Madsen and Sørensen's model results are inaccurate, because this model neglects the bottom curvature term.  相似文献   

20.
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号