首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Compared with traditional vacuum preloading, air booster vacuum preloading is more effective at strengthening dredged slurry and improving the consolidation process. Although many engineering practices have shown that the pressurized duration has a significant effect on the reinforcement effect, there is no standard available for determining the pressurized duration. In this study, five dredged slurry samples were tested to examine the effect of different pressurized durations on the consolidation. An extensive monitoring system was used to measure the vacuum pressure, pore water pressure, settlement, and water discharge during the test, while the water content and shear strength were measured after the test. The collected monitoring data were comprehensively analyzed to evaluate the reinforcement effect. The results revealed that the pressurization system can be used to reinforce deep dredged slurry and make the whole soil layer more homogeneous. If the pressurized duration is too short, the dissipation of pore water pressure is too little to achieve the pressurization effect. If the pressurized duration is too long, too much gas will be in the soil and enter the vacuum system, which will significantly reduce the vacuum pressure and thus the reinforcement effect. Based on these findings, the optimal pressurized duration was obtained.  相似文献   

2.
Abstract

Newly dredged fills feature a high moisture content and a high floating mud content. Based on the conventional vacuum preloading (CVP) method, this article presents a new method of air-booster vacuum preloading (AVP) to reinforce newly dredged fills for different air-booster periods (45, 60 and 90?min). Compared with other methods, this new method features no sand cushion and adopts a self-developed air-booster pipe and a water–air separation device. A series of laboratory model tests were performed to explore the effect of the improved AVP method for the enhancement of newly dredged fills. A comparison of variables monitored during reinforcement (vacuum pressure, surface settlement, water discharge and pore-water pressure) and after reinforcement (water content, vane shear strength, SEM and MIP) indicates that the reinforcement effect of the AVP method is superior to that of the CVP method; the former can effectively alleviate the problem of prefabricated vertical drain (PVD) clogging, greatly reducing engineering costs and significantly shortening construction periods.  相似文献   

3.
Consolidation occurs in estuarine marine clays for coastal reclamation by dissipation of the excess pore pressure, which is induced by increasing the total overburden stress during conventional mechanical surcharging. The excess pore pressure can be decreased usually by the use of several construction methods such as sand drain and paper drain. Besides the drain methods, vacuum can also be used in the soil mass to consolidate the estuarine marine clays by decreasing the pore pressure as well as increasing the effective stress.The study on vacuum consolidation is devoted so far mainly for laboratory model tests or numerical analysis in Korea. Recently, an instrumentation system was applied to manage the vacuum-applied consolidation on a field, in which a sewage disposal plant was constructed. While vacuum was applied, the behaviors of estuarine marine clays such as the settlement, lateral deformation and pore water pressure have been investigated precisely. The behavior of estuarine marine clays during vacuum-applied consolidation shows some difference from the behavior of estuarine marine clays in the case of conventional preloading. A principal difference is that the lateral deformation corresponding to settlement is smaller than before vacuum application even though the surcharge height has been increased.  相似文献   

4.
Reuse of dredged marine sediments for land reclamation is a sustainable method for disposing the large quantities of dredged spoil, accumulating every year worldwide. However, due to their high water content and low permeability, dewatering and self-sedimentation of the material takes a long time to be completed. Therefore, different methods, such as prefabricated vertical drains and vacuum preloading, are used to improve the consolidation properties of the dredged mud at the port of Brisbane. Among these stabilization methods, vacuum preloading is determined as the most effective method to increase the consolidation of the dredged mud. However, clogging during vacuum consolidation is undesirable. Therefore, electrokinetic stabilization draws attention since it is an environmentally friendly and time efficient method to dewater and consolidate dredged mud significantly. The effectiveness of the electrokinetic stabilization depends on the properties of the soil and the electrode configurations. One-dimensional and two-dimensional electrode configurations are the most popular configurations. In this study, the effect of one-dimensional electrode configuration, which is installation of electrodes in arrays of anodes and cathodes on consolidation parameters of dredged mud, is investigated. Based on this study, the dredged mud sediments can be stabilized using one-dimensional electrokinetic stabilization which resulted in improving compression index and coefficient of volume compressibility and reduction of soil plasticity index.  相似文献   

5.
1 .IntroductionTheZhapuPortissituatedonthenorthbankoftheHangzhouBay ,nearZhapuTowninPinghuCity ,Zhejiangprovince .Asthefirststepofconstruction ,reclamationwasaccomplishedinthehinter landoftheharbor.Theborderdikeofafulllengthof 1 2 71mislocatedinthetidalregionoftheHangzhouBay .ThepreliminarydesignofthisprojectwascompletedinJune 1 986 ,anditsconstructionbeganinJuly 1 986 ,andwascompletedinMarch 1 991 .TheseadikewasbuiltontheQ4marinedepositofsaturatedsoftclaywithathicknessofabout2 7mandgeo…  相似文献   

6.
This paper describes a full-scale test on a very soft clay ground around 70,000?m2, which is conducted in Huizhou of Guangdong Province, China, to present a new method of vacuum preloading method. A novel moisture separator was developed, which can automatically regulate the vacuum pressure variation by changing the volume of the gas inside it. A large quantity of water drained by the proposed moisture separators can be directly used as a surcharge loading, which would shorten the ground improvement time and save costs as well. Three levels of silt-prevention prefabricated vertical drains were used in the treating process to accelerate the consolidation. In addition, the vacuum preloading method also included an effective radial drainage device which would strengthen the dredged soft clay fill in a deep layer. In the in situ test, tens of piezometers and settlement plates were installed to measure the variations of excess pore water pressures and settlement of two stages of observation points at different positions in the ground. The results show that the largest average consolidation settlement was 314.1?cm and made a saving of more than 66% in power consumption compared with traditional method. It demonstrates that this adopted method is an efficient, cost-effective, and environmentally friendly method for improving sites with low bearing capacity and high compressibility soils.  相似文献   

7.
Although the uplift behavior of offshore plate anchors under undrained conditions has been investigated well in the past, studies on the behavior of anchors under long-term sustained loading are in relatively few numbers. The time required for consolidation under sustained load is important because the shear strength of soil changes after dissipation of excess pore pressure. In this paper, small strain finite-element analyses have been performed to investigate the consolidation time history above and beneath strip anchors. The modified cam clay plasticity constitutive model is used for modeling coupled pore fluid stress analysis. The effects of magnitude of preloading with embedment level have been studied. As expected, the FE results have shown that excess pore pressure dissipation time for soil above the anchor increased with the increase in embedment depth and the magnitude of preload. Rapid dissipation of negative excess pore pressure beneath the anchor was observed with increasing embedment depth, if the preload magnitude is equal to or more than 60% of the undrained capacity. Observed consolidation responses are presented as nondimensional design charts and simplified equations for ease of practice.  相似文献   

8.
Abstract

Air booster vacuum preloading method is a useful method for strengthening dredged slurry. Though this method is improved effectively with the rapidly developed technology, the problem of inadequate reinforcement in deep layers of soil is still in existence. In view of the fact that the pressurizing system can effectively enhance the reinforcement effect. Therefore, this paper discusses the reinforcement effect of a new pressurizing system that put the booster pipeline at the bottom of soil. Meanwhile, another problem is found that the booster pipeline type was single at present, the action effect of different kind of booster pipeline is still uncertain. In this paper, laboratory experiments are performed to investigate the influence of two kinds of pressurization position and two types of booster pipeline on the treatment of five dredged slurry samples. The test results showed that though the vertical pressurizing system can be good to reinforce the middle soil layers, but the bottom pressurizing system can make the whole soil layer more homogeneous. Furthermore, the difference of the two kinds of booster pipeline on the reinforcement effect of soil is not significant. These results provide good guidance for practical application of air booster vacuum preloading in land reclamation project.  相似文献   

9.
The risk of liquefaction and associated ground deformation may be reduced by using various ground-improvement methods, including the stone column technique. To examine the effects of stone columns, a shaking table experimental study using four models (two containing saturated sand and two containing stone column composite foundations) was conducted to measure the development and dissipation of excess pore water pressure and the acceleration response during a simulated earthquake. The test results demonstrate that the effectiveness of stone columns for mitigation of soil liquefaction during an earthquake depends on the following three aspects: (1) the densification of the surrounding soils; (2) drainage along the stone column; and (3) reduction in the total cyclic shear stress of the soil (because the cyclic shear stress is partially shared by the stone column). The first factor (the densification of the surrounding soils) is the most prominent factor among these three. The drainage and re-distribution of the shear stress can only develop fully for sand ground with a considerably higher density; thus, the effectiveness of the last two factors are only significant for dense sand ground.  相似文献   

10.
Studying sedimentation and consolidation of dredged slurry has significant implications to the design of storage yard and subsequent ground improvement. In this study, settling velocity of soil particles in dredged slurry during sedimentation and consolidation processes was investigated using an improved multilayer extraction sampling (MES) method. A series of sedimentation column tests were performed on dredged slurry with three different initial water contents. Distributions of volume of soil particles and density of dredged slurry were first obtained by the MES method, settling velocity of soil particles was then calculated by volume flux function approach. It was found that the density and velocity inflection points can be used to distinguish the settling zone and the consolidation zone. The experimental results reveal that the velocity of soil particles was quite low and monotonically decreased with sedimentation height at low initial water content throughout the whole test period, whereas it was increased at 0–1 hours and almost remained constant at 1–7 hours in the settling zone at high initial water content. The effects of initial water content on sedimentation and consolidation mode of dredged slurry and the settling velocity of soil particles were discussed. The relationship between settling velocity of soil particles and particle diameter was also studied. It is indicated that the measured velocity of soil particles was much lower than that calculated by the Stokes equation, and it was related to 0.4881–0.5906 order of particle diameter at 0–1 hours and 0.1117–0.1825 order of particle diameter at 1–7 hours for the test slurries.  相似文献   

11.
Istanbul, the largest city in Turkey and one of the major metropolitan areas in the world, cleaned one of its environmentally polluted areas—Golden Horn—by dredging 5 million m3 of the bottom sediments and pumping the resulting sludge to a storage area behind a dam built at an abandoned rock quarry site in Alibey district. The reclamation of the land that formed over the storage area of Golden Horn dredged material is socially and economically very desirable. In this paper, results from experimental studies that are focused on determining the shear strength behavior of the dredge material and undisturbed soil are presented. Slurry consolidometer test, large model tests and small model tests are used to consolidate the dredged soil samples from Halic to simulate the natural consolidation behavior of these soils. Shear strength parameters are determined by laboratory vane tests; unconfined compression tests; undrained-unconsolidated (UU) and consolidated-undrained (CU) triaxial tests on samples that are obtained through in situ undisturbed samples and laboratory model tank and slurry consolidation. Moreover, the effects of fly ash and lime additives on the undrained shear strength were determined by mixing the materials with the dredged clay from Golden Horn during the model experiments conducted in the laboratory. Based on these findings, equations are proposed that govern the relationships between undrained shear strength and water content value.  相似文献   

12.
The shear strength properties of sediments are relevant to many practical problems, including those related to predicting the bearing capacity of the man-made crust lying over dredged disposal sites and those associated with estimating the erosion resistance and the bearing capacity of sediments. In this study, an experimental apparatus and method is developed for sedimentation. This apparatus consists of a settling column, pore measurement apparatus, shear vane apparatus, and multilayer extraction sampling apparatus. The change regulation of interface height, density, excess pore pressure, peak undrained shear strength, residual undrained shear strength, and sensitivity varies before and after the excess pore pressure dissipates to zero in the self-weight consolidation stage. The higher the water content, the greater the particle segregation degree. Particles are mainly segregated in the settling stage, and they are not segregated further in the self-weight consolidation stage. Before excess pore pressure dissipates to zero in the self-weight consolidation stage, shear strength is related to water content, effective stress, and the formed structure of sediments. After excess pore pressure dissipates to zero, peak undrained shear strength is mainly associated with the structure (thixotropy) of sediments. Residual undrained shear strength increases because of the slight decrease in water content. The mechanisms of thixotropy can be expressed as the increase in the original and curing cohesions of sediments with time as determined from microscopic aspects.  相似文献   

13.
As a rapid and effective ground improvement method is urgently required for the booming land reclamation in China's coastal area, this study proposes a new combined method of electroosmosis, vacuum preloading and surcharge preloading. A new type of electrical prefabricated vertical drain (ePVD) and a new electroosmotic drainage system are suggested to allow the application of the new method. This combined method is then field-tested and compared with the conventional vacuum combined with surcharge preloading method. The monitoring and foundation test results show that the new method induces a settlement 20% larger than that of the conventional vacuum combined with surcharge preloading method in the same treatment period, and saves approximately half of the treatment time compared with the vacuum combined with surcharge preloading method according to the finite element prediction of the settlement. The proposed method also increases the vane shear strength of the soil significantly. The bearing capacity of the ground improved by use of the new proposed method raises 118%. In comparison, there is only a 75% rise when using the vacuum combined with surcharge preloading method during the same reinforcement period. All results indicate that the proposed combined method is effective and suitable for reinforcing the soft clay ground. Besides, the voltage applied between the anode and cathode increases exponentially versus treatment time when the output current of power supplies is kept constant. Most of the voltage potential in electroosmosis is lost at electrodes, leaving smaller than 50% of the voltage to be effectively transmitted into the soil.  相似文献   

14.
Abstract

To achieve the rapid dewatering of dredged sludge, the flocculation–vacuum-preloading method was tested indoors. In this study, the optimal mixing ratio of six flocculants was determined through the settling column test, and then the proposed method was tested. The water drainage and settlement were monitored during the test, while the soil moisture content and shear strength were measured after the test. The results show that all the flocculants had an optimal mixing ratio, and the addition of 0.8% FeCl3 or 0.08% anionic polyacrylamide (APAM) in the sludge can better accelerate solid–liquid separation of the sludge. After the test, the water content in the sludge decreased from 140% to 60%. Compared with general vacuum preloading, the use of the proposed method increased the water drainage by 46.5% and 56.8% and decreased the soil volumes by 60.5% and 82.4% for FeCl3 and APAM, respectively. Moreover, the corresponding shear strength was increased from 10 to 14 and 17?kPa. In addition, the use of APAM increased the solidification rate of heavy metals in the sludge to more than 80%, effectively inhibiting the migration of heavy metals.  相似文献   

15.
Abstract

Liquefaction is a phenomenon developed in loose and saturated layers of sands subjected to dynamic or seismic loading, and often leads to excessive settlement and subsequent failures in structures. Several methods have been proposed to improve soil resistance against liquefaction, among which use of stone columns is one of the most applicable methods. In this research, the effect of stone columns with different geometries and arrangements on the liquefaction behaviour of loose and very loose saturated sands subjected to vibration is investigated using shaking table. Results of the experiments show that when using stone columns in sand layers, the level of maximum settlement is significantly reduced. Further, the presence of stone columns significantly reduces pore water pressure ratio. This further indicates that stone columns have a positive effect and reasonable performance, even in relatively strong earthquakes, provided that the number and cross-section of the columns are sufficient. In addition, stone columns reduce the pore water pressure dissipation time. Moreover, by increasing cross-sectional area and the number of columns, both pore water pressure and settlement decrease. Stone columns in loose sand have a greater effect on the reduction of pore water pressure compared to that of very loose sand.  相似文献   

16.
Abstract

Surcharge preloading consolidation of soft soils often implements a layer of fully arranged aggregate materials. The volume of drained water is abundant at the early stage of consolidation, but it reduces at middle and later stages, during which the fully arranged sand blanket will be a waste. In this investigation, a concept of distributed sand blankets is proposed to save aggregate materials. A series of finite element analyses have been performed on layered soils with distributed sand blankets. A mixed type of drainage boundary is assigned to a representative model, where a half sand blanket is perfectly pervious and a half width of soil among sand blankets is impervious. From parametric study, it has been found that a pave ratio between sand blankets and the total soil width can be selected in a range of 40%–60%, which will save aggregates by approximately 50% but cause an increase of consolidation time by less than 10%. For a fixed pave ratio, more evenly spaced sand strips with smaller width should be employed to optimize the design. The effectiveness of distributed sand blankets is not influenced by the anisotropy of hydraulic conductivity, elastic modulus, Poisson’s ratio, and thickness in multiple soil layers.  相似文献   

17.
Plastic vertical drainage is widely used in vacuum preloading for soft soil treatment. However, plastic vertical drainage has a number of disadvantages such as it only provides drainage paths in vertical directions and the distribution of soil strength is not uniform. A new technique, prefabricated vertical–horizontal drainage, was developed in this study to shorten the consolidation time of ultrasoft soil. Using one vertical drainage tube and four horizontal drainage tubes, prefabricated vertical–horizontal drainage provides drainage paths not only in vertical but also in horizontal directions. An analytical solution was derived to calculate the degree of soil consolidation when using the prefabricated vertical–horizontal drainage technique. Field tests were conducted to evaluate the effectiveness of prefabricated vertical–horizontal drainage and to verify the proposed analytical solution. It was found that consolidation time of soft clays using prefabricated vertical–horizontal drainage was 50% lower than plastic vertical drainage. Moreover, the average undrained shear strength of soil treated by the prefabricated vertical–horizontal drainage technique was approximately 30% larger than that treated by the plastic vertical drainage technique. The degree of soil consolidation estimated from the proposed analytical solution showed good agreement with field measurements. This implies that the proposed analytical solution can be used to directly estimate the degree of consolidation when the soil is treated by prefabricated vertical–horizontal drainage.  相似文献   

18.
选用近海分布广泛的粉土为研究对象,利用动三轴压缩试验结果得到了动荷载作用下粉土的应力-应变关系、孔压发展模式及动强度与临界循环次数之间的关系;探讨固结围压和固结比对粉土动力学性质的影响。动力学试验结果表明,动剪切模量随着固结围压的增大而增大,动阻尼比随动剪应变幅的变化关系受围压影响不大;不同围压对动剪应力的比值影响很小,同一围压下随着固结比的增大,动剪应力比也会随之增大;不同围压及不同固结比对以Nf表示的峰值孔隙水压力发展模式影响很小。  相似文献   

19.
Abstract

First, this article presents a simulation experiment of hydraulic reclamation, and then a vacuum preloading (VP) test using the sedimentary soil obtained by the first experiment. In the VP test, the distribution and variation of different physico-mechanical parameters before and after the treatment were tested. According to the test results, the concept “non-Terzaghi soil” is proposed to explain the inhomogeneity and its mechanism rendered by “seepage separation.” And then a staged VP (SVP) drainage consolidation method has been introduced to improve the inhomogeneity and seepage curtain phenomena around prefabricated vertical drains (PVDs) during the consolidation. The test results demonstrate that the clogging problem around PVDs has been prevented and the consolidation efficiency has been promoted after the SVP test. It has been noticed that the cumulative drainage volume and the settlement displacement of SVP test were 27% and 24%, respectively, greater than that of VP test, and the soil tends to be more homogeneous. Moreover, it has been shown that the inhomogeneity degree of the permeability coefficient, unit weight, void ratio, water content, cohesion, internal friction angle, compression modulus, and the soil surface settlement in slurry after the SVP test were 3.10, 1.02, 1.03, 1.09, 2.30, 1.92, 1.19, and 1.02, whereas that after VP test was 397.27, 1.07, 1.40, 1.40, 4.74, 3.00, 1.76, and 1.22. Finally, the mechanism of SVP method has been discussed.  相似文献   

20.
Abstract

For land reclamation using the conventional surcharge preloading method, a sand cap layer is often fully placed at the ground surface of ultra-soft compressible estuary or marine clays. A novel strategy of distributed sand caps is proposed to save cost associated with sand materials. At an early stage of consolidation, the drainage capacity of distributed sand caps is less than the drainage demand, whereas at a later stage, the capacity exceeds the demand. Hence, the overall drainage capacity of distributed sand caps is equivalent to the drainage demand. A numerical model is developed to study the effectiveness of the proposed technique, and calculations are compared against theoretical solutions. A parametric study is conducted to optimize design parameters. It has been found that distributed sand caps should be uniformly placed with a size of 3% of the total width and a spacing of 1 times the size, such that sand materials can be saved by up to 50% without compromising the consolidation efficiency (an increase of consolidation time by less than 5%). The use of distributed sand caps will be effective regardless of soil properties, including hydraulic conductivity, elastic modulus and Poisson’s ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号