首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
风通过影响海洋表面从而产生200 Hz以上的深海环境噪声,但有研究指出,通过风生表面波之间的非线性相互作用产生的驻波,能够与海床共振构成海底微震,从而产生10 Hz以下的噪声。针对这一新型风生噪声机制,本研究对威克岛海域10 Hz以下的极低频噪声进行了分析。比较了不同频率下海洋环境噪声功率谱级与风速的相关性,并讨论了风速和风向对设立在威克岛南北部二组水听器三联体信号的影响,结果表明2 Hz处的海洋环境噪声级与风速相关性最好,而风速和风向变化越剧烈海洋环境极低频噪声与风速风向的相关性越好。  相似文献   

2.
Ambient noise in the surf zone, in the frequency range 120 Hz to 5 kHz, was recorded using a broad-band hydrophone, located approximately 1 m above bottom and 1-2 m below the mean sea surface. The predominant source of this noise is breaking waves. Analysis of simultaneous land-based video observations of the sea surface in the region of the hydrophone, along with wave height data, reveals quantitative correlation between wave-breaking events and the hydrophone signal. In energetic surf, locally breaking waves appear as discrete events in the ambient noise spectra. Distant breaking events do not appear to be detected, as distinct events above the ambient background noise, by the hydrophone. The noise events associated with local breakers are characterized by an asymmetry in the time envelope: low frequencies (less than 500 Hz) are observed leading the breaking crest, followed by a broader range of frequencies peaking in intensity with the passage of the wave crest above the hydrophone, and then decreasing abruptly at all frequencies. Low frequencies are generally not observed trailing the breaking wave. The detection by the hydrophone of breaking waves in the immediate vicinity implies that ambient noise in heavy surf provides a means of studying breaking-wave statistics in the surf zone in situ: in particular, the frequency of occurrence of local breaking  相似文献   

3.
During the 1994 Coastal Benthic Boundary Layer Project research cruise in Eckernförde Bay, multichannel digital seismic and electrical resistivity data were collected using surface- and bottom-towed arrays. Profiling with a bottom-towed sled yielded shear wave velocity and electrical resistivity data indicative of the structural strength of the sediment and of the properties of the pore space. Shear wave velocities for the gassy mud were, as expected, extremely low, ranging from < 10 m s–1 at the surface to around 16 m s–1 at 2 m. Variations in electrical properties were correlatable with lithological change. It is anticipated that analysis of reflection responses will provide significant additional geotechnical ground-truthing.  相似文献   

4.
利用海底地震仪数据分析台风对海底环境噪音的影响   总被引:4,自引:2,他引:2  
在海底布设的海底地震仪(OBS)能比较清晰地记录到海底的环境噪音,而台风可以直接或间接的产生在海底传播的弹性波,从而影响海底的环境噪音,并在较大程度上影响OBS的数据记录。本文通过分析台风对工作区的整个影响过程中OBS记录数据的振幅变化,再选择合适的滤波方式,首次发现台风产生的风浪及涌浪在短周期海底地震仪的记录数据上有良好的表现特征,指出了台风对海底环境噪音的另一种可能的影响方式,并由此得出:1)台风产生的风浪和涌浪对海底环境噪音的影响模式不同;2)风浪和涌浪所加强的海底环境噪音的范围和程度不同;3)短周期OBS可以比较清晰的记录涌浪信息,其周期主要是6—8 s,且能量稳定(简称“8秒现象”)。这三点结论为后期的海洋地震研究和海洋学其他研究提供经验与借鉴。  相似文献   

5.
The purpose of the experiment was to determine the effects of coupling and bottom currents on ocean bottom seismometers. Twelve operational OBSs, three specially designed three-component systems, and a hydrophone were compared with each other. Unlike seismometers placed on hard rock at land stations, ocean bottom seismometers can be affected by soft sediments (which act as lossy mechanical springs) and by buoyancy. Coupling through soft sediments can modify the response to ground motion much as a low pass filter does, and high buoyancy tends to counteract this effect. These effects are observed in the Lopez data, which consist of signals from mechanical transient tests, cap shots, airgun pulses, and general background noise. The modification of response is pronounced for some instruments and barely noticeable in others. Instruments that stand high in the water relative to their base width tend to be susceptible to rocking motion that shows up as a mechanical cross coupling between horizontal and vertical motion. Correlation of Lopez results with coupling theory suggests that it is possible to design ocean bottom seismometers that will couple well to any sediment. Current levels at the Lopez site (<5 cm s-1) were too small to produce noticeable effect on any of the instruments; however, the same design criteria that will minimize coupling problems will also lessen problems caused by ocean currents.Hawaii Institute of Geophysics Contribution No. 1171.  相似文献   

6.
High-resolution data collected southeast of the Canary Islands during late winter 2006 are analyzed to describe the hydrography and three-dimensional circulation in the coastal transition zone off NW Africa. The data are optimally interpolated over a regular grid, the geostrophic velocity field is calculated and the Q-vector formulation of the omega equation is used to compute the quasi-geostrophic (QG) mesoscale vertical velocity. The coastal transition zone is divided into upwelling, frontal and offshore regions with distinct physical and dynamic characteristics. The upwelling region is characterized by cold and weakly stratified waters flowing towards the equator, with a poleward undercurrent of approximately 0.05 m s−1 over the continental slope. The frontal region exhibits a southwestward baroclinic jet associated with cross-shore raising isopycnals; the jet transport is close to 1 Sv, with maximum velocities of 0.18 m s−1 at surface decreasing to 0.05 m s−1 at 300 db. Vertical sections across the frontal region show the presence of deep eddies probably generated by the topographic blocking of the islands to the southward current, as well as much shallower eddies that likely have arisen as instabilities of the baroclinic upwelling jet. The QG mesoscale vertical velocity field is patchy, estimated to range from −18 to 12 m day−1, with the largest absolute values corresponding to an anticyclonic eddy located south of Fuerteventura Island. These values are significantly larger than estimates for other vertical velocities: diapycnal vertical velocities associated with mixing in the frontal region (a few meters per day), and wind-induced vertical velocities (non-linear Ekman pumping arising from the interaction between the wind stress and the background vorticity, maximum values of a few meters per day; linear Ekman pumping due to the divergence of Ekman transport, a fraction of a meter per day; or the coastal constraint in the upwelling region, about 0.7 m day−1). However, the patchiness in both the QG mesoscale vertical velocity and the non-linear Ekman pumping velocity cause their integrated vertical transports to be one order of magnitude smaller than either coastal Ekman transport (0.08 Sv), integrated linear Ekman pumping (−0.05 Sv) or diapycnal transfer (about 0.1–0.2 Sv). The pattern of the near-surface fluorescence field is a good indicator of these different contributions, with large homogeneous values in the coastal upwelling region and a patchy structure associated with the offshore mesoscale structures.  相似文献   

7.
童思友  廖仪  陈亮  吴志强 《海洋科学》2016,40(2):145-150
为研究海洋环境信号在OBS(Ocean Bottom Seismograph)原始数据中的规律及应用,根据OBS原始数据的波形及频谱特征,将研究区划分为5个时间段,依次为旧涌浪阶段、风浪渐强阶段、风浪全盛阶段、风浪消退阶段和新涌浪阶段。结合海洋天气预报,认为上述现象是由偏南风风浪对海流的影响造成的。参考野外地震数据采集记录班报,得到各阶段的时长和距离,计算风浪渐强、全盛和消退阶段OBS附近海流的平均速度。结果表明:OBS原始资料中浅海海洋环境噪音增强的主要因素是风浪,且风浪引起的噪音信号的波形变化特征是渐进式的;OBS可用于接收某种特殊阶段(如台风、海啸等)的噪音信号,并根据噪音信号的波形特征、频谱变化规律和持续时间估算该阶段的海流速度变化。  相似文献   

8.
A lumped-parameter model was developed to predict the response of an ocean bottom seismometer, resting on relatively non-stiff sediments, to vertical ground-motion. The model predictions were compared with the response of an instrument on a foundation of foam rubber to a sinusoidal input. Comparison of the model data to the measured Lopez Island vertical transient test data showed that bearing pressure of the instrument in a nonuniform vertical soil profile causes certain instruments to experience a shear modulus higher than the mean.  相似文献   

9.
Mathematical modeling conducted in this study evaluated the hydrodynamic performance of a wave-driven artificial upwelling device in ocean waves off the Hawaiian islands. The device consisted of a buoy (4.0 m in diameter) and a tail pipe (1.2 m in diameter, 300 m in length) with a flow controlling valve. Random ocean waves off the Hawaiian islands used in the device's modeling analysis were synthesized from a wave spectrum obtained from available data. For comparison, the device's performance was also evaluated in regular waves whose height and period are the same as the significant wave height and wave period of random Hawaiian waves. Modeling results indicated that an upwelling flow of 0.95 m3/sec can be generated by this device in random Hawaiian waves and an upwelling flow rate of 0.45 m3/sec can be generated in regular waves. A simple mathematical model which assumed that the device exactly follows the incident waves was used in previous studies. Analysis results also indicated that the simple model cannot satisfactorily simulate the relative velocity and acceleration of the water column in the device. Since the relative velocity and acceleration are important factors in determining the rate of upwelling flow, the simple model must be applied with caution.  相似文献   

10.
The characteristics of wave and turbulence velocities created by a broad-banded irregular wave train breaking on a 1:35 slope were studied in a laboratory wave flume. Water particle velocities were measured simultaneously with wave elevations at three cross-shore locations inside the surf zone. The measured data were separated into low-frequency and high-frequency time series using a Fourier filter. The measured velocities were further separated into organized wave-induced velocities and turbulent velocity fluctuations by ensemble averaging. The broad-banded irregular waves created a wide surf zone that was dominated by spilling type breakers. A wave-by-wave analysis was carried out to obtain the probability distributions of individual wave heights, wave periods, peak wave velocities, and wave-averaged turbulent kinetic energies and Reynolds stresses. The results showed that there was a consistent increase in the kurtosis of the vertical velocity distribution from the surface to the bottom. The abnormally large downward velocities were produced by plunging breakers that occurred from time to time. It was found that the mean of the highest one-third wave-averaged turbulent kinetic energy values in the irregular waves was about the same as the time-averaged turbulent kinetic energy in a regular wave with similar deep-water wave height to wavelength ratio. It was also found that the correlation coefficient of the Reynolds stress varied strongly with turbulence intensity. Good correlation between u′ and w′ was obtained when the turbulence intensity was high; the correlation coefficient was about 0.3–0.5. The Reynolds stress correlation coefficient decreased over a wave cycle, and with distance from the water surface. Under the irregular breaking waves, turbulent kinetic energy was transported downward and landward by turbulent velocity fluctuations and wave velocities, and upward and seaward by the undertow. The undertow in the irregular waves was similar in vertical structure but lower in magnitude than in regular waves, and the horizontal velocity profiles under the low-frequency waves were approximately uniform.  相似文献   

11.
The statistical distribution of wave orbital velocity in intermediate coastal water depth has been quantitatively determined from the comprehensive field velocity data collected near the seabed in this study. Two ocean ADV current meters, which were mounted at 0.5 m above the seabed on two separate stainless steel tripods sitting on the seabed, were used to measure instantaneous water particle velocities at a 2 Hz sampling rate for 17.07 min every hour in two coastal water depths of 11 m and 23 m in nine field deployments over a period of 2 years. The zero-crossing method is applied to analyse the field velocity data collected in each field deployment to obtain a large sample of wave orbital velocity amplitudes of individual waves. Based on the collected field velocity data, it is found that the histogram of instantaneous wave orbital velocities perfectly follows the Gaussian distribution as commonly assumed, while the histogram of wave orbital velocity amplitudes is less accurately described by the Rayleigh distribution than the modified Rayleigh and the Weibull distribution. It is also found that large orbital velocity amplitudes are generally overestimated by the Rayleigh distribution, but well predicted by the modified Rayleigh and the Weibull distribution. The expected value of maximum orbital velocity in a velocity record of finite size is also derived from the three distributions and found to agree well with the present field data.  相似文献   

12.
Based on the surface drifters that moved out from the Sea of Okhotsk to the Pacific, the surface velocity fields of mean, eddy, and tidal components in the Oyashio region are examined for the period September 1999 to August 2000. Along the southern Kuril Island Chain, the Oyashio Current, having a width of ∼100 km, exists with velocities of 0.2–0.4 m s−1. From 40°N to 43°N, the Subarctic Current flows east- or northeastward with velocities of 0.1–0.3 m s−1, accompanied by a meandering Oyashio or Subarctic front. Between the Oyashio and Subarctic current regions, an eddy-dominant region exists with both cyclonic and anticyclonic eddies. The existence of an eastward flow just south of Bussol' Strait is suggested. The 2000 anticyclonic warmcore ring located south of Hokkaido was found to have a nearly symmetric velocity structure with a maximum velocity of ∼0.7 m s−1 at 70 km from the eddy center. Diurnal tidal currents with a clockwise tidal ellipse are amplified over the shelf and slope off Urup and Iturup Islands, suggesting the presence of diurnal shelf waves. From Lagrangian statistics, the single-particle diffusivity is estimated to be ∼10 × 107 cm2s−1.  相似文献   

13.
Signals from the tsunami waves induced by the March 11, 2011 moment magnitude (Mw) 9.0 Tohoku-Oki earthquake and from subsequent resonances were detected as radial velocity variability by a high-frequency ocean surface radar (HF radar) installed on the eastern coast of the Kii Channel, at a range of about 1000 km from the epicenter along the eastern to southern coasts of Honshu Island. A time–distance diagram of band-passed (9–200 min) radial velocity along the beam reveals that the tsunami waves propagated from the continental shelf slope to the inner channel as progressive waves for the first three waves, and then natural oscillations were excited by the waves; and that the direction of the tsunami wave propagation and the axis of the natural oscillations differed from that of the radar beam. In addition, spectral analyses of the radial velocities and sea surface heights obtained in the channel and on the continental shelf slope suggest complex natural oscillation modes excited by the tsunami waves.  相似文献   

14.
An array consisting of ocean bottom seismometer and on-bottom hydrophones, was used to conduct a seismic experiment on 0.4 Ma crust east of the Juan de Fuca Ridge. Seismic sources were large (>50 kg) explosive charges detonated by SUS devices set to explode at 1829 or 2438 m nominal depth. The objectives of the experiment were to determine the compressional wave velocity and attenuation structures of the uppermost 500 m depth. The relative positions of shots and receivers were originally determined by treating each shot-receiver pair independently, via raytracing of various water waves. Due to the reflection of some of these water waves by the rough bottom, significant scatter resulted, preventing a determination of a physically realizable velocity-depth function. A new method is described that co-locates shot and receiver positions, including receiver depths consistent withseabeam bathymetry, using only the water waves that do not interact with the bottom. Several potential pitfalls are outlined using this method. A stable solution could only be achieved by discarding shots located well outside the array. The water path corrections were applied to the refracted arrivals, again using theseabeam bathymetry. The joint inversion location procedure, along with the use of precise gridded bathymetry, reduced the travel time scatter to a level whereby a velocity-depth function could be determined. The results, using only the hydrophone data, indicate an initial velocity at the seafloor of 2.7 km s-1 with gradients from 4.6 s-1 slowly decreasing to 4.1 s-1 at 679 m depth. This velocity is similar to others conducted over very young oceanic crust, and can be interpreted as being due to a high porosity at the surface, due to cracks, fissures, and open pores, which rapidly diminish with depth.  相似文献   

15.
Field measurements of cross-shore currents 0.25 m from the bed were made on two natural beaches under a range of incident wave conditions. The results indicated the presence of a relatively strong, offshore-directed mean current, both within and seaward of the surf zone. Typical velocities within the surf zone were of the order of 0.2–0.3 m/s. This bed return flow, or “undertow”, represents a mass conservation response, returning water seaward that was initially transported onshore in the upper water column, primarily above the trough of the incident waves. The measurements demonstrated that the bed return flow velocity increases with the incident wave height. In addition, the crossshore distribution of the bed return flow is characterised by a mid-surf zone maximum, which exhibits a strong decrease in velocity towards the shoreline and a more gradual decay in the offshore direction. Several bed return flow models based on mass continuity were formulated to predict the cross-shore distribution of the bed return flow under an irregular wave field and were compared with the field data. Best agreement was obtained using shallow water linear wave theory, after including the mass transport associated with unbroken waves. The contribution of the unbroken waves enables net offshore-directed bottom currents to persist outside the region of breaking waves, providing a mechanism, other than rip currents, to transport sediment offshore beyond the surf zone.  相似文献   

16.
TOPEX/POSEIDON altimeter data are analyzed for the 8.5-year period November 1992 to May 2001 to investigate the sea surface height (SSH) and geostrophic velocity signatures of quasi-annual equatorially trapped Rossby waves in the Pacific. The latitudinal structures of SSH and both components of geostrophic velocity are found to be asymmetric about the equator across the entire Pacific with larger amplitude north of the equator. The westward phase speeds are estimated by several different methods to be in the range 0.5-0.6 m s−1. These observed characteristics are inconsistent with the classical theory for first vertical, first meridional mode equatorially trapped Rossby waves, which predicts a phase speed of about 0.9 m s−1 with latitudinally symmetric structures of SSH and zonal velocity and antisymmetric structure of meridional velocity. The observations are even less consistent with the latitudinal structures of SSH and geostrophic velocity components for other modes of the classical theory.The latitudinal asymmetries deduced here have also been consistently observed in past analyses of subsurface thermal data and altimeter data and have been variously attributed to sampling errors in the observational data, a superposition of multiple meridional Rossby wave modes, asymmetric forcing by the wind, and forcing by cross-equatorial southerly winds in the eastern Pacific. We propose a different mechanism to account for the observed asymmetric latitudinal structure of low-frequency equatorial Rossby waves. From the free-wave solutions of a simple 1.5-layer model, it is shown that meridional shears in the mean equatorial current system significantly alter the potential vorticity gradient in the central and eastern tropical Pacific. The observed asymmetric structures of sea surface height and geostrophic velocity components are found to be a natural consequence of the shear modification of the potential vorticity gradient. The mean currents also reduce the predicted westward phase speed of first meridional mode Rossby waves, improving consistency with the observations.  相似文献   

17.
Three years of temperature data along two transects extending to 90 m depth, at Palau, Micronesia, show twice-a-day thermocline vertical displacements of commonly 50–100 m, and on one occasion 270 m. The internal wave occurred at a number of frequencies. There were a number of spectral peaks at diurnal and semi-diurnal frequencies, as well as intermediate and sub-inertial frequencies, less so at the inertial frequency. At Palau the waves generally did not travel around the island because there was no coherence between internal waves on either side of the island. The internal waves at a site 30 km offshore were out-of-phase with those on the island slopes, suggesting that the waves were generated on the island slope and then radiated away. Palau Island was thus a source of internal wave energy for the surrounding ocean. A numerical model suggests that the tidal and low-frequency currents flowing around the island form internal waves with maximum wave amplitude on the island slope and that these waves radiate away from the island. The model also suggests that the headland at the southern tip of Palau prevents the internal waves to rotate around the island. The large temperature fluctuations (commonly daily fluctuations ≈10 °C, peaking at 20 °C) appear responsible for generating a thermal stress responsible for a biologically depauperate biological community on the island slopes at depths between 60 and 120 m depth.  相似文献   

18.
Direct current measurements of the branch current of the Kuroshio intruding into Sagani Bay were carried out during 1989–1990 in order to clarify the frequency characteristics of the eddies in the lee of Izu-Oshima Island, which are well recognized as cold water mass produced by upwelling. Satellite and ADCP (Acoustic Doppler Current Profiler) data indicated that current velocity in the eddy fluctuates with periods of 2–4 days and 6–8 days.When the Kuroshio branch current intruding into Sagami Bay from the western channel is weak and its velocity at the depth of 400 m is approximately 10 cm s–1, the 6–8 day period fluctuation is dominant. On the other hand, when the branch current strongly intrudes from the western channel with a velocity of approximately 20 cm s–1, the 2–4 day period fluctuation dominates. The relationship between the periods and velocities agrees well with theory based on laboratory experiments for a flow of a homogeneous fluid past a circular obstacle. These periods correspond to the time scale of appearance of the eddy caused by the intrusion of the Kuroshio branch current into Sagami Bay and Izu-Oshima Island.  相似文献   

19.
Hourly fluctuations of vertical velocity in relation to components of flow and wind and temperature oscillations at a morring site in the shelf waters off the west coast of India are discussed. The vertical velocities were computed from a time series of vertical temperature profiles assuming that horizontal advection of temperature is negligible. The computed values at a depth of 40 m during the 72-h period of observation were of the order of 10−1 to 10−2cm s−1, with a mean value of −2·77 × 10−2 cm s−1 indicating a net upward movement of water. The computed vertical velocity showed fluctuations of about 2–3 h, in addition to weaker signals of about 12 h. Based on the spectral estimates, we speculate that these fluctuations of 2–3 h in the vertical velocity may be caused by the fluctuations in the along-shore wind. The oscillations of isotherms found in the temperaturedepth time series and the spectral estimates of temperature and cross-shore flow component showed a periodicity of about 12 h, which indicated the presence of semi-diurnal internal waves. The fact that these internal wave troughs were associated with the measured onshore flow suggested that the waves were propagating offshore. The computed stability parameters showed little evidence of instability or mixing. It was found that the isotherm troughs in the temperaturedepth time series at about 12-h period coincided with high vertical shear in the cross-shore direction and low values of Brunt Vaisälä frequency.  相似文献   

20.
For settlement of the well-known problem of contemporary radar imaging models, i. e. , the problem of a general underestimation of radar signatures of hydrodynamic features over oceanic internal waves and underwater bottom topography in tidal waters at high radar frequency bands ( X-band and C-band), the impact of the ocean surface mixed layer turbulence and the significance of strat- ified oceanic model on SAR remote sensing of internal solitary waves are proposed. In the north of the South China Sea by utilizing some observed data of background field the nonlinearity coefficient, the dispersion coefficient, the horizontal variability coefficient and the phase speed in the generalized K-dV equation are determined approximately. Through simulations of internal tide transfor- mation the temporal evolution and spatial distribution of the vertical displacement and horizontal velocity of internal wave field are obtained. The simulation results indicate that the maximum amplitudes of internal solitary waves occur at depth 35 m, but the maximum current speeds take place at depth 20 m in this area of the sea (about 20°30'N, 114°E) in August. It was noticed that considering the effects of flood current and ebb current respectively is appropriate to investigate influence of the background shear flow on coefficients of the K-dV equation. The obtained results provide the possibility for the simulation of SAR signatures of internal solitary waves under considering the impact of ocean surface mixed layer turbulence in the companion paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号