首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady two-dimensional Navier-Stokes equations and the fully nonlinear free surface boundaiy conditions for the fluid flows in the flume, the viscous flows and laminar bottom shear stresses induced by random waves axe determined. The deterministic spectral amplitude method implemented by use of the fast Fourier transform algorithm was adopted to generate the incident random waves. The accuracy of the numerical scheme is confirmed by comparing the predicted wave spectrum with the target spectrum and by comparing the nanlerical transfer function between the shear stress and the surface elevation with the theoretical transfer function. The maximum bottom shear stress caused by random waves, computed by this wave model, is compared with that obtained by Myrhaug' s model (1995). The transfer function method is also employed to determine the maximum shear stress, and is proved accurate.  相似文献   

2.
This study investigates the initialization of nonlinear free-surface simulations in a numerical wave flume.Due to the mismatch between the linear input wavemaker motion and the kinematics of fully nonlinear waves,direct numerical simulations of progressive waves,generated by a sinusoidally moving wavemaker,are prone to suffering from high-frequency wave instability unless the flow is given sufficient time to adjust.A time ramp is superimposed on the wavemaker motion at the start that allows nonlinear free-surface simulations to be initialized with linear input.The duration of the ramp is adjusted to test its efficiency for short waves and long waves.Numerical results show that the time ramp scheme is effiective to stabilize the wave instability at the start of the simulation in a wave flume.  相似文献   

3.
An enhanced numerical model for simulating two-dimensional incompressible viscous flow with distorted free surface is reported. The numerical simulation is carried out through the CIP (Constrained Interpolation Profile)-based method, which is described in the paper. A more accurate interface capturing scheme, the VOF/WLIC scheme (VOF:Volume-of-Fluid;WLIC:weighed line interface calculation), is adopted as the interface capturing method. To assess the developed algorithm and its versatility, a selection of test problems are examined, i.e. the square wave propagation, the Zalesak’s rigid body rotation, dam breaking problem with and without obstacles, wave sloshing in an excited wave tank and interaction between extreme waves and a floating body. Excellent agreements are obtained when numerical results are compared with available analytical, experimental, and other numerical results. These examples demonstrate that the use of the VOF/WLIC scheme in the free surface capturing makes better results and also the proposed CIP-based model is capable of predicting the freak wave-related phenomena.  相似文献   

4.
Optimal Active Control of Wave-Induced Vibration for Offshore Platforms   总被引:2,自引:0,他引:2  
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H2 control algorithm, which is an optimal frequency domain control method based on minimization of H2 norm of the system transfer function. In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model. This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding "generalized" wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H2 active control and the corresponding passive control using a T  相似文献   

5.
Large Eddy Simulation for Wave Breaking in the Surf Zone   总被引:1,自引:0,他引:1  
In this paper, (he large eddy simulation method is used combined with the marker and cell method to study the wave propagation or shoaling and breaking process. As wave propagates into shallow water, the shoaling leads lo the increase of wave height, and then at a certain position, the wave will be breaking. The breaking wave is a powerful agent for generating turbulence, which plays an important role in most of the fluid dynamic processes throughout the surf zone, such as transformation of wave energy, generation of near-shore current and diffusion of materials. So a proper numerical model for describing the turbulence effect is needed. In this paper, a revised Smagorinsky subgrid-scale mode! is used to describe the turbulence effect. The present study reveals that the coefficient of the Smagorinsky model for wave propagation or breaking simulation may be taken as a varying function of the water depth and distance away from the wave breaking point. The large eddy simulation model presented in this pape  相似文献   

6.
In the present paper, by introducing the effective wave elevation, we transform the extended ellip- tic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simplest time-dependent hyperbolic equation. Based on this equation and the empirical nonlinear amplitude dispersion relation proposed by Li et al. (2003), the numerical scheme is established. Error analysis by Taylor expansion method shows that the numerical stability of the present model succeeds the merits in Song et al. (2007)’s model because of the introduced dissipation terms. For the purpose of verifying its performance on wave nonlinearity, rapidly vary- ing topography and wave breaking, the present model is applied to study: (1) wave refraction and diffraction over a submerged elliptic shoal on a slope (Berkhoff et al., 1982); (2) Bragg reflection of monochromatic waves from the sinusoidal ripples (Davies and Heathershaw, 1985); (3) wave transformation near a shore attached breakwater (Watanabe and Maruyama, 1986). Comparisons of the numerical solutions with the experimental or theoretical ones or with those of other models (REF/DIF model and FUNWAVE model) show good results, which indicate that the present model is capable of giving favorably predictions of wave refraction, diffraction, reflection, shoaling, bottom friction, breaking energy dissipation and weak nonlinearity in the near shore zone.  相似文献   

7.
A numerical model for wave propagation in a harbour is verified by use of physical models.The extended time-dependent mild slope equation is employed as the governing equation,and the model is solved by use of ADI method containing the relaxation factor.Firstly,the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests,and it is regarded as the basis for simulating partial reflection boundaries of the numerical model.Then model tests on refraction,diffraction and reflection of waves in a harbour are performed to measure wave height distribution.Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.  相似文献   

8.
Hydrodynamic performance of an ultra deep turret-moored Floating Liquefied Natural Gas(FLNG) system is investigated.Hydrodynamic modeling of a turret-moored FLNG system,in consideration of the coupling effects of the vessel and its mooring lines,has been addressed in details.Based on the boundary element method,a 3-D panel model of the FLNG vessel and the related free water surface model are established,and the first-order and second-order mean-drift wave loads and other hydrodynamic coefficients are calculated.A systematic model test program consisting of the white noise wave test,offset test and irregular wave test combined with current and wind,etc.is performed to verify the numerical model.Owing to the depth limit of the water basin,the model test is carried out for the hydrodynamics of the FLNG coupled with only the truncated mooring system.The numerical simulation model features well the hydrodynamic performance of the FLNG system obtained from the model tests.The hydrodynamic characteristics presented in both the numerical simulations and the physical model tests would serve as the guidance for the ongoing project of FLNG system.  相似文献   

9.
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.  相似文献   

10.
Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations.For time discretization,a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage,a cubic spline function is adopted at correcting stage,which made the time discretization accuracy up to fourth order;For spatial discretization,a three-point explicit compact difference scheme with arbitrary order accuracy is employed.The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme.The numerical results agree well with the experimental data.At the same time,the comparisons of the two numerical results between the present scheme and low accuracy difference method are made,which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations.As a valid sample,the wave propagation on the rectangular step is formulated by the present scheme,the modelled results are in better agreement with the experimental data than those of Kittitanasuan.  相似文献   

11.
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level.  相似文献   

12.
A deterministic combination of numerical and physical models for coastal waves is developed. In the combined model, a Boussinesq model MIKE 21 BW is applied for the numerical wave computations. A piston-type 2D or 3D wavemaker and the associated control system with active wave absorption provides the interface between the numerical and physical models. The link between numerical and physical models is given by an ad hoc unified wave generation theory which is devised in the study. This wave generation theory accounts for linear dispersion and shallow water non-linearity. Local wave phenomena (evanescent modes) near the wavemaker are taken into account. With this approach, the data transfer between the two models is thus on a deterministic level with detailed wave information transmitted along the wavemaker.  相似文献   

13.
A full second-order theory for coupling numerical and physical wave tanks is presented. The ad hoc unified wave generation approach developed by Zhang et al. [Zhang, H., Schäffer, H.A., Jakobsen, K.P., 2007. Deterministic combination of numerical and physical coastal wave models. Coast. Eng. 54, 171–186] is extended to include the second-order dispersive correction. The new formulation is presented in a unified form that includes both progressive and evanescent modes and covers wavemaker configurations of the piston- and flap-type. The second order paddle stroke correction allows for improved nonlinear wave generation in the physical wave tank based on target numerical solutions. The performance and efficiency of the new model is first evaluated theoretically based on second order Stokes waves. Due to the complexity of the problem, the proposed method has been truncated at 2D and the treatment of regular waves, and the re-reflection control on the wave paddle is also not included. In order to validate the solution methodology further, a series of nonlinear, periodic waves based on stream function theory are generated in a physical wave tank using a piston-type wavemaker. These experiments show that the new second-order coupling theory provides an improvement in the quality of nonlinear wave generation when compared to existing techniques.  相似文献   

14.
This paper provides an experimental validation of the second-order coupling theory outlined by Yang et al. (Z. Yang, S. Liu, H.B. Bingham and J. Li., 2013. Second-order coupling of numerical and physical wave tanks for 2D irregular waves. Part I: Formulation, implementation and numerical properties, submitted for publication) using 2D irregular waves. This work provides a second-order dispersive correction for the physical wavemaker signal which improves the nonlinear transfer of information between the numerical and physical models compared to the first-order method of Zhang et al. (2007). The important nonlinear parameters and numerical performance were theoretically investigated in Part I. In the present Part II, careful experimental validation is carried out using a sequence of progressively more complex analytical and numerical target waves. The results demonstrate clearly that improved performance is achieved by using the second-order correction. When controlling with a second-order coupling signal, two key points are notable: (i) The higher harmonics underlying the numerical waves are accurately captured and transferred into the physical model. (ii) The second-order behavior leads to an unwanted spurious freely propagating second harmonic that is substantially reduced when compared to an identical wave paddle operating with a first-order coupling signal. Using nonlinear regular (monochromatic), bi-chromatic and irregular wave cases as well as varying coupled wave tank bathymetries, both these aspects are verified over a broad range of wave frequencies and shown to be extensively applicable to physical wave tanks.  相似文献   

15.
16.
Physical model tests with highly reflective structures often encounter a problem of multiple reflections between the structures and the wavemaker. This paper presents a piston-type active absorbing wavemaker system which can absorb most of the reflections. Based on the first-order wavemaker theory, a frequency domain absorption transfer function is modeled. Its time realization can be achieved by designing an IIR digital filter, which is used to control the absorbing wavemaker system. In a real system, time delays often exist in the wave making process. Thus a delay compensation term to the transfer function is proposed. Experimental results show that the system performs well for both regular and irregular waves with periods from 0.6 s to 2.0 s, and the absorption capability is larger than 96.5% at target wave fields.  相似文献   

17.
数值模式与统计模型相耦合的近岸海浪预报方法   总被引:2,自引:2,他引:0  
针对数值模式和统计模型预报近岸海浪存在的局限性,构建了数值模式和统计模型相耦合的近岸海浪预报框架,在模式计算格点和近岸预报目标点之间定义一个海浪能量密度谱传递系数,通过经验正交函数分解和卡尔曼滤波方法建立传递系数的统计预报模型并与数值模式进行耦合。经过对近岸波浪观测站1a的预报试验表明:该方法能够提高近岸海浪有效波高预报精度,有效波高的均方根误差降低了约0.16m,平均相对误差降低约9%。进一步试验和分析发现,该方法的预报有效时间小于24h,将海浪能量密度谱经过分解后得到的基本模态反映了近岸波侯的主要特征,海浪能量密度谱传递系数的变化体现了波侯的季节变化特点。  相似文献   

18.
基于推板造波理论和摇板造波理论,在Open FOAM平台上采用重叠网格技术建立黏性数值波浪水槽,并使用一种结合SIMPLE算法和PISO算法的PIMPLE算法对数值模型进行求解。利用开发的数值模型通过数值收敛性测试和网格独立性测试分别重点研究了时间步长、库朗数和网格尺寸对数值精度和计算效率的影响。并对比研究了此数值模型分别嵌入层流模型和湍流模型的计算精度和计算效率。实现的规则波和二阶有限振幅波与理论结果和试验结果吻合,验证了此黏性数值波浪水槽的造波和主动消波功能。基于二维数值波浪水槽,进一步研究了三维数值造波,数值计算结果与理论结果吻合良好。研究结果不仅验证了重叠网格在二维和三维两相流体域中求解运动物体与流场交互的可靠性和正确性,而且为使用此黏性数值波浪水槽解决更复杂的海洋工程问题提供了依据。  相似文献   

19.
A semi-analytical nonlinear wavemaker model is derived to predict the generation and propagation of transient nonlinear waves in a wave flume. The solution is very efficient and is achieved by applying eigenfunction expansions and FFT. The model is applied to study the effect of the wavemaker and its motion on the generation and propagation of nonlinear waves. The results indicate that the linear wavemaker theory may be applied to predict only the generation of waves of low steepness for which the nonlinear terms in the kinematic wavemaker boundary condition and free-surface boundary conditions are of secondary importance. For waves of moderate steepness and steep waves these nonlinear terms have substantial effects on wave profile and wave spectrum just after the wavemaker. A wave spectrum corresponding to a sinusoidally moving wavemaker possesses a multi-peak form with substantial nonlinear components, which disturbs or may even exclude physical modeling in wave flumes. The analysis shows that the widely recognized weakly nonlinear wavemaker theory may only be applied to describe the generation and propagation of waves of low steepness. This is subject to further restrictions in shallow and deep waters because the kinematic wavemaker boundary condition as well as the nonlinear interaction of wave components and the evolution of wave energy spectrum is not properly described by weakly nonlinear wavemaker theory. Laboratory experiments were conducted in a wave flume to verify the nonlinear wavemaker model. The comparisons show a reasonable agreement between predicted and measured free-surface elevation and the corresponding amplitudes of Fourier series. A reasonable agreement between theoretical results and experimental data is observed even for fairly steep waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号