首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
伪距单点定位的精度分析及改进   总被引:1,自引:0,他引:1  
GPS伪距单点定位速度快、不存在整周模糊度,因此具有很大的应用价值。分析了电离层延迟、对流层延迟、相对论效应、地球自转改正对伪距单点定位结果的影响,介绍了两种多历元求解时处理接收机钟差的方法,最后讨论了如何以大地坐标和高斯坐标为参数进行定位求解。  相似文献   

2.
本文论述了GPS载波相位整周模糊度在航解算的方法,并用阳逻镇GPS水下地形测量的实测数据验证了模糊度在航解算的有效性和可靠性。  相似文献   

3.
GPS—RTK技术     
本文着重介绍了两种GPS—RTK数据处理方法;①利用GPS互相关数据直接求解相位模糊度。②相位模糊度LS搜索解法。简要介绍了RTCM差分格式,讨论了GPS—RTK技术的应用前景及其局限性,最后,对我国如何更好地利用GPS—RTK定位技术提出几点建议。  相似文献   

4.
王科  郑海  章大勇 《海洋测绘》2006,26(5):7-9,27
为了评估整周模糊度求解精度,首先介绍了整周模糊度概率特性的基本理论和z变换的基本思想。对直接归整法和序贯归整法整周模糊度概率特性进行了分析,探讨z变换对序贯归整法整周模糊度概率特性的影响。给出了一个基线解算实例。得出了z变换优化整周模糊度概率特性的结论。  相似文献   

5.
实时GPS姿态测量中整周模糊度的快速解算方法   总被引:1,自引:0,他引:1  
姿态测量核心问题是整周模糊度解算.提出了一种适合实时姿态测量的模糊度解算方法,利用单差平滑伪距进行解算,与传统的模糊度解算方法相比具有许多优点.通过仿真实验验证了该方法的有效性和实用性.  相似文献   

6.
硬件延迟的确定与所采用的电离层误差修正方法密切相关,其方法的准确度直接影响到硬件延迟的估算精度。本文综合利用广播星历所提供的Klobuchar模型系数以及双频载波与码观测量修正电离层误差,修正过程中绕开了整周模糊度的计算,给出了一种实时计算GPS接收机硬件延迟的算法,提高了实时电离层修正的精度,通过实例反算卫星硬件的延迟与广播星历中的TGD一致,验证了算法的有效性。  相似文献   

7.
介绍了在航模糊度求解的模型。在航模型每个历元均需要多估计一组坐标矢量,因而降低模糊度求解的精度。用取整法、引导取整法和整数最小二乘法三种模糊度固定方法,比较了在静态模型和在航模型下整周模糊度求解的成功率和需要的初始化时间,为动态平台的糊度解算提供参考。  相似文献   

8.
GPS接收机测量位移方法研究   总被引:1,自引:0,他引:1  
首先介绍了全球定位系统(GPS)的工作原理;然后给出了利用多普勒频偏原理测量GPS接收机天线位移的方法;最后通过现场实验,对比GPS接收机天线的运动轨迹曲线和红球的运动轨迹曲线,验证了该测量位移方法的可行性.  相似文献   

9.
建立基于GNSS信号的海面测高数学模型,揭示基于载波和信噪比观测量测高方法的内在联系;提出利用造价便宜的GPS接收机以及普通接收机天线进行海平面高度变化监测的手段;进行海平面高度变化监测的实验并与验潮仪对比分析。结果表明:利用普通GPS接收机和天线进行海平面测高可以获得厘米级的测量精度,24 h连续监测的均方根误差为4.13 cm,GPS高度计与验潮仪的测量结果相关系数为0.86;所布设的GNSS高度计与造价昂贵的大地测量型接收机监测结果相当,该造价便宜的高度计更适合用于未来大规模实际的海平面高度变化监测中。  相似文献   

10.
本文研究了廉价GPS接收机用于海洋测绘的可行性,分析并改进了伪距平滑的方法,对Navsymm接收机的测试结果表明,98%的时间里可达到3m的差分定位精度,可以应用于小比例尺的海底地形测量、管线测量等。  相似文献   

11.
Precise, long-range GPS kinematic positioning to centimeter accuracy requires that carrier phase ambiguities be resolved correctly during an initialization period, and subsequently to recover the “lost" ambiguities in the event of a cycle slip. Furthermore, to maximize navigational efficiency, ambiguity resolution and carrier phase-based positioning need to be carried out in real-time. Due to the presence of the ionospheric signal delay, satellite orbit errors, and the tropospheric delay, so-called absolute ambiguity resolution “on-the-fly” for long-range applications becomes very difficult, and largely impossible. However, all of these errors exhibit a high degree of spatial and temporal correlation. In the case of short-range ambiguity resolution, because of the high spatial correlation, their effect can be neglected, but their influence will dramatically increase as the baseline length increases. On the other hand, between discrete trajectory epochs, they will still exhibit a large degree of similarity for short time spans. In this article, a method is described in which similar triple-differenced observables formed between one epoch with unknown ambiguities and another epoch with fixed ambiguities can be used to derive relative ambiguity values, which are ordinarily equal to zero (or to the number of cycles that have slipped when loss-of-lock occurred). Because of the temporal correlation characteristics of the error sources, the cycle slips can be recovered using the proposed methodology. In order to test the performance of this algorithm an experiment involving the precise positioning of an aircraft, over distances ranging from a few hundred meters up to 700 kilometres, was carried out. The results indicate that the proposed technique can successfully resolve relative ambiguities (or cycle slips) over long distances in an efficient manner that can be implemented in real-time.  相似文献   

12.
Precise, long-range GPS kinematic positioning to centimeter accuracy requires that carrier phase ambiguities be resolved correctly during an initialization period, and subsequently to recover the “lost" ambiguities in the event of a cycle slip. Furthermore, to maximize navigational efficiency, ambiguity resolution and carrier phase-based positioning need to be carried out in real-time. Due to the presence of the ionospheric signal delay, satellite orbit errors, and the tropospheric delay, so-called absolute ambiguity resolution “on-the-fly” for long-range applications becomes very difficult, and largely impossible. However, all of these errors exhibit a high degree of spatial and temporal correlation. In the case of short-range ambiguity resolution, because of the high spatial correlation, their effect can be neglected, but their influence will dramatically increase as the baseline length increases. On the other hand, between discrete trajectory epochs, they will still exhibit a large degree of similarity for short time spans. In this article, a method is described in which similar triple-differenced observables formed between one epoch with unknown ambiguities and another epoch with fixed ambiguities can be used to derive relative ambiguity values, which are ordinarily equal to zero (or to the number of cycles that have slipped when loss-of-lock occurred). Because of the temporal correlation characteristics of the error sources, the cycle slips can be recovered using the proposed methodology. In order to test the performance of this algorithm an experiment involving the precise positioning of an aircraft, over distances ranging from a few hundred meters up to 700 kilometres, was carried out. The results indicate that the proposed technique can successfully resolve relative ambiguities (or cycle slips) over long distances in an efficient manner that can be implemented in real-time.  相似文献   

13.
An inversion method using a towed system consisting of a source and two receivers is presented. High-frequency chirp signals that have been emitted from the source are received after multiple penetrations and reflections from the shallow water sub-bottom structure and are processed for geoacoustical parameter estimation. The data are processed such that a good resolution and robustness is achieved via matched filtering, which requires information about the source signal. The inversion is formulated as an optimization problem, which maximizes the cost function defined as a normalized correlation between the measured and modeled signals directly in the time domain. The very fast simulated reannealing optimization method is applied to the global search problem. The modeled time signal is obtained using a ray approach. An experiment was carried out in the Mediterranean Sea using a towed source and receiver system. The inversion method is applied to the experimental data and results are found to be consistent with previous frequency-domain analyses using measurements from a towed horizontal array of receivers and measurements on a vertical array.  相似文献   

14.
Precise long-range kinematic GPS positioning requires the use of carrier phase measurements, the data processing of which suffers from the technical challenges of ambiguity resolution and cycle slip repair. In this paper, the combination of an ambiguity recovery technique and a linear bias correction method has been used to overcome such problems. An experiment was conducted to test the utility of this technique to determine aircraft height to high accuracy, over very long baselines (of the order of one thousand kilometres), in support of the Laser Airborne Depth Sounder (LADS). From a comparison of four independently derived trajectories, this airborne GPS kinematic positioning experiment has confirmed that the sea surface can be determined to centimetre accuracy. The sea surface profiles thus obtained can be used to correct the errors introduced by long period ocean swells.  相似文献   

15.
Precise long-range kinematic GPS positioning requires the use of carrier phase measurements, the data processing of which suffers from the technical challenges of ambiguity resolution and cycle slip repair. In this paper, the combination of an ambiguity recovery technique and a linear bias correction method has been used to overcome such problems. An experiment was conducted to test the utility of this technique to determine aircraft height to high accuracy, over very long baselines (of the order of one thousand kilometres), in support of the Laser Airborne Depth Sounder (LADS). From a comparison of four independently derived trajectories, this airborne GPS kinematic positioning experiment has confirmed that the sea surface can be determined to centimetre accuracy. The sea surface profiles thus obtained can be used to correct the errors introduced by long period ocean swells.  相似文献   

16.
An underwater acoustic local area network (ALAN) provides multipoint-to-point telemetry between many high-rate, ocean-bottom sensors and a central, surface-deployed receiver in the 10-30 kHz vertical acoustical channel. Ocean-bottom modems initiate the transmission process by requesting data channel time slots via a common narrow-band request channel. Request packets overlap in time and frequency in this channel, and the throughput and average transmission delay rely heavily on the successful resolution of the request packet collisions. This paper presents the design, analysis, and experimental demonstration of a request channel receiver capable of resolving collisions between several asynchronous and cochannel packets. The receiver algorithm differs from standard capture schemes (by demodulating the data from both strong and weak transmitters), conventional spread-spectrum receivers (by overcoming the near-far problem), and existing multiple-access demodulation techniques (by adapting to the number of interfering signals, and the unknown phase, Doppler, amplitude, and timing of each signal in the collision). The receiver demodulates the collided packets by decision-directed techniques through a novel method of estimating the interference for each user which minimizes error propagation due to inaccurate tentative decisions. An inwater experiment illustrates that this technique is extremely desirable for collision resolution in underwater acoustic local area networks, and also for underwater autonomous vehicles with both sidescan sonar as well as acoustic telemetry links  相似文献   

17.
Yang Gao  Zuofa Li 《Marine Geodesy》1999,22(3):169-181
This article investigates the problem of cycle slip detection and ambiguity resolution using dual-frequency GPS data. Several algorithms are proposed and described. F or cycle slip detection, three L1/L2 observable combinations have been integrated to formulate a new algorithm for cycle slip detection. For ambiguity resolution, both widelane and narrowlane ambiguity resolution algorithms are presented, but the focus is on the narrowlane ambiguity resolution. Numerical results are included to evaluate the performance of the proposed algorithms, which have shown that cycle slips can be effectively detected and the narrowlane ambiguities can be resolved almost instantaneously after successful determination of the widelane ambiguities.  相似文献   

18.
Effective communication and echolocation depends strongly upon the coherence of the channel through which the signal is propagated. Under certain conditions, the average coherence or equivalently, the spreading of a random channel may be described by a scattering function (SF). This represents a second order (energy) measure of the average delay, Doppler, and more generally, the spatial (azimuthal) spread that the signal experiences. The SF is analogous to the point spread function (PSF) discussed in the image processing literature and likewise describes the amount of “blurring” imposed upon the signal or scene transmitted. The SF will be briefly reviewed and its measurement by both direct (high resolution channel probing) and indirect (deconvolution) methods will be discussed. A new direct method using specially designed waveform pairs and a twin or uncertainty product (UP) receiver structure is introduced. Unlike high resolution matched filter implementations for direct probing that are limited by the fixed volume constraint of ambiguity functions, the UP receiver produces vanishing sidelobes and hence more nearly approximates a desirable two-dimensional delta characteristic. The improvement gained in SF measurement is illustrated by the results of an experiment in which the UP receiver and traditional matched filter implementations were used to directly probe an ocean multipath channel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号