首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved gaseous mercury (DGM) was measured continuously using two newly developed techniques and a manual technique. The continuous techniques were based on the equilibrium between the aqueous and gaseous phase (DGM = Hgextr / H', Hgextr is the measured mercury concentration in the gas phase, H' is the Henry's Law coefficient at the desired temperature). In order to calculate the annual mercury evasion from the Mediterranean Sea, diurnal and seasonal measurements of DGM, total gaseous mercury in air (TGM), water temperature and wind speed were performed. During August 2003, March–April 2004 and October–November 2004 measurements of these parameters were conducted on board the RV Urania. The continuous measurements of DGM showed a diurnal variation in concentration, at both coastal and off shore sites, with higher concentrations during daytime than nighttime. The concentration difference could be as large as 130 fM between day and night. The degree of saturation was calculated directly from the measurements, S = Hgextr / TGM and was found to vary between the different seasons. The highest average degree of saturation (850%) and the largest variation in saturation (600–1150%) was observed during the summer. The spring showed the lowest variation (260–360%) and the lowest average degree of saturation (320%). The autumn also showed a large variation in saturation (500–1070%) but a lower average (740%) compared to the summer cruise. This might be explained by the temperature difference between the different seasons, since that parameter varied the most. The flux from the sea surface was calculated using the gas exchange model developed by Nightingale et al. [Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., Upstill-Goddard, R. C., 2000. In situ evaluation of air–sea gas exchange parameterization using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1):373–387]. The evasion varied between the different seasons with the highest evasion during the autumn, 24.6 pmol m− 2 h− 1. The summer value was estimated to 22.3 pmol m− 2 h− 1 and the spring to 7.6 pmol m− 2 h− 1. Using this data the yearly evasion from the Mediterranean Sea surface was estimated to 77 tons.  相似文献   

2.
During an almost three months long expedition in the Arctic Ocean, the Beringia 2005, dissolved gaseous mercury (DGM) was measured continuously in the surface water. The DGM concentration was measured using an equilibrium system, i.e. the DGM in the water phase equilibrated with a stream of gas and the gas was thereafter analysed with respect to its mercury content. The DGM concentrations were calculated using the following equation, DGM = Hgeq / kH' where Hgeq is the equilibrated concentration of elemental mercury in the gas phase and kH' is the dimensionless Henry's law constant at desired temperature and salinity. During the expedition several features were observed. For example, enhanced DGM concentration was measured underneath the ice which may indicate that the sea ice acted as a barrier for evasion of mercury from the Arctic Ocean to the atmosphere. Furthermore, elevated DGM concentrations were observed in water that might have originated from river discharge. The gas-exchange of mercury between the ocean and the atmosphere was calculated in the open water and both deposition and evasion were observed. The measurements showed significantly enhanced DGM concentrations, compared to more southern latitudes.  相似文献   

3.
Mercury speciation and its distribution in surface and deep waters of the Mediterranean Sea were studied during two oceanographic cruises on board the Italian research vessel URANIA in summer 2003 and spring 2004 as part of the Med Oceaneor and MERCYMS projects. The study included deep water profiles of dissolved gaseous Hg (DGM), reactive Hg (RHg), total Hg (THg), monomethyl Hg (MeHg) and dimethyl Hg (DMeHg) in open ocean waters. Average concentrations of measured Hg species were characterized by seasonal and spatial variations. Overall average THg concentrations ranged between 0.41 and 2.65 pM (1.32 ± 0.48 pM) and were comparable to those obtained in previous studies of the Mediterranean Sea. A significant fraction of Hg was present as “reactive” Hg (average 0.33 ± 0.32 pM). Dissolved gaseous Hg (DGM), which consists mainly of Hg0, represents a considerable proportion of THg (average 20%, 0.23 ± 0.11 pM). The portion of DGM typically increased towards the bottom, especially in areas with strong tectonic activity (Alboran Sea, Strait of Sicily, Tyrrhenian Sea), indicating its geotectonic origin. No dimethyl Hg was found in surface waters down to the depth of 40 m. Below this depth, its average concentration was 2.67 ± 2.9 fM. Dissolved fractions of total Hg and MeHg were measured in filtered water samples and were 0.68 ± 0.43 pM and 0.29 ± 0.17 pM for THg and MeHg respectively. The fraction of Hg as MeHg was in average 43%, which is relatively high compared to other ocean environments. The concentrations reported in this study are among the lowest found in marine environments and the quality of analytical methods are of key importance. Speciation of Hg in sea water is of crucial importance as THg concentrations alone do not give adequate data for understanding Hg sources and cycling in marine environments. For example, photoinduced transformations are important for the presence of reactive and elemental mercury in the surface layers, biologically mediated reactions are important for the production/degradation of MeHg and DGM in the photic zones of the water column, and the data for DGM in deep sea indicate the natural sources of Hg in geotectonicaly active areas of the Mediterranean Sea.  相似文献   

4.
To estimate the influence of mercury emitted from submarine fumaroles, the horizontal and vertical distribution of mercury in sediment of Kagoshima Bay was studied. The fumaroles are located in the northern bay head area, and the sediment samples had been taken from 52 points throughout the bay with a gravity core sampler. The core samples obtained were cut at a thickness of 1–2 cm and used for measurements. The total concentration of mercury in surface sediment in the northern and central areas of the bay was 51–679 μg kg− 1 (average 199 μg kg− 1, n = 22) and 23–100 μg kg− 1 (average 55 μg kg− 1, n = 30), respectively. The highest value was obtained in the vicinity of the fumaroles. The mercury concentration in sediment near the fumaroles varied with depth, which may reflect the variation in fumarolic activity. A successive extraction method was applied to the speciation of mercury in the sediment. The results showed that sediment taken in the vicinity of submarine fumaroles contained a higher percentage of mercury bound with organic matter.  相似文献   

5.
In situ experiments using isotopically labeled mercury species (199Hg(II) and Me201Hg) are used to investigate mercury transformation mechanisms, such as methylation, demethylation and reduction, in coastal and marine surface waters of the Mediterranean Sea. The aim of this work is to assess the relative contribution of photochemical versus biological processes to Hg transformation mechanisms. For this purpose, potential transformation rates measured under diurnal and dark incubation conditions are compared with major biogeochemical parameters (i.e. hydrological and biological data) in order to obtain the relative contribution of various biotic and abiotic mechanisms in both surface (high light) and bottom (low light) waters of the euphotic zone. The results demonstrate that coastal and marine euphotic zones are significant reactors for all Hg transformations investigated (i.e. methylation, demethylation, reduction). A major outcome demonstrates that Hg methylation is taking place in oxic surface seawater (0.3–6.3% day− 1) and is mainly influenced by pelagic microorganism abundance and activities (phyto- and bacterioplankton). This evidences a new potential MeHg source in the marine water column, especially in oligotrophic deep-sea basins in which biogeochemistry is mostly governed by heterotrophic activity. For coastal and marine surface waters, although MeHg is mainly photochemically degraded (6.4–24.5% day− 1), demethylation yields observed under dark condition may be attributed to microbial or chemical pathways (2.8–10.9% day− 1). Photoreduction and photochemical reactions are the major mechanisms involved in DGM production for surface waters (3.2–16.9% day− 1) but bacterial or phytoplanktonic reduction of Hg(II) cannot be excluded deeper in the euphotic zone (2.2–12.3% day− 1). At the bottom of the euphotic zone, photochemical processes are thus avoided due to the attenuation of UV-visible sunlight radiation allowing biotic processes to be the most significant. These results suggest a new potential route for Hg species cycling in surface seawater and especially at the maximum biomass depth located at the bottom of the euphotic zone (i.e. maximum chlorophyll fluorescence). In this environment, DGM production and demethylation mechanisms are thus probably reduced whereas Hg methylation is enhanced by autotrophic and heterotrophic processes. Experimental results on mercury species uptake during these investigations further evidenced the strong affinity of MeHg for biogenic particles (i.e. microorganisms) that correspond to the first trophic level of the pelagic food web.  相似文献   

6.
In Tokyo Bay the concentrations of dissolved gaseous mercury (DGM) in the surface seawater and total gaseous mercury (TGM) over the sea were measured during December 2003, October 2004 and January 2005. Based on these data, the evasional fluxes of mercury from the sea surface were estimated using a gas exchange model. In addition, an automatic wet and dry deposition sampler was used to measure the wet and dry depositional fluxes of mercury from December 2003 to November 2004 at three locations in and near Tokyo Bay. The results indicate that the average DGM and TGM levels of seven locations are 52 ± 26 ng m−3 and 1.9 ± 0.6 ng m−3, respectively, which shows that the surface seawater in Tokyo Bay is supersaturated with gaseous mercury, leading to an average mercury evasional flux of 140 ± 120 ng m−2d−1. On the other hand, the annual average wet and dry depositional fluxes of mercury at three locations were 19 ± 3 μg m−2yr−1 and 20 ± 9 μg m−2yr−1, respectively. These depositional fluxes correspond to the daily average total depositional flux of 110 ± 20 ng m−2d−1. Thus, it is suggested that in Tokyo Bay, the evasional fluxes of mercury are comparable to the depositional fluxes.  相似文献   

7.
A ten-year data set for fetch- and depth-limited wave growth   总被引:1,自引:0,他引:1  
This paper presents the key results from a ten-year data set for Lake IJssel and Lake Sloten in The Netherlands, containing information on wind, storm surges and waves, supplemented with SWAN 40.51 wave model results. The wind speeds U10, effective fetches x and water depths d for the data set ranged from 0–24 m s 1, 0.8–25 km and 1.2–6 m respectively. For locations with non-sloping bottoms, the range in non-dimensional fetch x? ( = gxU10 2) was about 25–80,000, while the range in dimensionless depth d? ( = g d U10 2) was about 0.03–1.7. Land–water wind speed differences were much smaller than the roughness differences would suggest. Part of this seems due to thermal stability effects, which even play a role during near-gale force winds. For storm surges, a spectral response analysis showed that Lake IJssel has several resonant peaks at time scales of order 1 h. As for the waves, wave steepnesses and dimensionless wave heights H? ( = gHm0U10 2) agreed reasonably well with parametric growth curves, although there is no single curve to which the present data fit best for all cases. For strongly depth-limited waves, the extreme values of d? (0.03) and Hm0 / d (0.44) at the 1.7 m deep Lake Sloten were very close to the extremes found in Lake George, Australia. For the 5 m deep Lake IJssel, values of Hm0 / d were higher than the depth-limited asymptotes of parametric wave growth curves. The wave model test cases of this study demonstrated that SWAN underestimates Hm0 for depth-limited waves and that spectral details (enhanced peak, secondary humps) were not well reproduced from Hm0 / d = 0.2–0.3 on. SWAN also underestimated the quick wave response (within 0.3–1 h) to sudden wind increases. For the remaining cases, the new [Van der Westhuysen, A.J., Zijlema, M., and Battjes, J.A., 2007. Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water, Coast. Eng., 54, 151–170] SWAN physics yielded better results than the standard physics of Komen, G.J., Hasselmann, S., Hasselmann, K., 1984. On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14, 1271–1285, except for persistent overestimations that were found for short fetches. The present data set contains many interesting cases for detailed model validation and for further studies into the evolution of wind waves in shallow lakes.  相似文献   

8.
The annual total and organic mercury bioaccumulation pattern of Scrobicularia plana and Hediste diversicolor was assessed to evaluate the potential mercury transfer from contaminated sediments to estuarine food webs. S. plana was found to accumulate more total and organic mercury than H. diversicolor, up to 0.79 mg kg−1 and 0.15 mg kg−1 (wet weight) respectively, with a maximum annual uptake of 0.21 mg kg−1 y−1, while for methylmercury the annual accumulation was similar between species and never exceeded 0.045 mg kg−1 y−1. The higher organic mercury fraction in H. diversicolor is related to the omnivorous diet of this species. Both species increase methylmercury exposure by burrowing activities and uptake in anoxic, methylmercury rich sediment layers. Integration with the annual biological production of each species revealed mercury incorporation rates that reached 28 μg m−2 y−1, and to extract as much as 11.5 g Hg y−1 (of which 95% associated with S. plana) in the 0.4 km2 of the most contaminated area, that can be transferred to higher trophic levels. S. plana is therefore an essential vector in the mercury biomagnification processes, through uptake from contaminated sediments and, by predation, to transfer it to economically important and exploited estuarine species.  相似文献   

9.
Dissolved Fe, Mn and Al concentrations (dFe, dMn and dAl hereafter) in surface waters and the water column of the Northeast Atlantic and the European continental shelf are reported. Following an episode of enhanced Saharan dust inputs over the Northeast Atlantic Ocean prior and during the cruise in March 1998, surface concentrations were enhanced up to 4 nmol L− 1 dFe, 3 nmol L− 1 dMn and 40 nmol L− 1 dAl and returned to 0.6 nmol L− 1 dFe, 0.5 nmol L− 1 dMn and 10 nmol L− 1 dAl towards the end of the cruise three weeks later. A simple steady state model (MADCOW, [Measures, C.I., Brown, E.T., 1996. Estimating dust input to the Atlantic Ocean using surface water aluminium concentrations. In: Guerzoni. S. and Chester. R. (Eds.), The impact of desert dust across the Mediterranean, Kluwer Academic Publishers, The Netherlands, pp. 301–311.]) was used which relies on surface ocean dAl as a proxy for atmospheric deposition of mineral dust. We estimated dust input at 1.8 g m− 2 yr− 1 (range 1.0–2.9 g m− 2 yr− 1) and fluxes of dFe, dMn and dAl were inferred. Mixed layer steady state residence times for dissolved metals were estimated at 1.3 yr for dFe (range 0.3–2.9 yr) and 1.9 yr for dMn (range 1.0–3.8 yr). The dFe residence time may have been overestimated and it is shown that 0.2–0.4 yr is probably more realistic. Using vertical dFe versus Apparent Oxygen Utilization (AOU) relationships as well as a biogeochemical two end member mixing model, regenerative Fe:C ratios were estimated respectively to be 20 ± 6 and 22 ± 5 μmol Fe:mol C. Combining the atmospheric flux of dFe to the upper water column with the latter Fe:C ratio, a ‘new iron’ supported primary productivity of only 15% (range 7%–56%) was deduced. This would imply that 85% (range 44–93%) of primary productivity could be supported by regenerated dFe. The open ocean surface data suggest that the continental shelf is probably not a major source of dissolved metals to the surface of the adjacent open ocean. Continental shelf concentrations of dMn, dFe, and to a lesser extent dAl, were well correlated with salinity and express mixing of a fresher continental end member with Atlantic Ocean water flowing onto the shelf. This means probably that diffusive benthic fluxes did not play a major role at the time of the cruise.  相似文献   

10.
Bacterial productivity (BP) and respiration (BR) were examined in relation to primary productivity (PP) for the first time in a shallow tropical ecosystem (Cochin Estuary), India. The degree of dependence of BP (6.3–199.7 μg C L−1 d−1) and BR (6.6–430.4 μg C L−1 d−1) on PP (2.1–608.0 μg C L−1 d−1) was found to be extremely weak. The BP/PP (0.05–8.5) and PP/BR (0.02–7.9) ratios widely varied in the estuary depending on the season and location. There was a seasonal shift in net pelagic production from autotrophy to heterotrophy due to terrestrial organic matter input through rivers which enhanced the bacterial heterotrophic activity and very high pCO2 (106–6001 μatm) levels. The heterotrophic zones were characterized by low PP but high bacterial production and respiration leading to oxygen undersaturation and exceptionally high pCO2. We propose that the CO2 supersaturation caused by increased bacterial respiration (in excess of PP) was a result of bacterial degradation of allochthonous organic matter. This indicates that sources other than planktonic compartment need to be explored to understand the C-cycling in this estuary. These results are of particular relevance to tropical ecosystems in general, where the bulk of world's river discharges occur.  相似文献   

11.
Estuarine turbidity maxima (ETMs) are sites of intense mineralisation of land-derived particulate organic matter (OM), which occurs under oxic/suboxic oscillating conditions owing to repetitive sedimentation and resuspension cycles at tidal and neap-spring time scales. To investigate the biogeochemical processes involved in OM mineralisation in ETMs, an experimental set up was developed to simulate in vitro oxic/anoxic oscillations in turbid waters and to follow the short timescale changes in oxygen, carbon, nitrogen, and manganese concentration and speciation. We present here the results of a 27-day experiment (three oxic periods and two anoxic periods) with an estuarine fluid mud from the Gironde estuary. Time courses of chemical species throughout the experiment evidenced the occurrence of four distinct characteristic periods with very different properties. Steady oxic conditions were characterised by oxygen consumption rates between 10 and 40 μmol L−1 h−1, dissolved inorganic carbon (DIC) production of 9–12 μmol L−1 h−1, very low NH4+ and Mn2+ concentrations, and constant NO3 production rates (0.4 - 0.7 μmol L−1 h−1) due to coupled ammonification and nitrification. The beginning of anoxic periods (24 h following oxic to anoxic switches) showed DIC production rates of 2.5–8.6 μmol L−1 h−1 and very fast NO3 consumption (5.6–6.3 μmol L−1 h−1) and NH4+ production (1.4–1.5 μmol L−1 h−1). The latter rates were positively correlated to NO3 concentration and were apparently caused by the predominance of denitrification and dissimilatory nitrate reduction to ammonia. Steady anoxic periods were characterised by constant and low NO3 concentrations and DIC and NH4+ productions of less than 1.3 and 0.1 μmol L−1 h−1, respectively. Mn2+ and CH4 were produced at constant rates (respectively 0.3 and 0.015 μmol L−1 h−1) throughout the whole anoxic periods and in the presence of nitrate. Finally, reoxidation periods (24–36 h following anoxic to oxic switches) showed rapid NH4+ and Mn2+ decreases to zero (1.6 and 0.8–2 μmol L−1 h−1, respectively) and very fast NO3 production (3 μmol L−1 h−1). This NO3 production, together with marked transient peaks of dissolved organic carbon a few hours after anoxic to oxic switches, suggested that particulate OM mineralisation was enhanced during these transient reoxidation periods. An analysis based on C and N mass balance suggested that redox oscillation on short time scales (day to week) enhanced OM mineralisation relative to both steady oxic and steady anoxic conditions, making ETMs efficient biogeochemical reactors for the mineralisation of refractory terrestrial OM at the land-sea interface.  相似文献   

12.
Transplant trials of the seagrass Posidonia australis were carried out after loss of seagrasses following eutrophication and increased turbidity in two marine inlets on the south coast of Western Australia. A pilot study in Oyster Harbour measured survival and growth in situ for 4 years. Long-term survival rates were high (96–98%), providing plants were anchored into the sediment. All unanchored plants were lost in the first winter. Following the success of the pilot study, a more comprehensive program began 3 years later with over 500 transplant units collected from either actively growing edges of nearby patches (plagiotropic growth form) or within established meadows (orthotropic growth form). Transplant units from edges expanded at a faster rate compared to units from mid-meadow but increases in shoot numbers were similar. Growth rates in the first 2.5 years averaged 10–20 cm yr−1 horizontal rhizome extension, depending on the source of the transplant units, and 4–12 shoots per initial shoot yr−1, depending on the initial shoot number of the transplant unit. After 5 years, shoot numbers of individual transplants were similar to shoot densities recorded for natural meadows, >500 shoots m−2. Approximately, 10% of transplants from mid-meadow flowered in the first year, whereas transplants from edges flowered only after 5 years.  相似文献   

13.
We examined the carbonate system, mainly the partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC) and total alkalinity (TAlk) in the Changjiang (Yangtze) River Estuary based on four field surveys conducted in Sep.–Oct. 2005, Dec. 2005, Jan. 2006 and Apr. 2006. Together with our reported pCO2 data collected in Aug.–Sep. 2003, this study provides, for the first time, a full seasonal coverage with regards to CO2 outgassing fluxes in this world major river–estuarine system. Surface pCO2 ranged 650–1440 μatm in the upper reach of the Changjiang River Estuary, 1000–4600 μatm in the Huangpujiang River, an urbanized and major tributary of the Changjiang downstream which was characterized by a very high respiration rate, and 200–1000 μatm in the estuarine mixing zone. Both DIC and TAlk overall behaved conservatively during the estuarine mixing, and the seasonal coverage of these carbonate parameters allowed us to estimate the annual DIC export flux from the Changjiang River as ∼ 1.54 × 1012 mol. The highly polluted Huangpujiang River appeared to have a significant impact on DIC, TAlk and pCO2 in the lower reaches of the inner estuary. CO2 emission flux from the main stream of the Changjiang Estuary was at a low level of 15.5–34.2 mol m− 2 yr− 1. Including the Huangpujiang River and the adjacent Shanghai inland waters, CO2 degassing flux from the Changjiang Estuary may have represented only 2.0%–4.6% of the DIC exported from the Changjiang River into the East China Sea.  相似文献   

14.
We used non-destructive methods to study the bi-monthly changes in standing stock, turnover, and net aerial primary productivity (NAPP) of Spartina alterniflora in the Bahía Blanca Estuary, Argentina, from 2005 to 2007. Tillers were tagged and counted bimonthly and a weight:height relationship developed for the live and dead stems in a regularly flooded zone (low marsh, LM) and an irregularly flooded one (high marsh, HM). The annual tiller natality in year one compared to year two decreased from 440 ± 68 to 220 ± 58 new individuals m–2 yr–1 in the HM and from 500 ± 103 to 280 ± 97 new individuals m−2 yr−1 in the LM (μ ± 1 SE). Tiller mortality averaged 670 ± 70 individuals m−2 yr−1.  相似文献   

15.
Fluxes of dissolved forms of iron and manganese across the sediment–water interface were studied in situ in the Gulf of Finland and the Vistula Lagoon (Baltic Sea), and in the Golubaya Bay (Black Sea) from 2001 to 2005. Fluxes were measured using chamber incubations, and sediment cores were collected and sliced to assess the porewater and solid phase metal distribution at different depths. Measured and calculated benthic fluxes of manganese and iron were directed out of sediment for all sites and were found to vary between 70–4450 and 5–1000 µmole m− 2 day− 1 for manganese and iron, respectively. The behavior of the studied metals at various redox conditions in the near-bottom water and in the sediment was the main focus in this study. Our results show the importance of bottom water redox conditions for iron fluxes. We measured no fluxes at oxic conditions, intermediate fluxes at anoxic conditions (up to 200 μmole m− 2 day− 1) and high fluxes at suboxic conditions (up to 1000 μmole m− 2 day− 1). Total dissolved iron fluxes were generally dominated by iron(II). Contribution of iron(III) to the total iron flux did not exceed 20%. Obtained fluxes of manganese at all studied regions showed a linear correlation (r2 = 0.97) to its concentration in the porewater of the top sediment layer (0–5 mm) and did not depend on dissolved oxygen concentrations of bottom water. Organically complexed iron and manganese were in most cases not involved in the benthic exchange processes.  相似文献   

16.
Toward assessing the biogeochemical significance of seaweeds in relation to dissolved iodine in seawater, the effect of whole seaweeds (Laminaria digitata and Fucus serratus) upon iodide and iodate, at essentially natural concentrations, has been studied. The weeds were carefully removed from the sub-littoral zone of the Menai Straits and exposed to iodide and iodate at their natural temperature (6 °C), but under continuous illumination. Laminaria digitata was found to decrease the concentration of iodate with an exponential rate constant of 0.008–0.24 h−1. This is a newly discovered process which, if substantiated, will require an entirely new mechanism. Generally, apparent iodide concentration increased except in a run with seawater augmented with iodide, where it first decreased. The rate constant for loss of iodide was 0.014–0.16 h−1. Meanwhile, F. serratus was found not to decrease iodate concentrations, as did L. digitata. Indeed, after ∼30 h iodate concentrations increased, suggesting that the weed may take in iodide before oxidising and releasing it. If substantiated, this finding may offer a way into one of the most elusive of processes within the iodine cycle – iodide oxidation. With both seaweeds sustained long-term increases of apparent iodide concentration are most easily explained as a secretion by the weeds of organic matter which is capable of reducing the Ce(IV) reagent used in determination of total iodine. Modelling of the catalytic method used is provided to support this contention. The possibility of developing this to measure the strain that seaweeds endure in this kind of biogeochemical flux experiment is discussed. A Chemical Oxygen Demand type of approach is applied using Ce(IV) as oxidant. The results of the iodine experiments are contrasted with the several investigations of 131I interaction with seaweeds, which have routinely used discs of weed cut from the frond. It is argued that experiments conducted with stable iodine may measure a different variable to that measured in radio-iodine experiments.  相似文献   

17.
In-situ measurements of benthic fluxes of oxygen and nutrients were made in the subtidal region of the Mandovi estuary during premonsoon and monsoon seasons to understand the role of sediment–water exchange processes in the estuarine ecosystem. The Mandovi estuary is a shallow, highly dynamic, macrotidal estuary which experiences marine condition in the premonsoon season and nearly fresh water condition in the monsoon season. The benthic flux of nutrients exhibited strong seasonality, being higher in the premonsoon compared to the monsoon season which explains the higher ecosystem productivity in the dry season in spite of negligible riverine nutrient input. NH4+ was the major form of released N comprising 70–100% of DIN flux. The benthic respiration rate varied from −98.91 to −35.13 mmol m−2 d−1, NH4+ flux from 5.15 to 0.836 mmol m−2 d−1, NO3 + NO2 from 0.06 to −1.06 mmol m−2 d−1, DIP from 0.12 to 0.23 mmol m−2 d−1 and SiO44− from 5.78 to 0.41 mmol m−2 d−1 between premonsoon to monsoon period. The estuarine sediment acted as a net source of DIN in the premonsoon season, but changed to a net sink in the monsoon season. Variation in salinity seemed to control NH4+ flux considerably. Macrofaunal activities, especially bioturbation, enhanced the fluxes 2–25 times. The estuarine sediment was observed to be a huge reservoir of NH4+, PO43− and SiO44− and acted as a net sink of combined N because of the high rate of benthic denitrification as it could remove 22% of riverine DIN influx thereby protecting the eco system from eutrophication and consequent degradation. The estuarine sediment was responsible for ∼30–50% of the total community respiration in the estuary. The benthic supply of DIN, PO43− and SiO44− can potentially meet 49%, 25% and 55% of algal N, P and Si demand, respectively, in the estuary. Based on these observations we hypothesize that it is mainly benthic NH4+ efflux that sustains high estuarine productivity in the NO3 depleted dry season.  相似文献   

18.
The continental shelf off central Chile is subject to strong seasonal coastal upwelling and has been recognized as an important outgassing area for, amongst others, N2O, an important greenhouse gas. Several physical and biogeochemical variables, including N2O, were measured in the water column from August 2002 to January 2007 at a time series station in order to characterize its temporal variability and elucidate the physical and biogeochemical mechanisms affecting N2O levels. This 4-year time series of N2O levels reveals seasonal variability associated basically with hydrographic and oceanographic regimes (i.e., upwelling and non-upwelling). However, a noteworthy temporal evolution of both the vertical distribution and N2O levels was observed repeatedly throughout the entire study period, allowing us to distinguish three stages: winter/early spring (Stage I), mid-spring/mid-summer (Stage II), and late summer/early autumn (Stage III).Stage I presents low N2O, the lowest surface saturation ever registered (from 64% saturation) in a period of high O2, and a homogeneous column driven by strong wind; this distribution is explained by physical and thermodynamic mechanisms. Stage II, with increasing N2O concentrations, agrees with the appearance of upwelling-favourable wind stress and a strong influence of oxygen-poor, nutrient-rich equatorial subsurface waters (ESSW). The N2O build-up creates a “hotspot” (up to 2426% N2O saturation) and enhanced concentrations of (up to 3.97 μM) and (up to 4.6 μM) at the oxycline (4-28 μM) (∼20-40 m depth). Although the dominant N2O sources could not be determined, denitrification (mainly below the oxycline) appears to be the dominant process in N2O accumulation. Stage III, with diminishing N2O concentrations from mid-summer to early autumn, was accompanied by low N/P ratios. During this stage, strong bottom N2O consumption (from 40% saturation) was suggested to be mainly driven by benthic denitrification.Consistent with the evolution of N2O in the water column over time, the estimated air-sea N2O fluxes were low or negative in winter (−9.8 to 20 μmol m−2 d−1, Stage I) and higher in spring and summer (up to 195 μmol m−2 d−1, Stage II), after which they declined (Stage III). In spite of the occurrence of ESSW and upwelling events throughout stages II and III, N2O behaviour should be a response of the biogeochemical evolution associated with biological productivity and concomitant O2 levels in the water and even in the sediments. The results presented herein confirm that the study area is an important source of N2O to the atmosphere, with a mean annual N2O flux of 30.2 μmol m−2 d−1; however, interannual variability could not yet be properly characterized.  相似文献   

19.
The range expansion patterns of Spartina alterniflora and the roles which sexual reproduction and asexual propagation play in range expansion were investigated at the Chongming Dongtan nature reserve in the Yangtze Estuary, China. Two range expansion patterns of S. alterniflora at its advancing fronts could be found (1) S. alterniflora–mudflat front (S–M) and (2) S. alternifloraScirpus mariqueter–mudflat front (S–S–M). One feature revealed by this study was that a flush of seedling recruitment and establishment in spring was a crucial way for S. alterniflora to colonize new habitats and achieve a fast rate of range expansion. The mean number of seedlings recruited at the S–M front was much higher than that at the S–S–M front. Once established, the survivorship of seedlings was high, both at the S–M and S–S–M fronts. The established seedlings formed new tussocks quickly by vegetative tillering and growth of rhizomes and these finally merged into dense meadows. The mean distance of range expansion of S. alterniflora, after one growing season at the S–M front, was 25.4 ± 3.1 m yr−1 and 2.7 ± 0.5 m yr−1 at the S–S–M front. Sexual reproduction by seedlings and asexual propagation by tillering and growth of rhizomes were the two main means by which S. alterniflora could maintain a fast rate of range expansion on the salt marshes of the Yangtze Estuary. The colonization behaviors of S. alterniflora on advancing fronts differed as a reaction to various external and internal factors. The impact of abiotic and biotic factors governing the range expansion of S. alterniflora and its implications for the spatial structure of tidal wetlands are discussed.  相似文献   

20.
The role of coastal lagoons and estuaries as sources or sinks of inorganic carbon in upwelling areas has not been fully understood. During the months of May–July, 2005, we studied the dissolved inorganic carbon system in a coastal lagoon of northwestern Mexico during the strongest period of upwelling events. Along the bay, different scenarios were observed for the distributions of pH, dissolved inorganic carbon (DIC) and apparent oxygen utilization (AOU) as a result of different combinations of upwelling intensity and tidal amplitude. DIC concentrations in the outer part of the bay were controlled by mixing processes. At the inner part of the bay DIC was as low as 1800 μmol kg−1, most likely due to high water residence times and seagrass CO2 uptake. It is estimated that 85% of San Quintín Bay, at the oceanic end, acted as a source of CO2 to the atmosphere due to the inflow of CO2-rich upwelled waters from the neighboring ocean with high positive fluxes higher than 30 mmol C m−2 d−1. In contrast, there was a net uptake of CO2 and HCO3 by the seagrass bed Zostera marina in the inner part of the bay, so the pCO2 in this zone was below the equilibrium value and slightly negative CO2 fluxes of −6 mmol C m−2 d−1. Our positive NEP and ΔDIC values indicate that Bahía San Quintín was a net autotrophic system during the upwelling season during 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号