首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了进一步认识上层海洋中混合层和障碍层的时空变化特征。本文基于Argo (Array for real-time geostrophic oceanography)海洋观测网2007—2018年的温盐数据,使用差值法计算了全球海洋混合层深度(Mixed layer depth, MLD)和障碍层厚度(Barrier layer thickness, BLT),讨论了二者的月均值、季节均值和年均值的空间分布特征和形成机制。研究表明,全球海洋的混合层普遍在夏季浅、在冬季深,随季节变化的特征显著。北半球混合层变化幅度较大,大西洋混合层比同纬度的太平洋深;赤道海区混合层较浅;南半球混合层呈纬向带状分布,60°S附近大洋海域存在显著的深混合层带,南极大陆与该深混合层带之间的海域混合层常年较浅。全球障碍层呈"哑铃状"分布,两半球的高纬度海区是障碍层高发区,障碍层不仅厚且持续时间长,以半年为周期变化,南大洋60°S附近海域显著的厚障碍层带随季节变化;南半球中低纬度海区长期存在障碍层,障碍层冬厚夏薄,且厚度大部分不超过40 m。  相似文献   

2.
利用Argo资料计算了准全球海洋夏季的混合层深度(MLD),并与Levitus资料计算所得的MLD进行了比较.结果表明,用Argo资料计算的全球夏季MLD总体上比Levitus资料的大.低纬20°S~20°N以及南半球40°~60°S等区域Levitus资料计算的MLD大部分明显小于Argo资料计算的MLD;北半球40°~60°N等区域Levitus资料计算的MLD略小于Argo资料的;而20°~40°N以及20°~40°S等混合层较浅的海区以及纬度高于60°N以及60°S的海区2种资料计算的MLD差别不大.南大洋MLD非常大,其中小部分海域用Levitus资料计算的MLD比Argo资料计算的MLD大100 m以上.  相似文献   

3.
基于Argo浮标的热带印度洋混合层深度季节变化研究   总被引:2,自引:0,他引:2  
根据2004-2005年热带印度洋(30°S以北)的Argo浮标(自持式海洋剖面观测浮标)温度-盐度剖面观测资料,采用位势密度判据(Δσθ=0.03 kg/m3),针对每个Argo浮标的温度-盐度观测剖面确定了海洋混合层的深度,然后采用Krig插值方法构建了3°×3°空间分辨率的月平均网格化混合层深度产品。通过与已有气候平均混合层深度资料的比较表明了该产品的合理性,在此基础上进一步对热带印度洋海盆尺度的混合层深度空间特征和季节变化规律进行了讨论。研究结果表明,Argo浮标资料可用于热带印度洋混合层变化的研究,为进一步研究热带印度洋海-气相互作用提供了基础资料。  相似文献   

4.
基于2017版全球海洋Argo网格数据集(BOA-Argo),利用最大角度法和梯度比值法等客观分析方法计算了2004年1月—2016年12月期间,西太平洋海域(25°S~40°N,120°~180°E)的上混合层和温跃层上、下界深度,并计算了混合层温盐度以及温跃层强度等海洋环境参数,制作完成水平分辨率为1°×1°的月平均Argo数据衍生产品。将本数据产品和采用阈值法计算得到MILA GPV数据集做比较,结果显示:对于混合层的主要空间分布特征和时间序列变化特征,两者都十分吻合;将西太平洋海域温跃层上、下界深度和强度等参数与人们利用传统的温度梯度法计算结果相比较,其季节分布特征及变化趋势也大体相符。  相似文献   

5.
利用Argo浮标资料和Rama浮标资料对印度洋海洋环境数值预报系统2010-03-06—2013-05-31的24h混合层深度产品进行了预报精度检验。与Argo浮标数据对比表明:预报与观测绝对平均误差为13m,24h混合层深度预报平均偏浅10m以内;对苏门答腊岛附近海域(5°S~4°N,87°~99°E)的混合层深度预报平均偏浅20m,该海域预报平均风速偏小1.6m/s是可能原因;其它海域预报能力较高,尤其对热带中南印度洋区域(5°~17°S,63°~96°E)平均误差集中在-2~2m。分海域检验对比结果表明:该预报系统能很好的预测出阿拉伯海(60°~70°E,10°~20°N)和孟加拉湾(85°~93°E,10°~18°N)处混合层半年周期变化特征;热带南印度洋(60°~80°E,15°~19°S)混合层呈现明显季节变化特征,且在每年8,9月份达到最大值;热带外南印度洋(45°~70°E,0°~10°S)混合层常年较为浅薄;Argo与Rama数据所得结果一致;预报系统对上述特征均能很好地预测。  相似文献   

6.
本文将WOD13(World Ocean Database 2013)中营养盐(硝酸盐和磷酸盐)浓度的观测资料重新构成1°×1°的气候态平均场,结合Argo气候态月平均混合层深度数据,对西北太平洋混合层内营养盐浓度的季节变化进行了初步研究。结果表明,混合层内的营养盐平均浓度在30°N以北海域均沿纬向分布,且浓度随纬度的增加而增大。与夏季相比,在日本海和日本以东寒暖流交汇处的混合层内,冬季营养盐平均浓度明显增加;在黑潮主流及其附近海域,冬季营养盐平均浓度略有增加。根据混合层内营养盐总量的冬夏变化特点,可以总结为以下四种类型:冬季增加型、冬季减少型、冬夏不变型Ⅰ(垂向分布不变)和冬夏不变型Ⅱ(垂向对流补偿)。仅靠生物生化作用和垂向混合是无法完全解释这些变化的,海流的水平输运也会对混合层内的营养盐供给产生一定影响。  相似文献   

7.
王艺珊  夏瑞彬 《海洋学报》2022,44(10):35-48
本文利用第五次国际耦合模式比较计划(CMIP5)中的地球系统模式(ESM2M),结合Argo观测数据和由Ishii等整理的再分析数据集,分析现在气候背景和辐射强迫极端增强下副热带东北太平洋海域(10°~40°N,110°~160°W)混合层深度(MLD)和潜沉率的季节变化特征,研究其对全球变暖的响应。在现在气候背景下,二者最大值均出现在冬季。潜沉率的主要贡献项存在显著的季节变化差异,1?5月主要受侧向潜沉率的变化控制,6?12月则由风应力旋度导致的埃克曼抽吸速度变化主控。全球变暖后,季节循环信号的主控要素不变。但受风应力旋度等要素变化的影响,各季节的MLD减小,大值区范围收缩。由于冬季减小幅度远大于夏季,MLD季节波动幅度(振幅)显著变小。长期看,MLD呈现持续变浅的趋势,其空间不均匀性减弱引起的MLD锋面减弱是控制侧向潜沉率减弱,最终导致总潜沉率减弱的关键。由于埃克曼抽吸速度的季节变化信号对全球变暖的响应较小,因此总潜沉率在冬季受全球变暖的影响最为强烈。上述结果表明,构成潜沉率的两个关键要素对总潜沉率的贡献比例是随着季节变化而改变的:冬季MLD锋面强盛时期,侧向潜沉率的影响将显著增强。全球变暖前后二者截然不同的变化会显著改变潜沉率的季节循环振幅,可能对该区域模态水的形成和输运产生深远的影响。  相似文献   

8.
南海混合层深度的季节和年际变化特征   总被引:1,自引:0,他引:1  
利用1871-2008年SODA资料和月平均的Levitus资料计算了南海混合层深度(MLD)的季节及年际变化特征.资料分析表明:季风通过流场调整对南海MLD的时空分布特征有显著的影响.南海MLD的距平变化总体上呈上升趋势,南海南部MLD的距平变化趋势和北部的有显著差异,特别在1955年后北部整体呈下降趋势而南部呈上升趋势,二者的显著周期北部为2-3年,南部与整个区域平均的基本相似有2-6年的显著周期.SOI指数对滞后的南海各个区域有较好的相关性.EOF分析表明第一模态整体呈单极型最大变率分布在南海南部,由南往北逐渐减小显著周期2-3年变化为主;第二模态呈偶极子型,显著周期以2-5年变化为主.回归分析表明南海南部深水区域呈现增深的趋势,而吕宋海峡至南海北部陆架区呈变浅趋势,滑动t检验表明南海MLD有6个显著的突变年份.  相似文献   

9.
基于水下滑翔机在2019年8至10月观测到的温盐资料,本研究分析了西北太平洋混合层总体的变化情况,并探讨了混合层异常变化的原因。结果表明,混合层温度总体上呈现随季节转换逐渐降低的趋势,混合层深度总体上呈现随季节转换逐渐增大的趋势。进一步的相关性分析得出,该海域混合层温度、混合层深度的变化特征主要是由外部大气强迫场(海面风场和净热通量)所决定的。水下滑翔机还观测到了混合层温度异常降低、混合层深度异常变浅的现象。通过计算混合层热收支发现,垂向夹卷作用是海洋混合层内温度降低和混合层深度变浅的主要原因。通过进一步计算研究海域冷涡的上升速度与海水垂向夹卷速度的变化情况,并结合卫星遥感资料,得出海洋的中尺度涡旋活动主导了混合层异常现象的发生。  相似文献   

10.
基于西北太平洋Argo数据资料,利用参数化方法,从Argo温盐剖面数据中提取出一系列特征动力参数,定量分析黑潮延伸体海域水体的三维热结构的时-空变化特征、季节变化特征及其与地形和环流的关系。结果表明:黑潮延伸体海域水体的海表面温度存在着明显的冬春弱,夏秋强的季节变化特征,冬季平均海表面温度为15℃,夏季则达到了27℃;混合层深度在春季和夏季都较深,在180 m左右,秋冬较浅,在17 m左右,在水平方向上混合层深度有较强的梯度;温跃层春、夏、秋、冬4季的平均温度表现出明显的南北差异,夏季南部海域平均温度为14℃左右,北部海域较低为5℃左右;季节性温跃层深度大约在100 m左右;黑潮延伸体海域水体的温跃层底部最大深度在800 m左右;黑潮延伸体主体海域中心位置冬天在36°N左右,夏天大约移到34°N。  相似文献   

11.
Interannual variability(IAV) in the barrier layer thickness(BLT) and forcing mechanisms in the eastern equatorial Indian Ocean(EEIO) and Bay of Bengal(BoB) are examined using monthly Argo data sets during 2002–2017. The BLT during November–January(NDJ) in the EEIO shows strong IAV, which is associated with the Indian Ocean dipole mode(IOD), with the IOD leading the BLT by two months. During the negative IOD phase, the westerly wind anomalies driving the downwelling Kelvin waves increase the isothermal layer depth(ILD). Moreover, the variability in the mixed layer depth(MLD) is complex. Affected by the Wyrtki jet, the MLD presents negative anomalies west of 85°E and strong positive anomalies between 85°E and 93°E. Therefore, the BLT shows positive anomalies except between 86°E and 92°E in the EEIO. Additionally, the IAV in the BLT during December–February(DJF) in the BoB is also investigated. In the eastern and northeastern BoB, the IAV in the BLT is remotely forced by equatorial zonal wind stress anomalies associated with the El Ni?o-Southern Oscillation(ENSO). In the western BoB, the regional surface wind forcing-related ENSO modulates the BLT variations.  相似文献   

12.
A monthly mean climatology of the mixed layer depth (MLD) in the North Pacific has been produced by using Argo observations. The optimum method and parameter for evaluating the MLD from the Argo data are statistically determined. The MLD and its properties from each density profile were calculated with the method and parameter. The monthly mean climatology of the MLD is computed on a 2° × 2° grid with more than 30 profiles for each grid. Two bands of deep mixed layer with more than 200 m depth are found to the north and south of the Kuroshio Extension in the winter climatology, which cannot be reproduced in some previous climatologies. Early shoaling of the winter mixed layer between 20–30°N, which has been pointed out by previous studies, is also well recognized. A notable feature suggested by our climatology is that the deepest mixed layer tends to occur about one month before the mixed layer density peaks in the middle latitudes, especially in the western region, while they tend to coincide with each other in higher latitudes.  相似文献   

13.
Temperature and salinity data from 2001 through 2005 from Argo profiling floats have been analyzed to examine the time evolution of the mixed layer depth (MLD) and density in the late fall to early spring in mid to high latitudes of the North Pacific. To examine MLD variations on various time scales from several days to seasonal, relatively small criteria (0.03 kg m−3 in density and 0.2°C in temperature) are used to determine MLD. Our analysis emphasizes that maximum MLD in some regions occurs much earlier than expected. We also observe systematic differences in timing between maximum mixed layer depth and density. Specifically, in the formation regions of the Subtropical and Central Mode Waters and in the Bering Sea, where the winter mixed layer is deep, MLD reaches its maximum in late winter (February and March), as expected. In the eastern subarctic North Pacific, however, the shallow, strong, permanent halocline prevents the mixed layer from deepening after early January, resulting in a range of timings of maximum MLD between January and April. In the southern subtropics from 20° to 30°N, where the winter mixed layer is relatively shallow, MLD reaches a maximum even earlier in December–January. In each region, MLD fluctuates on short time scales as it increases from late fall through early winter. Corresponding to this short-term variation, maximum MLD almost always occurs 0 to 100 days earlier than maximum mixed layer density in all regions.  相似文献   

14.
Mixed layer depth (MLD) variability in the Eastern Equatorial Indian Ocean (EEIO) from a hindcast run of an Ocean General Circulation Model (OGCM) forced by daily winds and radiative fluxes from NCEP-NCAR reanalysis from 2004 to 2006 is investigated. Model MLD compares well with the ~20,000 observations from Argo floats and a TRITON buoy (1.5°S and 90°E) in the Indian Ocean. Tests with a one-dimensional upper ocean model were conducted to assess the impact on the MLD simulations that would result from the lack of the diurnal cycle in the forcing applied to the OGCM. The error was of the order of ~12 m. MLD at the TRITON buoy location shows a bimodal pattern with deep MLD during May–June and December–January. MLD pattern during fall 2006 was significantly different from the climatology and was rather shallow during December–January both in the model and observation. An examination of mixed layer heat and salt budget suggested salinity freshening caused by the advective and vertical diffusive mixing to be the cause of shallow MLD.  相似文献   

15.
Seasonal evolution of surface mixed layer in the Northern Arabian Sea (NAS) between 17° N–20.5° N and 59° E-69° E was observed by using Argo float daily data for about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by 2.3 °C and ocean gained an average of 99.8 Wm−2. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low ∼18 Wm−2 and SST dropped by 3.4 °C. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by 1.5 °C and ocean lost an average of 52.5 Wm−2. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively high correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.  相似文献   

16.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   

17.
基于2004—2018年Argo (Array for Real-Time Geostrophic Oceanography)浮标观测的温度、盐度数据, 利用经验正交函数(EOF)分析和小波分析等方法对北印度洋(40°—105°E, 5°S—25°N)障碍层时空分布特征进行分析。结果显示: 北印度洋的东部常年存在障碍层, 而西部障碍层出现的概率相对较低; 较厚的障碍层出现在阿拉伯海东南部(67°—75°E, 3°—12°N)、孟加拉湾(82°—93°E, 11°—20°N)和赤道东印度洋(81°—102°E, 4°S—3°N)。阿拉伯海东南部和孟加拉湾障碍层厚度以年变化为主, 且呈同位相变化, 均为冬季最大, 夏季最小。赤道东印度洋区域则主要呈现半年周期变化, 在夏季和冬季各出现一次峰值。进一步分析表明, 孟加拉湾和赤道东印度洋障碍层厚度主要受等温层深度变化影响, 混合层深度变化对障碍层厚度变化的影响相对较小; 阿拉伯海障碍层厚度同时受等温层深度变化和混合层深度变化影响, 其中等温层深度变化对其影响更大。  相似文献   

18.
Understanding of the temporal variation of oceanic heat content(OHC) is of fundamental importance to the prediction of climate change and associated global meteorological phenomena. However, OHC characteristics in the Pacific and Indian oceans are not well understood. Based on in situ ocean temperature and salinity profiles mainly from the Argo program, we estimated the upper layer(0–750 m) OHC in the Indo-Pacific Ocean(40°S–40°N, 30°E–80°W). Spatial and temporal variability of OHC and its likely physical mechanisms are also analyzed. Climatic distributions of upper-layer OHC in the Indian and Pacific oceans have a similar saddle pattern in the subtropics, and the highest OHC value was in the northern Arabian Sea. However, OHC variabilities in the two oceans were different. OHC in the Pacific has an east-west see-saw pattern, which does not appear in the Indian Ocean. In the Indian Ocean, the largest change was around 10°S. The most interesting phenomenon is that, there was a long-term shift of OHC in the Indo-Pacific Ocean during 2001–2012. Such variation coincided with modulation of subsurface temperature/salinity. During 2001–2007, there was subsurface cooling(freshening)nearly the entire upper 400 m layer in the western Pacific and warming(salting) in the eastern Pacific. During2008–2012, the thermocline deepened in the western Pacific but shoaled in the east. In the Indian Ocean, there was only cooling(upper 150 m only) and freshening(almost the entire upper 400 m) during 2001–2007. The thermocline deepened during 2008–2012 in the Indian Ocean. Such change appeared from the equator to off the equator and even to the subtropics(about 20°N/S) in the two oceans. This long-term change of subsurface temperature/salinity may have been caused by change of the wind field over the two oceans during 2001–2012, in turn modifying OHC.  相似文献   

19.
副热带东北太平洋混合层深度及其对潜沉的影响   总被引:1,自引:0,他引:1  
The present climate simulations of the mixed layer depth(MLD) and the subduction rate in the subtropical Northeast Pacific are investigated based on nine of the CMIP5 models. Compared with the observation data,spatial patterns of the MLD and the subduction rate are well simulated in these models. The spatial pattern of the MLD is nonuniform, with a local maximum MLD(140 m) region centered at(28°N, 135°W) in late winter. The nonuniform MLD pattern causes a strong MLD front on the south of the MLD maximum region, controls the lateral induction rate pattern, and then decides the nonuniform distribution of the subduction rate. Due to the inter-regional difference of the MLD, we divide this area into two regions. The relatively uniform Ekman pumping has little effect on the nonuniform subduction spatial pattern, though it is nearly equal to the lateral induction in values. In the south region, the northward warm Ekman advection(–1.75×10~(–7) K/s) controls the ocean horizontal temperature advection(–0.85×10~(–7) K/s), and prevents the deepening of the MLD. In the ensemble mean, the contribution of the ocean advection to the MLD is about –29.0 m/month, offsetting the sea surface net heat flux contribution(33.9 m/month). While in the north region, the southward cold advection deepens the MLD(21.4 m/month) as similar as the heat flux(30.4 m/month). In conclusion, the nonuniform MLD pattern is dominated by the nonuniform ocean horizontal temperature advection. This new finding indicates that the upper ocean current play an important role in the variability of the winter MLD and the subduction rate.  相似文献   

20.
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号