首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Sea Surface Height (SSH) variability in the Indian Ocean during 1993-1995 is studied using TOPEX/POSEIDON (T/P) altimetry data. Strong interannual variability is seen in the surface circulation of the western Arabian Sea, especially in the Somali eddy structure. During the Southwest (SW) monsoon, a weak monsoon year is characterized by a single eddy system off Somalia, a strong or normal monsoon year by several energetic eddies. The Laccadive High (LH) and Laccadive Low (LL) systems off southwest India are observed in the altimetric SSH record. The variability of the East India Coastal Current (EICC), the western boundary current in the Bay of Bengal, is also detected. Evidence is found for the propagation of Kelvin and Rossby waves across the northern Indian Ocean; these are examined in the context of energy transfer to the western boundary currents, and associated eddies. A simple wind-driven isopycnal model having three active layers is implemented to simulate the seasonal changes of surface and subsurface circulation in the North Indian Ocean and to examine the response to different wind forcing. The wind forcing is derived from the ERS-1 scatterometer wind stress for the same period as the T/P altimeter data, enabling the model response in different (active/weak) monsoon conditions to be tested. The model output is derived in 10-day snapshots to match the time period of the T/P altimeter cycles. Complex Principal Component Analysis (CPCA) is applied to both altimetric and model SSH data. This confirms that long Rossby waves are excited by the remotely forced Kelvin waves off the southwest coast of India and contribute substantially to the variability of the seasonal circulation in the Arabian Sea.  相似文献   

2.
Sea Surface Height (SSH) variability in the Indian Ocean during 1993-1995 is studied using TOPEX/POSEIDON (T/P) altimetry data. Strong interannual variability is seen in the surface circulation of the western Arabian Sea, especially in the Somali eddy structure. During the Southwest (SW) monsoon, a weak monsoon year is characterized by a single eddy system off Somalia, a strong or normal monsoon year by several energetic eddies. The Laccadive High (LH) and Laccadive Low (LL) systems off southwest India are observed in the altimetric SSH record. The variability of the East India Coastal Current (EICC), the western boundary current in the Bay of Bengal, is also detected. Evidence is found for the propagation of Kelvin and Rossby waves across the northern Indian Ocean; these are examined in the context of energy transfer to the western boundary currents, and associated eddies. A simple wind-driven isopycnal model having three active layers is implemented to simulate the seasonal changes of surface and subsurface circulation in the North Indian Ocean and to examine the response to different wind forcing. The wind forcing is derived from the ERS-1 scatterometer wind stress for the same period as the T/P altimeter data, enabling the model response in different (active/weak) monsoon conditions to be tested. The model output is derived in 10-day snapshots to match the time period of the T/P altimeter cycles. Complex Principal Component Analysis (CPCA) is applied to both altimetric and model SSH data. This confirms that long Rossby waves are excited by the remotely forced Kelvin waves off the southwest coast of India and contribute substantially to the variability of the seasonal circulation in the Arabian Sea.  相似文献   

3.
1998年夏季季风爆发前后南海环流的多涡特征   总被引:10,自引:0,他引:10  
利用南海季风实验(SCSMEX-IOP1、IOP2)期间(1998年4月底-7月初)所获得的温盐深(CTD)、声学多普勒流速剖面仪(ADCP)资料及TOPEX/POSEIDON卫星高度计遥感资料,分析了南海表层、1.0MPa层和3.0MPa层得力势异常场的分布格局,探讨了夏季季风爆发前后南海的环流特征。结果表明:在夏季季风爆发前(IOP1期间)南海北部以气旋试流动为主,并在此气旋式环流的东部镶嵌着一个较小的反气旋型涡;南海中部和南部以反气旋式流动为主,其中越南以东海域存在着两个南北对峙分布的反气旋型涡,在它们的东侧伴随一气旋型涡。季风爆发后(IPO2期间),南海北部仍然以气旋式流动为主,黑潮水越过巴士海峡南北中线,一部分可能入侵南海北部,另一部分向东北折回黑潮主干;南海中部和南部仍以反气旋式流动为主,越南以东海域北部的反气旋型涡消失,但南西的反气旋型涡加强,与IOP1类似,仍伴随着一个气旋型涡。总体而方,强流区出现在巴士海峡西北侧和南海西部(尤其是越东南东沿岸),南海东部和东南部为弱流区。  相似文献   

4.
The surface circulation in the western equatorial Pacific Ocean is investigated with the aim of describing intra-annual variations near Palau (134°30′ E, 7°30′ N). In situ data and model output from the Ocean Surface Currents Analysis—Real-time, TRIangle Trans-Ocean buoy Network, Naval Research Laboratory Layered Ocean Model and the Joint Archive for Shipboard ADCP are examined and compared. Known major currents and eddies of the western equatorial Pacific are observed and discussed, and previously undocumented features are identified and named (Palau Eddy, Caroline Eddy, Micronesian Eddy). The circulation at Palau follows a seasonal variation aligned with that of the Asian monsoon (December–April; July–October) and is driven by the major circulation features. From December to April, currents around Palau are generally directed northward with speeds of approximately 20 cm/s, influenced by the North Equatorial Counter-Current and the Mindanao Eddy. The current direction turns slightly clockwise through this boreal winter period, due to the northern migration of the Mindanao Eddy. During April–May, the current west of Palau is reduced to 15 cm/s as the Mindanao Eddy weakens. East of Palau, a cyclonic eddy (Palau Eddy) forms producing southward flow of around 25 cm/s. The flow during the period July to September is disordered with no influence from major circulation features. The current is generally northward west of Palau and southward to the east, each with speeds on the order of 5 cm/s. During October, as the Palau Eddy reforms, the southward current to the east of Palau increases to 15 cm/s. During November, the circulation transitions to the north-directed winter regime.  相似文献   

5.
The differences of temperature, salinity distribution characteristics and structure of circulation in the upper layer of the South China Sea (SCS) are analyzed, based on the CTD and ADCP data from the two intensive surveyed cruises (IOP1: April 10 - May 5; IOP2: June 12 - July 6) and carried out before and after the Asian monsoon burst (May 25) during the South China Sea Monsoon Experiment (SCSMEX) in 1998. The results showed that field of temperature in the upper layer of the SCS distinctly changed before and after the monsoon burst, the average surface temperature increased by 0.75℃, with its influence down to the depth of 500 m. The interaction of the local circulation in some areas resulted in the complexity and variability of the temperature and salinity structure in the upper layer, and the alternating distribution of cold and warm water regions (blocks). The high salinity subsurface water obviously intruded into the SCS from the Northwest Pacific, but only limited to the area of southwest of Taiw  相似文献   

6.
The residual currents in Tokyo Bay during four seasons are calculated diagnostically from the observed water temperature, salinity and wind data collected by Unokiet al. (1980). The calculated residual currents, verified by the observed ones, show an obvious seasonal variable character. During spring, a clear anticlockwise circulation develops in the head region of the bay and a strong southwestward current flows in the upper layer along the eastern coast from the central part to the mouth of the bay. During summer, the anticlockwise circulation in the head region is maintained but the southwestward current along the eastern coast becomes weak. During autumn, the preceding anticlockwise circulation disappears but a clockwise circulation develops in the central part of the bay. During winter, the calculated residual current is similar to that during autumn. As a conclusion, the seasonal variation of residual current in Tokyo Bay can be attributed to the variation of the strength of two eddies. The first one is the anticlockwise circulation in the head region of the bay, which develops in spring and summer and disappears in autumn and winter. The second one is the clockwise circulation in the central part of the bay, which develops in autumn and winter, decreases in spring and nearly disappears in summer.  相似文献   

7.
The ADCP records obtained at about 18°N, 135°E show the southern branch of the Subtropical Countercurrent (STCC). The sea surface heights (SSH) show that there is a tendency to increase and decrease in the south/north of STCC, respectively. So the variability of SSH ultimately contributes to the strengthening of STCC through geostrophic balance. The southern STCC branch distinctly persists from winter to spring. Since 2005, the southern STCC exists almost throughout the year, and the STCC is clearly stronger to the east of 145°E. Anticyclonic and cyclonic eddies exist seemingly as bands around 17.5°N and 20.5°N, respectively. The STCC flowing eastward, which is formed by the geostrophic balance, is maintained with the interaction between geostrophic currents and anticyclonic-cyclonic eddies. The rotating eddies exert an additional driving force to maintain the eastward flow of STCC, and then the STCC reveals a meandering movement due to the interaction with the eddies. The trajectories of surface drifters together with the altimeter data analysis in June 2009 dictate the variability of the STCC induced by the interaction between eddies and the eastward flow. These results suggest that the southern STCC slowly changes from an intra-seasonal event an annual one with time duration of over 21 months.  相似文献   

8.
The sea surface height data from 1992 through 2012 in the Eastern Indian Ocean, the 6 sets of hydrographic data sparsely spanning 1990–2001 in water south of Java–Bali, and the 24 shipboard acoustic Doppler current profiler (ADCP) data across the Ombai Strait during 1997–2000 were used as a combined dataset to understand sea level and current variability along the southern coast of Java and Lesser Sunda Islands. The first two dominant empirical orthogonal function (EOF) modes capture combined seasonal with interannual and seasonal variability that account for 44.5 and 19.9 % of the total variances caused by El Niño Southern Oscillation and Indian Ocean Dipole events, and by the seasonal change of the Asian monsoon, respectively. The geostrophic current and ADCP data show that the eastward and westward currents are distinguishable via the vertical profiles of current velocity. The eastward-flowing South Java Current (SJC) is characterized by a large vertical shear and shallower diminishing depth of about 150 m and it is increased to 300 m in the presence of the Indian Ocean Kelvin Waves (IOKWs). In contrast, the westward current is dominated by the Indonesian Throughflow (ITF) with no vertical shear and has uniform current in the upper 300 m layer. The coastally trapped SJC and IOKWs are responsible for the eastward current. The SJC is not observed in the westward current because of non-existence of coastally trapped modes. The ITF and SJC generate persistent cyclonic (cold) and anticyclonic (warm) mesoscale eddies, respectively, in waters south of eastern Java.  相似文献   

9.
The goal of this paper is to present some results on the monsoon circulation in the Indian Ocean simulated with a σ-coordinate ocean model developed at the Institute of Numerical Mathematics, RAS. The model has a horizontal resolution of (1/8)° × (1/12)° and contains 21 σ-layers of uneven thickness. Realistic bottom topography and land geometry are used. The numerical experiments were carried out for 15 years starting from the Levitus climatology for January and monthly mean climatic atmospheric forcing from the NCEP reanalysis data. The annual cycle of the surface and subsurface currents and temperature and salinity fields were analyzed. The model reproduces well the Summer Monsoon and the Winter Monsoon currents and their time evolution and spatial structures. The Somali Current is adequately modeled. During the Summer Monsoon, the velocities of the current exceed 2 m/s, while the total mass transport is approximately 70 Sv. The model results show that a reversal of the Somali Current from the northern direction in the summer to the southern direction in the winter is accompanied by the generation of anticyclonic eddies, which drift westward owing to the β-effect and dissipate either near the Somali shore or in the Gulf of Aden. The monsoon variability of the equatorial surface current and equatorial subsurface countercurrent system are analyzed. It is shown that these currents are generated predominantly by the zonal component of wind stress, in which the half-year harmonic dominates. This leads to the fact that the equatorial surface current also changes its direction with a half-year periodicity almost in phase with the wind. The oppositely directed subsurface compensational countercurrent changes its direction with a time lag of approximately one month. Gradient currents, which appear in the Bay of Bengal due to the riverine runoff, make an important contribution to the circulation. This effect manifests itself especially strongly in the summer during the peak of the Ganges River runoff, which transports fresh turbid waters. The principal features of the large-scale quasi-stationary gyre structure of the Indian Ocean such as the Great Whirl, Socotra high, and Laccadive high and low are simulated.  相似文献   

10.
2000年8月南海中部与南部海洋温、盐与环流特征   总被引:13,自引:2,他引:11  
根据2000年8—9月份南海中部与南部航次的温、盐资料,采用P—矢量诊断方法,结合ADCP测流资料和同期伪风应力资料以及TOPEX/Poseidon高度计资料,研究了2000年夏季风持续强迫之后南海大尺度环流与中尺度涡旋的空间结构。结果表明,南海夏季温度和盐度水平分布随深度有显著的变化:中层(250—400m左右)温、盐水平分布与其它各层的温度和盐度分布相比有很大的差异。用诊断方法计算得到的环流场与用TOPEX/Poseidon海面高度计资料计算得到的地转流场比较一致,即流场内部有多个中尺度的涡旋,主要有越南东南外海反气旋涡、中沙群岛东南反气旋涡以及南沙群岛东北角的气旋涡等,这说明南海中部与南部盛夏环流具有较强的地转分量和显著的多涡结构,并且这些中尺度涡在垂向上存在速度场的切变。  相似文献   

11.
The features of eddy kinetic energy (EKE) and the variations of upper circulation in theSouth China Sea (SCS) are discussed in this paper using geostrophic currents estimated from Maps of Sea Level Anomalies of the TOPEX/Poseidon altimetry data. A high EKE center is identified in the southeast of Vietnam coast with the highest energy level 1 400 cm2 ·s~(-2) in both summer and autumn. This high EKE center is caused by the instability of the current axis leaving the coast of Vietnam in summer and the transition of seasonal circulation patterns in autumn. There exists another high EKE region in the northeastern SCS, southwest to Taiwan Island in winter. This high EKE region is generated from the eddy activities caused by the Kuroshio intrusion and accumulates more than one third of the annual EKE, which confirms that the eddies are most active in winter. The transition of upper circulation patterns is also evidenced by the directions of the major axises of velocity variance ellipses between 10°and 14.5°N  相似文献   

12.
The variability of the upwelling along the western coast of the Kamchatka Peninsula (northeastern part of the Sea of Okhotsk) has been studied based on an analysis of the multisensor satellite data. The intensity of upwelling is estimated on the basis of wind-forced offshore Ekman transport (upwelling index). The wind data for studying the seasonal variation of upwelling were collected in 1999–2009 using a Quik-SCAT/SeaWinds scatterometer. The upwelling events along the western Kamchatka coast were observed in December at the beginning of the winter monsoon period. During the period of strong winter monsoon northern winds from January to the middle of March, the drifting ice prevents the upwelling of the deep water at the western Kamchatka shelf edge under the mean conditions. The oceanographic data show that upwelling in the western coastal zone of Kamchatka was also observed during the transitional periods from winter to the summer monsoon (April). In summer, upwelling events are rarely observed in this region. The main cause of the summer upwelling is the propagation of the atmospheric cyclones over the Kamchatka Peninsula.  相似文献   

13.
Field measurements during the Bay of Bengal Monsoon Experiment (BOBMEX-99), data from a deep sea moored buoy, and satellite altimeter were used to describe variability in the hydrographic and meso-scale features in the Bay of Bengal (BoB) during the summer monsoon of 1999. The thermohaline fields showed two regions of upsloping of isopleths centered at 82°E and 84.75°E, ~110 km and 450 km away from the coast, respectively, followed by downsloping. The upsloping/downsloping of isopleths and the alternating currents was part of cyclonic and anti-cyclonic circulation patterns in the western BoB. In this region, both wind and current were important in the dynamics of coastal upwelling. The observations showed a relationship between the propagating waves and eddy on variability of thermohaline fields. On an annual cycle, four Kelvin waves were observed in the BoB, but only the downwelling Kelvin wave formed during October entered the Arabian Sea. During the monsoon season, four eddies were formed in the western BoB, of which the anticyclonic eddy centered at 15°N, 84°E and the cyclonic eddy centered at 17.5°N, 84.5°E were prominent. The baroclinic instability caused by the opposing currents along the east coast and the wind stress curl favored the formation of eddies. Okhubo-Weiss and Isern-Fontanet parameter confirmed the presence of eddies in the BoB.  相似文献   

14.
On the basis of hydrographic data obtained in November 28 to December 27, 1998 cruise, the calculation of the circulation in the South China Sea (SCS) is made by using the P-vector method, in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of winter circulation in the SCS, the diagnostic model (Yuan et al., 1982; Yuan and Su, 1992) is used to simulate numerically the winter circulation in the SCS. The following results have been obtained. (1) The main characteristics of the circulation systems in the central SCS are as follows: A coastal southward jet in winter is present at the western boundary near the coast of Vietnam; there is a stronger cyclonic circulation with a larger horizontal scale east of this coastal southward jet and west of 114°E; there is a weaker anti-cyclonic circulation in the central part of eastern SCS; there is a stronger and northeastward flow opposing the northeasterly monsoon between above a stronger cyclonic c  相似文献   

15.
Seasonal variations of the surface currents in the Tsushima Strait were investigated by analyzing the monthly mean surface currents measured with HF radar. Several new features of the surface currents have been found. One notable feature is the large, complicated seasonal variation in the current structure in the eastern channel of the strait. For example, in the southeastern and northwestern regions of the channel, southwestward countercurrents are found in summer while southeastward acrossshore currents are found in autumn and winter. The wind-driven flow (Ekman flow) as well as surface geostrophic currents are responsible for these complicated variations of the surface currents. To quantify each variation of the flow and current, the wind-driven flow was calculated from the monthly wind (more precisely, the friction velocity) using the monthly speed factor and deflection angle estimated in our previous study, and the surface geostrophic currents were then estimated by subtracting the wind-driven flow from the measured surface currents. It was found that the acrossshore currents are the wind-driven flow, and that the surface geostrophic currents flow almost in the along-shore direction, indicating the validity of the decomposition of the surface velocity into the wind-driven flow and the geostrophic currents using the speed factor and deflection angle. A real-vector empirical orthogonal function (EOF) analysis of the surface geostrophic currents shows a pair of eddies in the lee of Tsushima and Iki Islands as the first mode, which indicates that the southwestward countercurrents in the eastern channel are formed primarily by the incoming Tsushima Warm Current.  相似文献   

16.
On the basis of hydrographic data obtained in November 28 to December 27, 1998 cruise, the calculation of the circulation in the South China Sea (SCS) is made by using the P-vector method, in combination with SSH data from TOPEX/ERS-2 analysis. For study of the dynamical mechanism, which causes the pattern of winter circulation in the SCS, the diagnostic model (Yuan et al., 1982; Yuan and Su, 1992) is used to simulate numerically the winter circulation in the SCS. The following results have been obtained.(1) The main characteristics of the circulation systems in the central SCS are as follows: A coastal southward jet in winter is present at the western boundary near the coast of Vietnam; there is a stronger cyclonic circulation with a larger horizontal scale east of this coastal southward jet and west of 114°E; there is a weaker anti-cyclonic circulation in the central part of eastern SCS; there is a stronger and northeastward flow opposing the northeasterly monsoon between above a stronger cyclonic circulation and a weaker anti-cyclonic circulation.(2) The circulation systems in the northern SCS are as follows: 1)There is a cyclonic circulation system northwest of Luzon, and it has three centers of the cold water; 2) There is an anti-cyclonic eddy. Its center is located near(20°N, 116°40' E); 3)There is a warm and anti-cyclonic circulation south of Hainan Island; 4) There is a northeastward flow, the South China Sea Warm Current, in winter off Guangdong coast in the northern SCS.(3) In the southem SCS there is an anti-cyclonic circulation, and also there is a smaller scale cold water and cyclonic eddy.(4) The above pattern of winter circulation in the SCS agrees qualitatively with the horizontal distribution of temperature at 200 m level.(5) The dynamical mechanism which produces the above basic pattern of winter circulation is because of the following two causes: 1) The joint effect of the baroclinity and relief (JEBAR) is an essential dynamical cause; 2) The interaction between the wind stress and bottom topographic (IBWT) under the strong northeasterly monsoon is the next important dynamical mechanism.(6) Comparing the hydrographic structure and the horizontal distribution of velocity with the SSH data from TOPEX/ERS-2 analysis in the SCS during December of 1998, it is found that they agree qualitatively.  相似文献   

17.
The characteristics of currents and tidal currents in the Andaman Sea(AS) are studied during the second half of2016 using observed data from a moored acoustic Doppler current profiler(ADCP) deployed at 8.6°N, 95.6°E.During the observation period, the mean flow is 5–10 cm/s and largely southward. The root mean square and kinetic energies of the low and high frequency flows, which are divided by a cutoff period of 5 d, are at the same level, indicating their identical importance to the total current. A power spectrum analysis shows that intraseasonal oscillations, a tidal-related semilunar month signal, a semidiurnal tidal signal and periods of 3–4 d are prominent. The barocliny of an eddy kinetic energy is stronger than the mean kinetic energy, both of which are the strongest on the bottom and the weakest at 70 m depth. Residual currents are largely southward(northward) during the summer(winter) monsoon season. Two striking peaks of the southward flow cause the 80 d period of meridional currents. The first peak is part of a large-scale circulation, which enters the AS through the northern channel and exits through the southern channel, and the second peak is part of a local vortex. The 40 d oscillation of the zonal current is forced by geostrophic variations attributed to local and equatorial remote forcing. The tidal current is dominated by semidiurnal constituents, and among these, M2 and N2 are the top two largest major axes. Moreover, astronomical tidal constituents MM and MSF are also significant. Diurnal constituents are weak and shallow water tides are ignorable. The aims are to introduce the new current data observed in the AS and to provide initial insights for the tidal and residual currents in the Andaman Sea.  相似文献   

18.
2015年12月在辽东湾中部西岸浅水海域进行了8个站、连续半个月的坐底ADCP海流剖面观测,通过对分层潮流和余流分析,得到该海域的海流特征如下:1)实测海流以潮流特征占主导,潮流特征为规则半日潮流,优势分潮为M2;M2椭圆长轴大小为25~50 cm/s、方向多为NE-SW向,具有显著的往复流特征。2)观测期间的平均余流为1~10 cm/s,方向多为SW向,平均余流在水平和垂向上的空间差异明显,日均余流波动剧烈;表层余流方向与局地风向具有很好的同步一致性,且距岸较近站位的表层余流受风影响更大;中、底层余流与风的相关性较差。本文得到的余流方向不支持冬季辽东湾北部的边界顺时针环流的存在。  相似文献   

19.
2006年夏季珠江冲淡水驱动的上升流   总被引:2,自引:1,他引:1  
根据珠江口及其附近海域2006年夏季(7-8月)航次水文调查资料,发现调查期间,除了西南季风驱动下的冲淡水东向扩散外,粤西珠江口外冲淡水主要呈西向扩散趋势,并且西向扩散的冲淡水下存在上升流。已有的模型研究中,西南季风下珠江口外没有出现上升流,说明西南季风不是珠江口外上升流产生的主导因素。观测的温盐分布、潜标流速时间序列与走航ADCP流态表明,上升流产生的原因是:(1)口门外冲淡水南向扩展驱动了垂向重力环流;(2)密度跃层以下东北向沿岸流的底边界层Ekman效应;(3)口门外冲淡水团之间的气旋型中尺度涡旋作用。  相似文献   

20.
This is a study about the spreading of newly formed deep waters following open ocean deep convection in the Northwestern Mediterranean Sea. The main results are from the SOFARGOS large scale float experiment initiated in 1994–1995. During the SOFARGOS project, CTD stations and Lagrangian observations of ocean currents were carried out in the Gulf of Lion from December 1994 to July 1995. Hydrological observations confirmed that deep water formation occurred very early during winter 1994–1995 (late December, early January) in conjunction with atmospheric cooling, deep convection penetrating down to 2000 m in the so-called Medoc area. Numerous eddies (both anticyclonic and cyclonic) drifted away from the convection area and advected newly formed deep waters far away from the source region. In particular, compact anticyclones appeared to be the most coherent (long-lived) eddies and capable of transporting newly formed Western Mediterranean Deep Waters several hundreds of kilometers away from the convection area. Characterized by an inner core of about 5 km in radius, these eddies are submesoscale features in the outer domain and appear as key elements of the open ocean convection processes. During their long journeys, these eddies interacted with larger scale features such as the Northern Boundary Current, the North Balearic Front, topographic Rossby waves, and Sardinian eddies. These interactions influenced the long-term behavior of the eddies (mean drift, composition) and represented an important part of (1) the spreading phase following deep convection and (2) the large scale thermohaline circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号