首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This study investigated differences in Symbiodinium diversity in the scleractinian coral species Agaricia lamarcki between shallow (20–25 m) and mesophotic (50–70 m) depths in the Northern Caribbean. Corals were sampled in each of four shallow sites (20–25 m; n = 18) and three mesophotic sites (50–70 m; n = 18) from Mona Island (Puerto Rico) and the US Virgin Islands during a mesophotic exploratory cruise and from the La Parguera shelf edge, off Southwestern Puerto Rico. Symbiodinium diversity was assessed using internal transcribed spacer 2 sequences clustered into operational taxonomic units (OTUs). Clustering resulted in eight clade C OTUs and one clade D OTU. Of these, there were three common Symbiodinium OTUs consisting of C3 and D1a.N14 in shallow reefs and C11.N4 in mesophotic reefs. Statistical tests (permutational multivariate analysis of variance and analysis of similarity) showed significant differences between clade C Symbiodinium OTUs in A. lamarcki colonies located at shallow and mesophotic depths, indicating symbiont zonation. Symbiodinium diversity in A. lamarcki from the Northern Caribbean is comparable to previous reports in the Southern Caribbean for this species. This is the first report of the thermal tolerant species Symbiodinium trenchii (D1a) in A. lamarcki.  相似文献   

2.
Several long‐term studies have monitored populations of algal symbionts, Symbiodinium sp., in coral hosts over different temporal and spatial scales, and among multiple host species. The extension of these studies to include environmental pools of algal symbionts from sources such as the water column, sediments, free‐floating mucus mats and those settling on biofilms has only been studied by a few, yet has the potential to enhance our understanding of the dynamics and controls on symbiont populations. Adaptive changes in the coral symbiont complement rely either on the uptake of new strains from the environment or population expansion of rarer strains in the existing symbiont population. The relative scope for these alternative pathways of uptake is unknown. This study therefore examined spatial changes in Symbiodinium clades within the water column at two different time periods and compared these with other environmental pools (biofilms, sediments, and mucus mats) and those within the dominant reef‐building species at the study site, Acropora muricata. A diversity of algal symbiont clades were detected in environmental pools, with specific clades associated with different habitats. At an island scale, there was significant variation in clade composition between sites separated by 0.5–7 km, a result which was repeated for both sample periods encompassing different seasons (March 2009 and August 2010). Although no single environmental pool contained a Symbiodinium complement comparable to that of the host coral species investigated, the dominant coral Symbiodinium were available in combinations of the environmental pools, indicating that the coral has the potential to obtain its symbionts from a variety of environmental sources.  相似文献   

3.
Decadal populations changes in four coral taxa and their patterns of association with algal symbionts (Symbiodinium spp. – 10 years of sampling) were examined on Kenyan back reefs over a period of climatic disturbances (1991?2009). Some of the better surviving taxa, Pavona and Pocillopora, were associated with variable temperature regimes and >50% of sampled colonies in these taxa had some of the more thermally tolerant Symbiodinium in clade D. In contrast, only around 35% of Acropora and no branching forms of Porites contained detectable levels of clade D, and both taxa experienced high levels of thermally‐induced mortality and poor recovery. Overall, however the relationship between Symbiodinium clade and population‐level success of coral hosts was not strong, and differential success inside and outside fisheries closures suggests that other factors, such as predation on corals, were also influential. Consequently, while Symbiodinium in clade D may contribute to the success of coral hosts across thermal disturbances, multiple ecological factors and additional biological traits also influence their long‐term survival.  相似文献   

4.
通过nlsrDNA(nuclear large-subunit ribosomal DNA)及nssrDNA(nuclear small-subunit ribosomal DNA)的PCR-RFLP研究广东徐闻地区8科15属25种62个造礁石珊瑚样本的共生藻。结果表明,共生藻nlsrDNA的RsaI酶切基因型只存在一种,属于C系群共生藻;而nssrDNA的MobⅠ和TaqⅠ两种酶切都存在两种基因型。实验进一步通过PCR直接测序法得到62个造礁石珊瑚样品的共生藻ITS序列,与GenBank上的4种虫黄藻ITS序列构建Neighbor-Joining系统发育树,结果表明该区的造礁石珊瑚共生两种不同种类(亚系群)的共生藻,分别为C1亚系群与C15亚系群共生藻,两个亚系群间的遗传距离为0.019。广东徐闻地区造礁石珊瑚共生藻多样性偏低,暗示该地区珊瑚礁生态系统应对环境变化的能力可能较弱。  相似文献   

5.
Reef-building corals harbor symbiotic dinoflagellates, Symbiodinium spp., which are currently divided into several clades. The responses of corals associated with different Symbiodinium clades to thermal stress are not well understood, especially at a gene expression level. Juveniles of the coral Acropora tenuis inoculated with different algal types (clade A or D) were exposed to thermal stress and the expression levels of four putative stress-responsive genes, including genes coding green and red fluorescent proteins, an oxidative stress-responsive protein, and an ascorbic acid transporter, were analyzed by quantitative real-time PCR. The expression levels of the four genes decreased at high temperatures if juveniles were associated with clade A symbionts but increased if the symbionts were in clade D. The intensity of green fluorescence increased with temperature in clade D symbionts harboring juveniles, but not in juveniles associated with clade A symbionts. The present results suggest that genotypes of endosymbiotic algae affect the thermal stress responses of the coral juveniles.  相似文献   

6.
During a research cruise carried out in April 2010, aimed at updating the knowledge on the biodiversity of the Santa Maria di Leuca (SML) cold‐water coral province (Mediterranean Sea), a facies of the sea pen Kophobelemnon stelliferum (Muller, 1776) was found on mud‐dominated bottoms. This finding represents a new species and a new habitat record from the SML coral province as well as a new bathyal facies in the whole Central Mediterranean Sea. The colonies were collected using an epi‐benthic sledge, at depths between 400 and 470 m. A significant positive relationship between polyp number and colony length was detected. Density of the colonies ranged from 0.003 to 0.038 N·m?2. Differences and affinities between Mediterranean and Atlantic occurrences of K. stelliferum are discussed.  相似文献   

7.
Increasing sea‐surface temperatures and ocean acidification (OA) are impacting physiologic processes in a variety of marine organisms. Many sea anemones, corals and jellies in the phylum Cnidaria form endosymbiotic relationships with Symbiodinium spp. (phylum Dinoflagellata) supply the hosts with fixed carbon from photosynthesis. Much work has focused on the generally negative effects of rising temperature and OA on calcification in Symbiodinium‐coral symbioses, but has not directly measured symbiont photosynthesis in hospite or fixed carbon translocation from symbiont to host. Symbiodinium species or types vary in their environmental tolerance and photosynthetic capacity; therefore, primary production in symbiotic associations can vary with symbiont type. However, symbiont type has not been identified in a large portion of Symbiodinium?cnidarian studies. Future climate conditions and OA may favor non‐calcifying, soft‐bodied cnidarians, including zoanthids. Here we show that two zoanthid species, Palythoa sp. and Zoanthus sp., harboring different symbiont types (C1 and A4), had very different responses to increased temperature and increased partial pressure of CO2 (pCO2), or dissolved CO2, and low pH. Thermal stress did not affect carbon fixation or fixed carbon translocation in the Zoanthus sp./A4 association, and high pCO2/low pH increased carbon fixation. In contrast, both thermal stress and high pCO2/low pH greatly inhibited carbon fixation in the Palythoa sp./C1 association. However, the combined treatment of high temperature and high pCO2 increased carbon fixation relative to the treatment of high temperature alone. Our observations support the growing body of evidence that demonstrates that the response of symbiotic cnidarians to thermal stress and OA must be considered on a host‐specific and symbiont‐specific basis. In addition, we show that the effects of increased temperature and pCO2 on photosynthesis may change when these two stressors are combined. Understanding how carbon fixation and translocation varies among different host?symbiont combinations is critical to predicting which Symbiodinium associations may persist in warm, acidified oceans.  相似文献   

8.
Pollution, turbidity and coral bleaching history, as well as coral diversity, vary along the Tanzanian coastline. Prior to this study, it was not known whether exposure to such environmental variation might have influenced the diversity and distribution of Symbiodinium along this coastline. Such information can provide insight into whether Tanzanian reef-building corals develop adaptation to current trends of climate change. Here, 10 reef-building coral samples were collected from different reefs along the Tanzanian coast with different micro-environments and bleaching histories. The ITS-2 region of ribosomal DNA was employed in the characterisation of Symbiodinium harboured by reef-building corals. DGGE fingerprints and DNA sequences showed that most coral species host a single Symbiodinium type, which is maintained throughout the coast regardless of local environmental differences. We present polymorphic symbioses in Acropora spp., Millepora sp. and Galaxea fascicularis in mainly turbid and warm environments as a sign of adaptation to harsh conditions. However, such adaptation may not provide marked resistance to bleaching because Acropora is a bleaching-susceptible genus.  相似文献   

9.
The precious red coral Corallium rubrum (L., 1758) lives in the Mediterranean Sea and adjacent Eastern Atlantic Ocean on subtidal hard substrates. Corallium rubrum is a long‐lived gorgonian coral that has been commercially harvested since ancient times for its red axial calcitic skeleton and which, at present, is thought to be in decline because of overexploitation. The depth distribution of C. rubrum is known to range from c. 15 to 300 m. Recently, live red coral colonies have been observed in the Strait of Sicily at depths of c. 600–800 m. This record sheds new light on the ecology, biology, biogeography and dispersal mechanism of this species and calls for an evaluation of the genetic divergence occurring among highly fragmented populations. A genetic characterization of the deep‐sea red coral colonies has been done to investigate biological processes affecting dispersal and population resilience, as well as to define the level of isolation/differentiation between shallow‐ and deep‐water populations of the Mediterranean Sea. Deep‐water C. rubrum colonies were collected at two sites (south of Malta and off Linosa Island) during the cruise MARCOS of the R/V Urania. Collected colonies were genotyped using a set of molecular markers differing in their level of polymorphism. Microsatellites have been confirmed to be useful markers for individual genotyping of C. rubrum colonies. ITS‐1 and mtMSH sequences of deep‐water red coral colonies were found to be different from those found in shallow water colonies, suggesting the possible occurrence of genetic isolation among shallow‐ and deep‐water populations. These findings suggest that genetic diversity of red coral over its actual range of depth distribution is shaped by complex interactions among geological, historical, biological and ecological processes.  相似文献   

10.
The ecological and economic values of coral reef communities have encouraged efforts to implement periodic visual survey programs to secure their conservation. To date, visual monitoring‐based approaches have detected bleaching events weeks or months after the initial onset. An evaluation of the stress response of coral colonies, as well as their ability to resist and recover from the stress events, may increase our understanding of the physiological processes underling the stress and/or acclimation responses. Coral bleaching events, caused primarily by abnormally high temperatures, are continuously affecting coral communities worldwide. To evaluate the stress and recovery responses of the reef‐building coral Pocillopora verrucosa, a laboratory study was conducted herein. Coral nubbins were exposed to high temperatures to induce bleaching, and their ability to resist and recover from bleaching was subsequently monitored after returning the corals to ambient temperature. Lipid and chlorophyll concentrations, as well as Symbiodinium spp. density, decreased in samples exposed to nearly 31°C, slowly recovering to near‐control levels upon return to non‐stressful conditions. The present data set allows for an assessment of the vulnerability and ability of this common species to resist sub‐optimal environmental conditions, particularly the thermal stress events that will occur more commonly in their habitats as global seawater temperatures continue to rise.  相似文献   

11.
Sven Zea 《Marine Ecology》2011,32(2):162-173
The Caribbean sponge Cliona delitrix is among the strongest reef space competitors; it is able to overpower entire coral heads by undermining coral polyps. It has become abundant in reefs exposed to organic pollution, such as San Andrés Island, Colombia, SW Caribbean. Forty‐four sponge‐colonized coral colonies were followed‐up for 13 months to establish the circumstances and the speed at which this sponge advances laterally into live coral tissue and the coral tissue retreats. Cliona delitrix presence and abundance was recorded at seven stations to interpret current reef space and coral species colonization trends. The spread of C. delitrix on a coral colony was preceded by a band of dead coral a few millimeters to several centimeters wide. However, the sponge was directly responsible for coral death only when live coral tissue was within about 2 cm distance; coral death became sponge advance‐independent at greater distances, being indirectly dependent on other conditions that tend to accelerate its retreat. Cliona delitrix advanced fastest into recently killed clean coral calices; however, sponge spread slowed down when these became colonized by algae. The lateral advance of C. delitrix was slower than other Cliona spp. encrusting excavating sponges, probably owing to the greater depth of its excavation into the substratum. Cliona delitrix prefers elevated portions of massive corals, apparently settling on recently dead areas. It currently inhabits 6–9% of colonies in reefs bordering San Andrés. It was found more frequently in Siderastrea siderea (the most abundant local massive coral), which is apparently more susceptible to tissue mortality than other corals. Current massive coral mortality caused by C. delitrix could initially change the relative proportions of coral species and in the long‐term favor foliose and branching corals.  相似文献   

12.
Understanding the ecology and evolution of the cnidarian-algal symbiosis is of major scientific interest as it is sensitive to temperature and strong light and may therefore be susceptible to climate change. The stability of this mutualism is often mediated by host color pigments that influence photosynthetic activity in symbiotic dinoflagellates either by providing the photosystem with irradiance of suitable wavelength or by protecting it from much too much and potentially damaging light. Like scleractinian corals, the upside-down jellyfish, Cassiopea andromeda, relies heavily on the nutrients provided by its symbionts of the dinoflagellate genus Symbiodinium. It occurs in several conspicuously different color morphs and is found in habitats with high levels of irradiation. We tested whether the color morphs of Cassiopea were correlated with the Symbiodinium distribution in the host and whether host color was associated with different clades of Symbiodinium. We found that the presence of color pigment did not correlate with the distribution of Symbiodinium in the host. Symbiodinium was found in both the colored tentacles of the jellyfish and the colorless feeding tentacles. At least six different color morphs co-occurred in the very shallow waters of the Red Sea, but they all hosted a single Symbiodinium clade (clade A1). Therefore, no correlation of host color morph and Symbiodinium clade could be found. Photoaccumulative or photoprotective functions of host pigments, as proposed for some scleractinian corals, thus seem unlikely in the colored tentacles (vesicles) of the upside-down jellyfish Cassiopea andromeda.  相似文献   

13.
The Mediterranean endemic Cladocora caespitosa (Linnaeus, 1767) is a colonial scleractinian coral belonging to the family Faviidae and the only zooxanthellate coral from Mediterranean whose colonies may fuse in reef‐like structures (hermatypic). Recent surveys are focused on three locations where banks occur in the Adriatic Sea (Croatia): near Prvi? Island in the northern Adriatic, near Pag Island in the central Adriatic and in Veliko jezero (Mljet National Park) in the southern Adriatic. The C. caespitosa bank in Veliko jezero covers an area more than 650 m2 and is thus the largest bank of C. caespitosa found to date. The strong sea currents, which occur as a result of tidal exchange in the channel, appear to favour the growth of the bank. The goal of the study was to present the influence of major environmental factors upon the build‐up process of the coral bank. Biometrical parameters in the C. caespitosa colonies like diameter of the calyces, polyp ash free dry weight (AFDW), corallite linear growth rate and index of sphericity were investigated and compared from these three locations. The morphology of coral banks from the Adriatic Sea and the disposition of the biometrical values are affected by the sea currents, temperature and sedimentation.  相似文献   

14.
There is currently much debate about the ecological advantages for reef corals of hosting multiple types of the symbiotic dinoflagellate Symbiodinium. Amongst these is their apparent capacity to tolerate higher than normal water temperatures. There is strong photokinetic evidence that the trait of heat‐tolerance in plants is accompanied by energetic tradeoffs but little such evidence yet exists for corals. We use rapid light curves (RLCs) to investigate the photokinetic basis for thermo‐tolerance in the reef coral Acropora millepora with symbionts of contrasting thermal tolerance for which there are measured differences in energetics. Our results show that under non‐stressful temperatures, corals with heat‐tolerant type D Symbiodinium had a 41% lower maximum relative electron transport rate (rETRmax) and lower light absorption efficiency (α) due to lower cell Chl a content compared with corals with heat‐sensitive type C2 symbionts. Our results provide support for a photokinetic link between heat tolerance and deficits in holobiont (coral + symbiont) growth, lipid stores and reproduction. Reduced electron transport rate and light absorption capacity may be genotype‐specific attributes that enable clade D symbionts and their cnidarian hosts to cope with temperature stress but they inherently influence the photosynthetic function of the symbionts and thus have negative downstream effects on the coral.  相似文献   

15.
Commercially harvested since ancient times, the highly valuable red coral Corallium rubrum (Linnaeus, 1758) is an octocoral endemic to the Mediterranean Sea and adjacent Eastern Atlantic Ocean, where it occurs on rocky bottoms over a wide bathymetric range. Current knowledge is restricted to its shallow populations (15–50 m depth), with comparably little attention given to the deeper populations (50–200 m) that are nowadays the main target of exploitation. In this study, red coral distribution and population structure were assessed in three historically exploited areas (Amalfi, Ischia Island and Elba Island) in the Tyrrhenian Sea (Western Mediterranean Sea) between 50 and 130 m depth by means of ROV during a cruise carried out in the summer of 2010. Red coral populations showed a maximum patch frequency of 0.20 ± 0.04 SD patches·m?1 and a density ranging between 28 and 204 colonies·m?2, with a fairly continuous bathymetric distribution. The highest red coral densities in the investigated areas were found on cliffs and boulders mainly exposed to the east, at the greatest depth, and characterized by medium percentage sediment cover. The study populations contained a high percentage (46% on average) of harvestable colonies (>7 mm basal diameter). Moreover, some colonies with fifth‐order branches were also observed, highlighting the probable older age of some components of these populations. The Ischia population showed the highest colony occupancy, density and size, suggesting a better conservation status than the populations at the other study locations. These results indicate that deep dwelling red coral populations in non‐stressed or less‐harvested areas may diverge from the inverse size‐density relationship previously observed in red coral populations with increasing depth.  相似文献   

16.
On Caribbean reefs, the excavating sponge Cliona tenuis opportunistically colonized dead skeletons of the elkhorn coral Acropora palmata after its massive die‐off in the 1980s. Further C. tenuis population increase occurred by colonization of other coral species, causing coral tissue death through undermining of live tissue and lateral growth. To follow up on a previous (2001) characterization of the abundance and size structure of C. tenuis at Islas del Rosario (Colombia), these factors were again estimated in 2014, along with its substratum utilization. The fate of sponge individuals colonizing massive coral colonies marked in 2001–2004 was also followed. By 2014 C. tenuis was still disproportionally occupying dead A. palmata branches, but its abundance and density, and the cover of other benthic elements, had not significantly changed over the 13‐year period, suggesting that a stasis has been reached. Cliona tenuis was thus initially favored in the 1980s, but substratum monopolization did not occur. From 2001 to 2014, small individuals increased in number and very large ones decreased, suggesting not only that new recruitment is occurring, but also that larger sponges are shrinking or fragmenting. Marked sponges continued killing corals over the first few years, but over longer times they retreated or died, allowing corals to resume upward growth. However, it could not be ascertained whether the sponge retreat was age‐related or the result of some environmental effect. The apparent preference for recently dead clean coral by larvae of C. tenuis and its current dynamics of recruitment, growth, fragmentation and mortality have stabilized its space occupation at Islas del Rosario.  相似文献   

17.
Multi‐specific synchronous spawning has never been documented for East Africa, but coral spawn‐slicks are observed annually around Vamizi Island, Northern Mozambique. We monitored gamete development in Acropora species from July 2012 to October 2013 and from August to September 2014 to describe patterns of reproductive seasonality and synchrony within and amongst species of Acropora. Gamete maturation was highly synchronized within and amongst Acropora species and culminated in multi‐specific spawning events lasting 1–3 nights in each year of the study, in late August or September. In 2013 and 2014, 50% or more of the colonies of over 50% of the species sampled prior to the spawning events had mature gametes. In all years, 91–99% colonies sampled after the spawning events had no visible gametes. The percentage of colonies with mature gametes was up to 100% for some species. In other species, the absence of mature gametes throughout the study period indicates that they might not spawn in certain years. The analysis of a 8‐year record of observations of spawn‐slicks showed that spawning generally occurred once a year for a few consecutive days between September and December, during periods of rising sea surface temperature and low wind speed and rainfall. This study is the first to quantitatively document coral reproduction in Mozambique and multi‐specific synchronous spawning off the coast of Africa. These findings contrast with the asynchronous breeding reported for Kenyan reefs and support the absence of breakdown in coral reproductive synchrony towards low latitudes.  相似文献   

18.
Corals reefs and communities support a wide range of flora and fauna. The complete richness and abundance of faunal communities in either coral reefs or communities is not fully understood. This is especially true for high-latitude coral communities. In this work, we carried out an analysis of an Alveopora japonica associated mollusk assemblage, in Jeju Island, Korea. A. japonica is one of the major coral species present in high abundance (88–155 colonies m-2), with a high recruitment rate (7.8 juvenile corals m-2 yr-1) in Jeju Island, and may serve as a habitat for other benthic organisms. In 2012, a total number of 579 A. japonica colonies with sizes ranging between 15.1-346.7 cm2 in the surface area were collected from a 1m× 10m quadrat installed at a depth of 10 m at Keumneung, on the northwest coast of Jeju Island. Numerous benthic invertebrates were found to be associated with A. japonica colonies. Twenty-seven bivalves and gastropods were identified, including a boring mytilid, Lithophaga curta, and an arcid, Barbatia stearnsi. A zonalgeographical examination of the distribution ranges of these mollusks revealed a majority of warmer water species. Our observations also showed that A. japonica may be providing a habitat to grazing gastropod, Turbo cornutus, and encrusting Spondylidae and Chamidae bivalves. A. japonica forms a coral carpet with a distinct assemblage of bivalves. It is thought that the presence of these mollusks species in the coral indicates its use as a nursery for juvenile species, a ready food supply of organic detritus, and a refuge from predators.  相似文献   

19.
Eastern Pacific reefs are mostly made up of interlocking coral branches of Pocillopora, which are easily broken by physical forces associated with heavy swells and winds. In this study we investigated the potential of these coral fragments to enable propagation of boring sponges. For this, we quantified the frequency of occurrence and diversity of boring sponges in fragments of corals recently trapped among the branches of live colonies, and later tested the hypothesis that these sponges colonize new branches of corals. Nearly 80% of the coral colonies investigated had coral fragments among their branches, and 69% of these coral fragments contained boring sponges (11 species), some of these sponges in reproduction (23% of them carried oocytes). To test whether sponges inhabiting coral fragments could colonize new branching corals we transplanted them to healthy branches, and to branches whose living tissue was mechanically eliminated to simulate damage produced by grazing and death after bleaching and other causes of coral tissue mortality. All the transplanted coral fragments cemented to each new colony by means of calcification, and of the three sponge species tested (Cliona vermifera, Cliona tropicalis and Thoosa mismalolli) only C. vermifera was able to colonize both new living branches (26.9%) and cleaned branches (65.5%). The apparent capability of C. vermifera to colonize by direct contact may be another key ability of this species to maintain high frequency of occurrence in Pacific coral reefs. However, although C. tropicalis and T. mismalolli were not able to colonize new coral substrata by direct contact, coral fragments have the potential to contribute to local persistence of these sponges and to their dispersal, both by asexual (fragments) and sexual means (transport of sexual products). The present findings may partly explain the current increase of excavating sponges on deteriorating reefs with a large availability of dead branching corals.  相似文献   

20.
珊瑚礁是全球生物多样性最高的海洋生态系统之一,底栖贝类是该生态系统的重要组成类群。为了解北部湾涠洲岛珊瑚礁底栖贝类的群落现状及特征,于2015年秋季(10月)与2018年春季(5月)采用水肺潜水截线样条定量调查法对涠洲岛珊瑚礁区6个断面的底栖贝类进行了调查,并分析了物种组成、丰度、生物多样性指数等群落特征。综合两次调查结果显示涠洲岛珊瑚礁区共有底栖贝类128种,分别属于多板纲1科1属3种,腹足纲25科46属68种,双壳纲22科31属57种。优势种为斑顶拟舌骨牡蛎、粗衣蛤、刺荔枝螺、马蹄螺、杂色牙螺、青蚶、旗江珧、甲虫螺、蕾丝蟹守螺、珠母爱尔螺。2018年春季定量断面采集到的样品为2纲14科43种,各断面的丰度、生物量、多样性指数、物种丰度指数和均匀度指数均值分别为3.39个/m2、86.94 g/m2、3.31、3.50、0.37。通过对两年的调查数据比较,发现2015?2018年涠洲岛珊瑚礁区的贝类生物群落呈现良好演替发育趋势。南海珊瑚礁区贝类群落结构可能受到了人为干扰强度和纬度的双重影响。本研究全面掌握了涠洲岛珊瑚礁底栖贝类的种类、分布区及群落的结构与变化,可为该地区海洋生物资源开发利用、珊瑚礁保护和生态修复等工作提供数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号