首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
应用海湾和半封闭矩形海域改进的Taylor问题的解研究海平面上升对M2分潮旋转潮波系统及沿岸潮差的变化.将南黄海概化为一等深矩形海域,初步研究在海平面上升3 m和5 m条件下该海域旋转潮波系统的演化趋势,继而分析沿岸潮差变化特征.初步分析研究表明:随着海平面上升,该海域M2分潮的无潮点有向东南方向偏移的趋势,受此影响,沿岸潮差呈现不同的变化特征,靠近无潮点的左侧及湾顶海岸变化明显,而远离无潮点的右侧及湾顶海岸则变化不大.  相似文献   

2.
杭州湾潮汐特征时空变化及原因分析   总被引:2,自引:2,他引:0  
杭州湾是世界著名的强潮河口湾,一直是研究的热点。基于杭州湾口内外实测潮汐资料,对杭州湾潮汐特征及时空变化进行了系统分析,包括高潮位、低潮位、平均潮位、潮差、涨潮历时以及天文潮变化,同时分析了20世纪80年代以来潮汐特征变化的原因。结果表明:最近50年来,杭州湾年平均高潮位和海平面抬高,潮差增大;澉浦年平均低潮位抬高,涨潮历时缩短,浅海分潮增大;钱塘江河口治江缩窄是造成杭州湾潮汐变化的主要因素;浙江和邻近海域的涉海工程可能是造成浙江沿海海平面上升的主要原因之一。  相似文献   

3.
中国黄海沿岸潮差的显著增大趋势   总被引:15,自引:0,他引:15  
消除交点和半交点周期性变化的影响,自20世纪70年代以年来中国黄海沿岸的潮差随年份显著增大,高潮位随之明显地上升,低潮位也呈明显的下降趋势。 属于大陆边缘海域的中国黄海,海平面上升影响的显著性,通过驻波作用明显地表现出来。全球海平面上升引起的陆架浅水区域海底和测向摩擦作用改变和减小,从而导致入射波?反射 波和折射波的传播发生变化,该变化造成潮汐驻位置(潮无潮点)的移动,由此造成  相似文献   

4.
基于江苏沿海连云港、吕四两个测点的验潮站多年的观测资料以及AVISO卫星高度计资料,利用统计分析方法和潮汐调和分析方法研究江苏沿海地区的海洋水位变化特征。结果表明:江苏沿海海平面和潮差均呈上升趋势,海平面上升速度达3.35 mm/a,高于全球和区域海平面的上升速度;对采样间隔为1 h的潮位连续观测数据作调和分析,各验潮站主要半日分潮的振幅呈上升趋势,全日分潮的振幅呈下降趋势,S_a分潮的周期性变化与El Nino现象有关。  相似文献   

5.
近期长江感潮河段径、潮动力已然发生变化,但其变化机制与趋势有待进一步探讨。通过对长江大通至南京河段的野外调查,并分析了近40年来大通、芜湖和南京站水文资料,探讨了近期该河段的潮动力变化机制与趋势。结果表明:近年来长江大通至南京段潮动力有增强趋势。具体表现为相近径流量条件,潮差平均增大约10 cm,主要分潮振幅增加10%~30%,潮汐形态系数有减小趋势。引起上述变化的原因可能有:(1)近期感潮河段整体冲刷变深导致潮波上溯阻力减小;(2)口外潮汐动力增强以及海平面上升等使潮汐上溯能力增强。此外,长江流域修建了大量水库群,导致该河段径流量变化由自然因素主导变成自然与人为调控共同作用为主,从而影响了潮动力的相对强弱。  相似文献   

6.
利用中国沿岸验潮站GNSS和邻近地区陆态网络GNSS基准站观测数据,结合卫星高度计和验潮站海平面观测数据分析了中国沿海验潮站及其邻近地区陆地垂直运动特征。中国沿海海平面观测以及验潮站和陆态网GNSS基准站观测结果显示,中国沿海省区市及沿海验潮站陆地垂直运动总体表现为:辽宁至江苏沿海上升、上海至福建泉州沿海沉降、福建厦门至广西沿海升降交替的格局,局部滨海平原地区如华北平原天津南部、河北平原的沧县则表现出显著的沉降特征。验潮站陆地的抬升与沉降是沿海相对海平面变化的重要组成部分,准确掌握验潮站及其邻近区域的陆地垂直运动特征,可为沿海相对海平面变化分析、海平面变化影响评估以及未来海平面上升预测提供依据。  相似文献   

7.
磨刀门河口近期水文动力变化及人类活动对其影响研究   总被引:2,自引:0,他引:2  
分析磨刀门河口近几十年来水文动力的变化并重点研究围垦和挖沙这二类人类活动对水文动力变化的影响。磨刀门河口近期水文动力的变化主要表现在:水位升高,主干分流比加大,断面平均流速增大;潮汐动力20世纪607、0年代至90年代初明显减弱,潮差减小,主要分潮振幅变小;20世纪90年代初至21世纪初,潮汐动力增强,潮差增大,主要分潮振幅变大,涨潮量增大。围垦加速了水位的抬升,改变了河口的径流和涨潮量分流比,使河口的断面平均流速增大,减弱了河口的潮汐动力。挖沙使河口潮汐动力增强,降低了水位上升的速度。  相似文献   

8.
采用球面潮波运动基本方程,利用开边界强迫水位条件和考虑天体引潮力,对海平面上升后渤、黄、东海的潮波运动进行了数值模拟。根据权威性的IPCC报告和论文,选取了模拟过程所需的海平面上升量。模拟包括19个理论系数最大的分潮波。根据模拟结果绘制了分潮同潮图,并与现有分潮的同潮图进行了比较和分析。可以看出:海平面上升后的分潮同位相线相对于现有的分潮同位相线沿逆时针方向发生偏转,海平面上升后的分潮无潮点的位置相对于现有分潮无潮点的位置发生偏移,海平面上升后的分潮振幅与现有分潮振幅之差有一定的分布模式。从利用模拟结果推算的主要潮位极值可以看出:海平面上升1 m后,有些地方的天文最高潮位升高量可达12~16 cm,海图深度基准面降低量可达10~12 cm。  相似文献   

9.
综合利用4个验潮站的逐时观测潮位资料,采用最小二乘原理的调和分析方法得到验潮站的潮汐调和常数。根据调和常数计算沿岸海域潮汐特征值,分析4个站位海域潮汐的时空特征。结果表明:秦皇岛附近受半日潮无潮点的影响为正规全日潮,其余3站位均为不规则半日潮性质;4个验潮站中龙口站和秦皇岛站属于弱潮海区,葫芦岛站和塘沽站属于中潮区。4个站位平均大潮差、平均小潮差、最大可能潮差与平均潮差的变化趋势基本一致,月平均潮差存在"双峰型"和"多峰型";葫芦岛验潮站、塘沽验潮站以及龙口验潮站均呈现出较不明显的潮高日不等现象;涨、落潮历时日不等,存在区域性分布。  相似文献   

10.
基于Mike21软件,建立了潮流和径流作用下大沽河河口区水动力数学模型。利用数学模型,对纯潮流作用下的潮位、潮流进行了模拟,并与实测资料进行了验证;在此基础上,对大潮期间不同径流作用下的潮位、潮流进行预测分析。结果表明:随着径流量增加,潮位相应增加,潮差相应减小。高潮位时,径流量对潮差的影响较小。低潮位时,径流量对潮差的影响较大。随着径流量的增加,涨潮历时缩短,落潮历时增加,涨落潮历时比值降低;涨潮流速则变小,落潮流速增加;流向整体趋势变化不大。平水期径流条件下,涨急和落急时刻径流影响范围分别为65.5和120.2km2;丰水期径流条件下,涨急和落急时刻径流影响范围分别为144.9和165.0km2。  相似文献   

11.
珠江河网横向汊道体系是维持三角洲河网动力平衡的独特地貌结构,具有泄洪纳潮的重要功能,探讨该结构水位的阶段性演变及其影响因子辨识是河口动力学研究的重要科学问题。采用流量驱动的R_TIDE数据驱动模型,对研究区域内“容桂-凫洲水道”和“潭洲-前航道”两个典型横向汊道体系共8个站点的日均水位序列进行分解,分离出由上游流量驱动引起的水位变化及地形和海平面共同驱动的水位变化。结果表明,经过水库的调蓄作用,在“容桂-凫洲水道”,流量驱动导致冬季日均水位抬升(平均为0.04m),其余三季日均水位下降;“潭洲-前航道”则由于北江流量增大导致流量驱动的日均水位均有不同程度的抬升(平均为0.17 m)。由于地形下切和海平面上升,地形和海平面共同驱动的日均水位变化普遍为负值(除南沙、黄埔站分别为0.11、0.07 m),“容桂-凫洲水道”中下部河段在秋季受海平面上升(秋季海平面高程最大)影响大于河床地形下切效应导致水位抬升,而其余站点主要受到疏浚、采砂等人类活动引起的地形下降影响,水位下降,且上游变化幅度明显大于下游;对径潮动力方差贡献率的分析结果表明,“容桂-凫洲水道”和“潭洲-前航道”夏季径流对水位的方...  相似文献   

12.
海平面上升对长江三角洲附近沿海潮滩和湿地的影响   总被引:23,自引:1,他引:23  
于1988-1991年,对长江三角洲附近沿海潮滩和湿地进行较全面的调查,利用高程-面积法、沉积速率法,并引进未来冲淤趋势参数,对全区14个典型潮滩断面进行海平面上升影响的估算。结果表明,当海平面上升0.5m和1.0m时,全区潮滩面积分别比1990年的减少9.2%和16.7%;湿地面积减少20%和28%,并发生高级类型向低级类型的逆向演替。各岸段损失率相差悬殊,以侵岸段较大,淤涨岸段将减缓淤涨,甚至  相似文献   

13.
三峡大坝运行和海平面上升对河口水文动力变化的影响广受国内外关注。本文选取长江感潮河段沿程6个站(芜湖、马鞍山、南京、镇江、江阴和天生港) 1963-1985年(其中1970年和1971年数据缺失)和2003-2013年(其中2008年和2012年数据缺失)共30个年份的1月和7月的月均高潮位资料,以及相应月份上游大通站的流量(1950-2013年)、长江河口吴淞站潮位资料,通过肯德尔趋势分析、回归分析和偏相关分析等方法研究长江感潮河段潮位变化规律和影响因素。结果表明,三峡建坝后:(1)枯季流量和海平面的增加,导致上下段(以江阴为界)的潮位分别上升了0.33 m和0.20 m;洪季流量减少和海平面增加,导致上段潮位减小0.19 m、下段潮位增加0.04 m。(2)感潮河段洪季海平面与潮位回归方程的斜率均增加,表现为建坝后洪季洪涝灾害增加。(3)上下段流量和海平面对潮位贡献率的显著变化是导致上下段潮位呈现不同演变趋势的主要原因。  相似文献   

14.
未来海平面上升对江苏沿海水利工程的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
研究探讨表明,未来海平面上升将导致江苏沿海水利工程本身风险性的显著增大,表现为工程遭受破坏程度的增强和受到破坏次数的指数性增多。海面上升还严重影响苏北沿海水利工程效用的发挥,表现为海堤防护标准的降低,抗御风暴潮的能力减少,以及沿海挡潮闸排水能力的降低,加剧这一地区的洪涝灾害。最后,为减轻未来海平面上升对苏北沿海水利工程造成的不利影响,提出了一些看法和建议。  相似文献   

15.
中国近海海平面变化研究进展   总被引:7,自引:0,他引:7  
通过对近10年来中国近海海平面变化研究成果的分析得出:(1)中国海域海平面变化时空差异明显,沿海海平面高值出现在8—9月,最低值出现在2—3月,季节最大差值可达20.75 cm;黄海和东海海区东南高、西北低;南海夏季西低东高,冬季东低西高;从辽宁到广西海平面上升速率差异大,范围在-2.1~10 mm/a之间;相对海平面上升较快区域主要是黄河三角洲、长江三角洲和珠江三角洲,2050年3个地区海平面预计分别上升980、720、520 mm。(2)地面沉降已经成为中国东部沿海相对海平面上升速率高的重要影响因素,在黄河三角洲和长江三角洲人口密集地区尤为突出。(3)每年8—9月为我国一年中的海平面最高月份,此时也正是热带气旋影响中国东南沿海的高峰时段,在季风、热带气旋等共同作用下,东南沿海高海平面将对东南沿海城市安全构成严重威胁。  相似文献   

16.
中国沿岸现代相对海平面上升加剧   总被引:5,自引:0,他引:5  
本文用线性回归方法,分两个时段分析了中国沿岸25个验潮站相对海平面的年变化速度,计算了相应时段的平均海面,结果表明,中国沿岸现代相对海平面上升加剧。另外,本文还对海平面变化原因进行了讨论。  相似文献   

17.
海平面变化对太湖流域排涝的影响   总被引:1,自引:1,他引:0  
太湖流域位于长江三角洲地区,其排涝过程受长江口海平面变化及潮位变化的控制。本文采用一维河网非恒定流理论,建立了太湖流域河网水文模型,并对1991年太湖流域洪涝过程进行的模拟。在此基础上,假定当太湖流域发生1991年特大暴雨过程时,海平面上升0.5m和长江口发生了百年一遇高潮位,太湖最高水位可分别达到5.01m和4.99m,整个梅雨期排涝量分别比1991年少排14.9×108m3和13.1×108m3,加剧了该地区洪涝灾害的严峻程度。  相似文献   

18.
成山头海域潮流能资源可开发量评估   总被引:1,自引:0,他引:1  
武贺  王鑫  韩林生 《海洋与湖沼》2013,44(3):570-576
针对潮流能资源较丰富的成山头外海域,利用FVCOM数值模式,在良好模拟该海域潮流场的基础上,运用能量耗散原理,对该海域的潮流能资源可开发量进行了评估。结果表明,在转换装置的拖拽系数为0.07时,面积为27km2的成山头近岸海域的可开发潮流能资源约为17.9MW,其中大潮期间的可开发量高达37.7MW,而小潮期间则为7.3MW。在此条件下,该海域大潮期间涨急和落急时刻的流速分别减小了40%和38%,但发电装置对潮汐的影响较小,在成山头顶端的高潮潮位仅下降了4cm。  相似文献   

19.
河口的水位变化是径潮动力相互作用的结果,但近30年来,强人类活动对河口环境的影响已远超环境自我修复能力,导致水位发生异变。为研究这种变化,本文选取人类活动影响剧烈的珠江磨刀门河口作为研究区域,采用Copula方法定量分析在同一上下边界(上游流量和口外海平面)下由强人类活动引起的水位异变。结果表明:1)强人类活动后,河道地形下切显著,外海海平面对沿程各站水位的线性影响增强,上游马口流量对水位的线性影响减弱。2)强人类活动后甘竹至灯笼山站同概率水位事件明显降低;三灶海平面呈上升趋势;马口流量分布特性变化不明显。3)水位与海平面、流量的联合依赖关系发生明显改变,低水位与海平面关系的敏感度增加,而高水位与海平面关系的敏感度下降。低水位与流量关系的敏感度基本不变,而高水位与珠江流量关系的敏感度明显下降。4)强人类活动后各站水位变化幅度变窄,在相同概率海平面及流量驱动下,强人类活动后各站水位均有明显下降,水位与海平面、流量遭遇概率为0.1—0.9时,其月均水位下降幅度达0.01—1.24m。低海平面和低流量联合驱动下各站水位的下降幅度明显小于高海平面和高流量联合驱动下月均水位的变幅,而且上游站位的水位下降幅度明显大于下游站位。本研究成果可为强人类活动的影响辨识及珠三角水资源的合理配置和可持续发展利用等提供技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号