首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper proposes a geometrically exact formulation for three-dimensional static and dynamic analyses of the umbilical cable in a deep-sea remotely operated vehicle (ROV) system. The presented formulation takes account of the geometric nonlinearities of large displacement, effects of axial load and bending stiffness for modeling of slack cables. The resulting nonlinear second-order governing equations are discretized spatially by the finite element method and solved temporally by the generalized- implicit time integration algorithm, which is adapted to the case of varying coefficient matrices. The ability to consider three-dimensional union action of ocean current and ship heave motion upon the umbilical cable is the key feature of this analysis. The presented formulation is firstly validated, and then three numerical examples for the umbilical cable in a deep-sea ROV system are demonstrated and discussed, including the steady configurations only under the action of depth-dependent ocean current, the dynamic responses in the case of the only ship heave motion, and in the case of the combined action of the ship heave motion and ocean current.  相似文献   

2.
This paper proposes a geometrically exact formulation for three-dimensional static and dynamic analyses of the umbilical cable in a deep-sea remotely operated vehicle(ROV) system. The presented formulation takes account of the geometric nonlinearities of large displacement, effects of axial load and bending stiffness for modeling of slack cables. The resulting nonlinear second-order governing equations are discretized spatially by the finite element method and solved temporally by the generalized-a implicit time integration algorithm, which is adapted to the case of varying coefficient matrices. The ability to consider three-dimensional union action of ocean current and ship heave motion upon the umbilical cable is the key feature of this analysis. The presented formulation is firstly validated, and then three numerical examples for the umbilical cable in a deep-sea ROV system are demonstrated and discussed, including the steady configurations only under the action of depth-dependent ocean current, the dynamic responses in the case of the only ship heave motion, and in the case of the combined action of the ship heave motion and ocean current.  相似文献   

3.
海洋系泊缆索非线性有限元静力分析   总被引:1,自引:0,他引:1  
采用几何非线性有限元方法研究海洋系泊缆索在重力、浮力和水流流体阻力作用下的静态平衡位形和张力分布.基于完全的Lagrangian格式,采用二节点等参索单元建立系泊缆索的静态平衡方程;采用增最迭代法求解得到的静平衡方程.数值算例证实此方法的有效性和准确性.计算了不同水流流体阻力作用下缆索的静平衡位形和张力分布,得到一些有意义的结论.  相似文献   

4.
For accurate prediction of the deformation of cable in the towed system, a new finite element model is presented that provides a representation of both the bending and torsional effects. In this paper, the cubic spline interpolation function is applied as the trial solution. By using a weighted residual approach, the discretized motion equations for the new finite element model are developed. The model is calculated with the computation program complier by Matlab. Several numerical examples are presented to illustrate the numerical schemes. The results of numerical simulation are stable and valid, and consistent with the mechanical properties of the cable. The model can be applied to kinematics analysis and the design of ocean cable, such as mooring lines, towing, and ROV umbilical cables.  相似文献   

5.
This paper analyses nonlinear dynamics of cable towed body system. The cable has been modeled and analyzed using a new nodal position finite element method, which calculates the position of the cable directly instead of the displacement by the existing finite element method. The newly derived nodal position finite element method eliminates the need of decoupling the rigid body motion from the total motion, where numerical errors arise in the existing nonlinear finite element method, and the limitation of small rotation in each time step in the existing nonlinear finite element method. The towed body is modeled as a rigid body with six degrees of freedom while the tow ship motion is treated as a moving boundary to the system. A special procedure has been developed to couple the cable element with the towed body. The current approach can be used as design tool for achieving improved directional stability, maneuverability, safety and control characteristics with the cable towed body. The analysis results show the elegance and robustness of the proposed approach by comparing with the sea trial data.  相似文献   

6.
A numerical approach for predicting motion and tension of extensible marine cables during laying operations in a rough sea is presented here. The solution methodology consists of dividing the cable into straight elements, which must satisfy an equilibrium equation and compatibility relations. The system of nonlinear differential equations is solved by the Runge–Kutta method, taking the effect of regular and/or irregular waves into account explicitly.

Illustrative applications of the method are given for a typical cable laying ship. The results are presented as rms values of the cable dynamic tension and corresponding dynamic factor for two different types of cable and several values of cable stiffness. The effect of axial deformation on the maximum tension at the shipboard pulley location is highlighted.  相似文献   


7.
由于海洋工程中的钢管桩具有直径大、桩壁薄和超长的特点,桩的自由站立稳定性分析是桩基设计的重要组成部分。结合海洋工程的设计实例,借助三维非线性有限元分析方法,考虑桩身变形的几何非线性特性,研究了桩身倾斜度、支撑情况以及水平荷载等因素对桩身自由站立稳定性的影响规律,并将线性分析方法和非线性分析方法得到的结果进行了比较。  相似文献   

8.
In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform.  相似文献   

9.
In this study, we develop a numerical method for a 3D linear hydroelastic analysis of floating structures with liquid tanks subjected to surface regular water waves and compare the numerical results with experimental tests. Considering direct couplings among structural motion, sloshing, and water waves, a mathematical formulation and a numerical method extended from a recent work [1] are developed. The finite element method is employed for the floating structure and internal fluid in tanks, and the boundary element method is used for the external fluid. The resulting formulation completely incorporates all the interaction terms including hydrostatic stiffness and the irregular frequency effect is removed by introducing the extended boundary integral equations. Through various numerical tests, we verify the proposed numerical method. We also performed 3D hydroelastic experimental tests of a floating production unit (FPU) model in an ocean basin. The measured dynamic motions are compared with the numerical results obtained using the proposed method.  相似文献   

10.
将大气和海洋中f-平面上中尺度地形的扰动问题统一起来作为一个地球物理流体力学问题,应用涡度、能量和经圈动量守恒条件,将原来高度非线性方程变成一个二阶椭园型非线性方程,用数值模拟方法分析了大气中的过山运动和海洋中的沿岸上升流,给出了与观测接近的模拟结果以及运动过程对内部物理参数和外界条件的敏感性分析。所提方法可供进一步的动力学分析和数值研究参考。  相似文献   

11.
The behavior of a highly deformable membrane to ocean waves was studied by coupling a nonlinear boundary element model of the fluid domain to a nonlinear finite element model of the membrane. The hydrodynamic loadings induced by water waves are computed assuming large body hydrodynamics and ideal fluid flow and then solving the transient diffraction/radiation problem. Either linear waves or finite amplitude waves can be assumed in the model and thus the nonlinear kinematic and dynamic free surface boundary conditions are solved iteratively. The nonlinear nature of the boundary condition requires a time domain solution. To implicitly include time in the governing field equation, Volterra's method was used. The approach is the same as the typical boundary element method for a fluid domain where the governing field equation is the starting point. The difference is that in Volterra's method the time derivative of the governing field equation becomes the starting point.The boundary element model was then coupled through an iterative process to a finite element model of membrane structures. The coupled model predicts the nonlinear interaction of nonlinear water waves with highly deformable bodies. To verify the coupled model a large scale test was conducted in the OH Hinsdale wave Research Laboratory at Oregon State University on a 3-ft-diameter fabric cylinder submerged in the wave tank. The model data verified the numerical prediction of the structure displacements and of the changes in the wave field.The boundary element model is an ideal modeling technique for modeling the fluid domain when the governing field equations is the Laplace equation. In this case the nonlinear boundary element model was coupled with a finite element model of membrane structures, but the model could have been coupled with other finite element models of more rigid structures, such as a pontoon floating breakwater.  相似文献   

12.
波浪作用下海洋石油井架模态参数识别与承载力评价   总被引:1,自引:0,他引:1  
提出基于试验模态参数识别和优化算法修改动力有限元模型的海洋石油井架安全承载能力评价方法.推导基于波浪脉动的试验模态参数识别公式,介绍有限元模型动力修正的一阶优化方法.以海洋随机波浪脉动作为激励,对勘探三号海洋石油井架进行了现场模态试验,识别出前二阶固有频率.以此作为有限元模型修正的基础,应用一阶搜索优化算法,对动力有限元模型进行了修正,结果表明:该修正模型比较准确反映了井架目前的结构状态,能够用于进一步的静、动力分析和安全承载能力评价.  相似文献   

13.
海缆在使用过程中,受到洋流冲击及自身重量的影响,容易过度弯曲,从而影响海缆的寿命,造成经济损失。弯曲限制器是防止海缆过度弯曲的重要附件。文中建立海缆弯曲限制器A、B两种不同结构的模型,通过有限元模拟分析,比较在相同弯矩载荷下两种结构的锁紧弯曲半径及应力、应变情况,并通过试验验证两种结构的实际使用情况和模拟分析结果的一致性,为海缆弯曲限制器的优化改进提供了参考。计算结果表明:随着弯矩的增大,两种结构的锁定弯曲半径的变化趋势一致,但相同的弯曲半径下所能承受的载荷和两种结构曲率的平缓度有着较大的差异;在相同的应用环境下,B型结构能够更好地保护海缆,限制海缆的最小弯曲半径。  相似文献   

14.
The time series of the dynamic response of a slender marine structure was predicted in approximate sense using a truncated quadratic Volterra series. The wave-structure interaction system was identified using the NARX (Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through supervised training using prepared datasets. The dataset used for network training was obtained by nonlinear finite element analysis of the slender marine structure under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of the relative velocity between the water particle and structure in the Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of the response of the structure was predicted using the quadratic Volterra series. To check the applicability of the method, the response of a slender marine structure under a realistic ocean wave environment with a given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. The predicted time series of the response of structure with quadratic Volterra series successfully captured the slowly varying response with reasonably good accuracy. This method can be used to predict the response of the slender offshore structure exposed to a Morison type load without relying on the computationally expensive time domain analysis, especially for screening purposes.  相似文献   

15.
This paper studies intensively the problems of ship-platform collision.The ship and platformare treated as one structural system connected with spring elements and then motion equation of the colli-sion system is established.A nonlinear force-displacement relationship is derived for the simulation of lo-cal dent in a hit member and the yield surface of a dented tubular section is developed to consider the re-duction of load carrying capacity of hit members.Large deformations,plasticity and strain-hardening ofthe beam-column element are taken into account by combining the elastic large displacement analysis theo-ry with the plastic node method.The effect of the hydrodynamic forces acting on the platform,the rubberfender the property of the local dent and the buckling behavior of beam-column on collision are analyzed.The numerical simulation of the nonlinear dynamic response is carried out by Wilson θ method with updat-ed Newton-Raphson iteration.And the numerical example of the dynamic response of a offs  相似文献   

16.
物探船拖缆姿态及拉力预报   总被引:1,自引:0,他引:1  
针对海洋地震物探船布设探测网络实际工况的要求,提出一种拟合数值计算与模型实验结果预报拖缆姿态及拉力的方法,应用此方法进行多方案比较研究,获得优化的拖缆-扩展器-检测电缆组合探测系统。经海上拖航实验验证,此种预报方法查可行,预报精度完全能满足工程实用要求。  相似文献   

17.
Surface waves are the roughness element of the ocean surface. The parameterization of the drag coefficient of the ocean surface is simplified by referencing to wind speed at an elevation proportional to the characteristic wavelength. The dynamic roughness is analytically related to the drag coefficient. Under the assumption of fetch limited wave growth condition, various empirical functions of the dynamic roughness can be converted to equivalent expressions for comparison. For datasets covering a wide range of the dimensionless frequency (inverse wave age), it is important to account for the variable rate of wave development at different wave ages. As a result, the dependence of the Charnock parameter on wave age is nonmonotonic. Finally, the analysis presented here suggests that the significant wave steepness is a sensitive property of the ocean surface and a single variable normalization of the dynamic roughness using a wavelength or wave height parameter actually produces more robust functions than bi-variable normalizations using wave height and wave slope.  相似文献   

18.
主动式声纳列阵拖曳系统姿态数值计算   总被引:2,自引:1,他引:2  
卢军 《海洋工程》2001,19(3):85-90
主动式声纳列阵拖曳系统是用于探测潜艇的新型声纳系统,为了准确探测潜艇的位置,必须首先预报声纳列阵的瓷态,本文通过对其三维力学模型的分析,得到该系统的运动微分方程,其中缆索的力学方程是基于Ablow和Milinazzo的模型,而对于拖体则运用六自由度空间运动方程模拟,结合边界条件,用有限差分法求解,通过对拖船的不同运动状态如匀速,变速和回转的计算,证明本文的方法对于预报声纳列阵的姿态是有效的。  相似文献   

19.
本文对一类非线性海洋生态模型进行了稳定性分析,并通过广义根轨迹的分析得出,初始时刻营养盐的不同输入对系统稳定性的影响,并用相轨迹图加以验证。通过稳定性分析可知,当浮游植物的生长率和初始时刻营养盐的输入均大于浮游植物的死亡率和营养盐的流失时,系统存在稳定状态。若浮游植物的生长率和初始时刻营养盐的输入增大时,系统的动态性能减少,即系统会更快的趋于稳定状态。  相似文献   

20.
A numerical method for the dynamic simulation of towed cables is presented. The cable is loaded by fluid drag, tension, gravity and buoyancy, including the effects of weights and floats. The development of a cable can be simulated as well as the separation of a cable under excessive load and the subsequent behavior of the broken parts. The system is constructed from a set of generic elements representing such items as cable or rope strands, knots (reference points on rope sections), kinks (sliding reference points on cable sections that change length), cable ends and winches. A mathematical graph organizes these elements in a general and flexible fashion: it allows construction of complex systems and permits structural redefinition during the simulation. The nodes of the graph coincide with the various reference points of the problem, at which physical parameters are lumped and to which sets of ordinary differential equations are associated that define the motions of the points. The links of the graph describe the physical connections between the nodes. Application of new methods for solving stiff, sparse systems of coupled ordinary differential equations enables efficient simulation of snap-loads and other severe events. Results are presented that compare quantitatively with laboratory measurements. A further example shows the behavior of a breaking cable that is qualitatively reasonable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号