首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
A numerical experiment using a three dimensional level model was performed to clarify the mechanism generating a strong coastal current, Kyucho, induced by the passage of Typhoon 0406 around the tip of the Tango Peninsula, Japan in June 2004. Wind stress accompanied by Typhoon 0406 was applied to the model ocean with realistic bottom topography and stratification condition. The model well reproduced the characteristics of Kyucho observed by Kumaki et al. (2005), i.e., the strong alongshore current with maximum velocity of 53 cm s−1 and its propagation along the peninsula with propagation speed of about 0.6 m s−1 one half-day after the typhoon’s passage. Coastal-trapped waves (CTW) accompanied by downwelling were induced along the northwest coast of the peninsula by the alongshore wind stress. The energy density flux due to the CTW flowed eastward along the coast, and indicated scattering of the CTW around the eastern coast of the peninsula. In addition, significant near-inertial internal gravity waves were also caused in the offshore region from the west of the Noto Peninsula to the north of the Tango Peninsula by the typhoon’s passage. The energy flux density of the near-inertial fluctuations flowed southward off the Fukui coast, and part of the energy flux was trapped on the tip of the Tango Peninsula, flowing with the coast on its right. It was found that the strong current, Kyucho, at the northeastern tip of the Tango Peninsula was generated by superposition of the near-inertial internal gravity waves and subinertial CTW.  相似文献   

3.
Current records obtained in the inshore region along the Fukushima coast are analyzed. The existence of periodical current fluctuations whose period is about 100 hours and whose amplitude is as large as 15–25cm s–1 is recognized. Auto-spectral analyses are made also for sea level, atmospheric pressure and wind records. Each spectrum has significant peaks at the similar period to the current spectrum. The wind spectrum has a broad peak compared with the current. The periodical current fluctuations propagate southward with speed of 3–5 km h–1. These propagation speeds seem to correspond to those of the second-and third-mode shelf waves.  相似文献   

4.
Current measurements were made at five moored stations over the continental shelf off the San'in coast of the Japan Sea for a month in the summer of 1980 to study the vertical structure of the nearshore branch of the Tsushima Current. The time-mean current for the observational period is 20 to 25 cm sec–1 eastward near the surface and about 10 cm sec–1 westward near the sea bottom except at the shallowest station. The time-mean current,i.e. the nearshore branch of the Tsushima Current is mainly due to the baroclinic modes. The currents are less variable in the first half of the observational period, but fluctuate with a several-day period in the latter half. The obtained current data were decomposed into barotropic and baroclinic modes to investigate the detailed characteristics of the fluctuations. In the latter half, the current fluctuations of the two modes with about a 5-day period are well correlated with each other, as the baroclinic mode lagging behind the barotropic mode by 12 hr. The barotropic current fluctuation is correlated to the sea level, with the former leading the latter by about 12 hr. The baroclinic current is correlated to the temperature at the subsurface layer with a shorter time lag.  相似文献   

5.
The spatial structures and propagation characteristics of coastal trapped waves (CTWs) along the southern and eastern coasts of Australia are investigated using observed daily mean sea level data and results from a high-resolution ocean general circulation model (OGCM), and by conducting sensitivity studies with idealized numerical models. The results obtained from the sea level observations show that shortterm variations, with a typical period of 1 to 2 weeks, dominate the sea level variability in the southern half of Australia. The signal propagates anticlockwise around Australia with a propagation speed of 4.5 m/s or faster in the western and southern coasts and 2.1 to 3.6 m/s in the eastern coast. Strong seasonality of the wave activity, with large amplitude during austral winter, is also observed. It turns out that the waves are mainly generated by synoptic weather disturbances in the southwestern and southeastern regions. The numerical experiment with idealized wind forcing and realistic topography confirms that the propagating signals have characteristics of the CTW both in the southern and eastern coasts. Sensitivity experiments demonstrate that the difference in the phase speed between the coasts and reduction of the amplitude of the waves in the eastern coast are attributed to the different shape of the continental shelf in each region. The structures and the propagation characteristics of the CTWs around Australia are well reproduced in OFES (OGCM for the Earth Simulator) with dominant contribution from the first mode, although meso-scale eddies may modify the structure of the CTWs in the eastern coast. It is also found that generation or reinforcement of the waves by the wind forcing in the southern part of the eastern coast is necessary to obtain realistically large amplitude of the CTWs in the eastern coast.  相似文献   

6.
Numerical experiments are performed on shelf waves forced by wind stress with a spectral peak around a period of 100 hr. Water depth in the numerical model is a function of offshore distance only and resembles a bathymetric profile off the Fukushima coast. A pair of vortices alined in the offshore direction and a large vortex are reproduced and they propagate southward outside the forced region. Judging from the propagation speed, the former corresponds to the second-mode and the latter to the first-mode shelf waves. In the forced region, the propagation speed of a trough and a ridge is slow, 3–5km hr–1. These propagation characteristics reproduce those observed along the Fukushima coast and this propagation speed corresponds to that of second-and third-mode shelf waves. Thus, it is concluded that the periodical current fluctuations observed in the inshore region along the Fukushima coast are due to motions associated with the second-and third-mode shelf waves.  相似文献   

7.
Direct current velocity measurements in the countercurrent of the Kuroshio, south of Japan, were carried out to investigate the influence of short-period fluctuations in the small-scale meander of the Kuroshio on its countercurrent. When the Kuroshio took a path having a meander west of the Izu Ridge and approaching the Izu Peninsula, the countercurrent freely intruded into coastal seas with a period of 17 d and a phase velocity almost equal to that of the Kuroshio itself. However, when the Kuroshio did not significantly bend and deflect off the Izu Peninsula, even when taking the same path, the velocity of the countercurrent was considerably reduced and the periodic fluctuations propagated into the coastal seas as a continental shelf wave. The results indicate that a small change in the Kuroshio's path can cause a different process of propagation of the small-scale meandering; this difference probably explains why there are two kinds of phase velocity in coastal temperature fluctuations.  相似文献   

8.
The mechanism of a characteristic sea level response (barotropic coastal ocean response) to wind field fluctuation around the tip of the Izu Peninsula observed during the middle of December 2000 to the middle of January 2001 was investigated based on three types of numerical experiments using the Princeton Ocean Model with various parameters. The response was characterized by the relaxation of sea level falling (rising) during eastward upwelling (westward downwelling) favorable wind regime. Analyses of quasi-realistic numerical model results in terms of the vertically integrated momentum balances and vorticity balance for the barotropic mode revealed that: 1) development/abatement of two anomalous circulations generated around the tip of the Izu Peninsula controls the sea level response through the acceleration/deceleration of a quasi-geostrophic barotropic coastal current between the circulations; 2) nonlinear vorticity advection by the Kuroshio Current and by the coastal current, coupled with vorticity diffusion, decelerates the quasi-geostrophic coastal current in the latter half of the wind regimes, which induces the relaxation of sea level rise/fall. The results of the quasi-realistic numerical experiment suggest that an analysis of the vorticity balance for the barotropic mode contributes to a better understanding of sea level responses to wind in coastal regions with strong currents and complex topography. In addition, a numerical experiment with idealized spatially uniform density stratification and a quasi-realistic wind field shows that if the Kuroshio Current had been shifted far offshore from the Izu Peninsula during the observation period, westward propagating continental shelf waves would have controlled the coastal sea level response.  相似文献   

9.
A three-dimensional, nonlinear, primitive equation ocean general circulation model is used to study the response of the Gulf of Mexico to Hurricane Frederic. The model has free surface dynamics and a second order turbulence closure scheme for the mixed layer. Realistic coastlines, bottom topography and open boundary conditions are used in the study. The model has a vertical sigma coordinate with 18 levels, and a horizontal resolution of 0.2°×0.2° for the entire Gulf. The study focuses on hurricane generated sea level, current, and coastally trapped wave (CTW) responses of the Gulf. Time series of sea levels from U.S. coastal tide gauge stations and the numerical model simulation of sea levels and currents on the shelf are used to study sea level, current and CTW responses. Both model sea levels and observations from tide gauge stations show a westward progression of the surge as a CTW response. The results of the study of sea levels and currents indicate that CTW propagate to the west with phase speeds of 7–10 m s–1. There is also a strong nonlinear interaction between the Loop Current and hurricane induced currents. The surface current attains a maximum of 200 cm s–1 in the eastern Gulf. The model surface elevation at several locations is compared with tide gauge data. The current meter data at three moorings are also compared with the model currents. The model simulations show good agreement with observed data for the hurricane induced coastally trapped wave, storm surge, and current distribution in the Gulf.  相似文献   

10.
使用谱分析和数字滤波等方法,对山东南部沿海冬季的日平均水温、水位、海平面气压和风场等历史资料(1973—1983)做了分析。结果发现,这里的水温和水位存在10—20天的振动,这种振动与同期气压场和沿岸风的振动相同,陆架水温和水位的这种天气尺度振动恰好是对冬季风强迫的响应。为证明这一物理过程,设计了一个简单的线性理论模式,并用Laplace变换获得了其解析解,证明了上述响应的物理机制。  相似文献   

11.
Differences in daily mean sea level between Kushimoto and Uragami and daily mean sea levels at Miyake-jima and HachijÔ-jima in the Izu Islands are examined during the 1964–1980 period, and characteristics of the typical paths of the Kuroshio corresponding to the dominant sea level states are described.Sea levels at the islands show three dominant states: high and low sea level states (45 % and 31 %) in the non-large-meander period (October 1963 –7 August 1975) and high sea level state (64 %) in the large-meander period (8 August 1975–15 March 1980). This indicates the existence of three typical paths of the Kuroshio, and the states correspond to the nearshore and offshore non-large-meander paths and the typical large-meander path, respectively. The first path is located near the coast throughout the whole southern area off Japan, the second path leaves the coast around the Izu Ridge and passes south of HachijÔ-jima, and the third path is located near the coast over the ridge after meandering far to the south of Enshû-nada.The positions of the three typical paths are almost the same in the farthest upstream and downstream regions south of Japan between 131E and 142E. The nearshore and offshore non-large-meander paths overlap between Kyûshû and the Kii Peninsula, being invariably close to the coast, while the typical large-meander path south of Shikoku is located offshore and changes its position meridionally.At the mid-depth of 400 m the nearshore non-large-meander and typical large-meander paths pass the Izu Ridge through the deep channel between Miyake-jima and HachijÔ-jima, while the offshore non-large-meander path passes through the deep region south of HachijÔjima. The path of the Kuroshio at mid-depth is well constrained by the bottom topography of the Izu Ridge.  相似文献   

12.
In this paper, the low-frequency fluctuations of sea level and their relationship to atmospheric forcing along the coasts of the Huanghai Sea and the East China Sea are studied. Spectrum analyses are made for the time series of daily mean sea level, atmospheric pressure and wind stress at seven coastal stations. It is found that at all the stations, the main part of the energy of the sea level fluctuations, within the (2-60)-day period, is concentrated on the (12-60)-day period band and that an obvious spectral peak appears at the 3-day period. Along the coast of the Huanghai Sea, variations in the sea level are greater in winter than in summer. In winter, along the coasts of the Huanghai Sea and the East China Sea there is a kind of sea level fluctuations propagating southwards. Among the many factors causing sea level variation, the most obvious one is atmospheric pressure, followed next by the alongshore wind stress.  相似文献   

13.
We present a case study of low-level wind jets induced in sequence by orographic effects off the Pacific coast of northern Japan during 7–11 June 2003, and demonstrate that the transition of the wind jets causes areal differences of wave height variations along the coast. First, we describe evolution and structure of the wind jet by analyzing SeaWinds scatterometer wind measurements. Under the easterly wind, a strong wind jet formed after passing by Cape Erimo. As the wind shifted to the southeast, the wind jet started to decay. In turn, the southerly wind along the coast led to another wind jet in the lee of the easternmost tip of the Sanriku coast. We then identify onsets and decays of the wind jets from time series of wind speed at meteorological stations. Finally, we demonstrate that the transition of the wind jets has local impacts on wave height variations. Significant wave heights measured by altimeters were correlated positively with local wind energy, i.e., squares of wind speeds. Accompanying the wind jet formation/decline, significant differences of wave height variations became marked among wave observation stations located along the coast at intervals of up to 50 km.  相似文献   

14.
15.
Long-term monthly sea level and sea surface temperature (SST) anomalies from central California show that during winter months, positive anomalies are associated with El Niño events and the negative ones with La Niña events. There is no significant impact on monthly mean anomalies associated with Pacific decadal oscillations, although there is a tendency for more extreme events and greater variance during positive decadal oscillations. The very strong 1997–1998 El Niño was analyzed with respect to the long-term historic record to assess the forcing mechanisms for sea level and SST. Beginning in the spring of 1997, we observed several long-period (>30 days) fluctuations in daily sea level with amplitudes of over 10 cm at San Francisco, California. Fluctuations of poleward long-period alongshore wind stress anomalies (AWSA) are coherent with the sea level anomalies. However, the wind stress cannot entirely account for the observed sea level signals. The sea level fluctuations are also correlated with sea level fluctuations observed further south at Los Angeles and Tumaco, Columbia, which showed a poleward phase propagation of the sea level signal. We suggest that the sea level fluctuations were, to a greater degree, forced by the passage of remotely generated and coastally trapped waves that were generated along the equator and propagated to the north along the west coast of North America. However, both local and remote AWSA can significantly modulate the sea level signals. The arrival of coastally trapped waves began in the spring of 1997, which is earlier than previous strong El Niño events such as the 1982–1983 event.  相似文献   

16.
Circulation     
Low-frequency current and temperature variability on the southeast US continental shelf during summer conditions of weak wind forcing and vertical stratification was found to be similar in many aspects to previous findings for winter, when stronger wind forcing and vertical homogeneity prevails. Subtidal variability in the outer shelf is dominated by the weekly occurrence of Gulf Stream frontal eddies and meanders. These baroclinic events strongly affect the balance of momentum in the outer shelf, but not at mid-shelf. A negative alongshore sea level slope of order −10−7 is required to balance mean along-shelf momentum at the shelf edge, similar to oceanic estimates, and can contribute to the observed northward mean flow over the shelf.Low-frequency flow at mid-shelf and coastal sea level fluctuations appear to occur as a forced wave response to local alongshore wind stress events that are coherent over the shelf domain. Momentum balances indicate a trapped wave response similar to the arrested topographic wave found in the mid-Atlantic Bight (CSANADY, 1978). Density driven currents from river discharge do not appear to be significant at mid-shelf. Cold, subsurface intrusions of deeper, nutrient rich Gulf Stream waters can occasionally penetrate to mid- and inner-shelf regions north of Cape Canaveral, causing strong phytoplankton and zooplankton responses. These events were observed following the simultaneous occurrence of upwellings from northward winds and Gulf Stream frontal eddies at the shelf break during periods when the Stream was in an onshore position. Subsurface Gulf Stream intrusions to mid-shelf occur only during the summer, when the shelf is vertically stratified and cross-shelf density gradients do not present a barrier as in winter.  相似文献   

17.
A spectral wind wave model SWAN (Simulation WAves Nearshore) that represents the generation, propagation and dissipation of waves was applied to Lake Okeechobee. This model includes the effects of refraction, shoaling, and blocking in wave propagation. It accounts for wave dissipation by whitecapping, bottom friction, and depth-induced wave breaking. The wave–wave interaction effect also is included in this model. Measurements of wind and wave heights were made at different stations and different time periods in Lake Okeechobee. Significant wave height values were computed from the recorded data. The correlation between wind stress and significant wave height also was analyzed. A 6-day simulation using 1989 data was conducted for model calibration. Another 6-day simulation using 1996 data was conducted for model verification. The simulated significant wave heights were found to agree reasonably well with measured significant wave heights for calibration and verification periods. Agreement between observed and simulated values was based on graphical comparisons, mean, absolute and root mean square errors, and correlation coefficient. Comparisons showed that the model reproduced both general observed trends and short term fluctuations.  相似文献   

18.
为了分析台风影响下浙江沿海风和浪的演变特点,利用浙江省海洋浮标站监测数据和欧洲中期天气预报中心第五代全球气候大气再分析数据(European Centre for Medium-Range Weather Forecasts Reanalysis v5,ERA5),选取2010年以来严重影响浙江的7次台风个例,对台风作用下浙江沿海海面风和浪的演变特点进行分析。结果表明:在台风影响过程中,海浪波型多数呈现混合浪-风浪-混合浪的演变规律;涌浪波型的出现与台风强度及其与浮标站的距离和方位有关,也与海洋潮汐现象紧密相关。台风影响期间,浙江沿海浪高的变化受风速和风向共同作用影响。在风向不变的情况下,持续风速增大对浪高的增大有明显作用;风向的变化也会对浪高变化产生影响,向岸风和离岸风的转变会造成浪高出现剧烈变化。ERA5 再分析资料有效波高在台风浪较大时会呈现偏小的趋势,分析订正后的ERA5 有效波高发现,台风浪有效波高大值区与台风中心位置相关。研究结果可为严重影响浙江沿海的台风浪预报服务提供参考。  相似文献   

19.
Spectral properties of sea levels at Naze, Nishinoomote, Kushimoto, Uragami, Miyake-jima and HachijÔ-jima are examined for the non-large-meander (February 1964 – May 1975) and large-meander (October 1975 – December 1979) periods, and the periodicity of variation of the Kuroshio path is clarified.The large meander of the Kuroshio occurs with a primary period of about 20 years and secondary period of 7 to 8. 5 years. During the non-large-meander period, the Kuroshio alternately takes the nearshore and offshore non-large-meander paths with a primary period of 1. 6–1. 8 years. This variation is moreover composed of 110-day, around 195-day and annual periods. The 110-day variation of the Kuroshio path appears to have influence on the coastal sea levels between the Kii Peninsula and the Izu Ridge;i. e., the coastal sea levels rise and fall with one-month time lag after the Kuroshio has begun to approach and leave the Japanese coast. During the large-meander period, the 70 and 110-day variations are remarkable in sea levels south of Japan except Miyake-jima and HachijÔ-jima. The 70-day variation is highly coherent throughout the south coast of Japan; the coherent area of the 110-day variation seems to be smaller.The sea-level variations at Naze and Nishinoomote are not significantly coherent for any of the periods except for annual and semiannual cycles during both the non-large-meander and large-meander periods. That is, the sea-level variations are incoherent between the onshore and offshore sides of the Kuroshio, except for seasonal variation.  相似文献   

20.
根据东亚沿岸45个水位观测站的长序列水位资料,用不同的计算区域平均海平面升降的方法,估计了该区海平面升降趋势。结果表明,从本世纪50年代初至90年代初,整个海区平均而言海平面呈上升趋势。海平面升降的区域性变化较大:中国沿岸除山东半岛外,其他海区平均是上升的,在日本群岛南部和朝鲜半岛南部沿岸,由几种方法得出的结果多数是上升的,但上升幅度很小。本文对东亚沿岸海平面升降的估计结果与Barnett的相应估计差别较大,其主要原因是Barnett选站较少,且选的站集中在该区南北两端,中间部分无资料;估计方法虽有影响,但属次要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号