首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
In this study,an advanced probabilistic neural network(APNN)method is proposed to reflect the global probability density function(PDF)by summing up the heterogeneous local PDF which is automatically determined in the individual standard deviation of variables.The APNN is applied to predict the stability number of armor blocks of breakwaters using the experimental data of van der Meer,and the estimated results of the APNN are compared with those of an empirical formula and a previous artificial neural network(ANN)model.The APNN shows better results in predicting the stability number of armor blocks of breakwater and it provided the promising probabilistic viewpoints by using the individual standard deviation in a variable.  相似文献   

2.
Breaking wave loads on coastal structures depend primarily on the type of wave breaking at the instant of impact. When a wave breaks on a vertical wall with an almost vertical front face called the “perfect breaking”, the greatest impact forces are produced. The correct prediction of impact forces from perfect breaking of waves on seawalls and breakwaters is closely dependent on the accurate determination of their configurations at breaking. The present study is concerned with the determination of the geometrical properties of perfect breaking waves on composite-type breakwaters by employing artificial neural networks. Using a set of laboratory data, the breaker crest height, hb, breaker height, Hb, and water depth in front of the wall, dw, from perfect breaking of waves on composite breakwaters are predicted using the artificial neural network technique and the results are compared with those obtained from linear and multi-linear regression models. The comparisons of the predicted results from the present models with measured data show that the hb, Hb and dw values, which represent the geometry of waves breaking directly on composite breakwaters, can be predicted more accurately by artificial neural networks compared to linear and multi-linear regressions.  相似文献   

3.
防波堤建设费用巨大,且一旦遭到破坏,后果甚为严重,因此,如何准确地计算防波堤的可靠性意义重大.随着人工神经网络理论的快速发展,人工神经网络方法在结构可靠性分析中的应用逐渐得到重视.基于神经网络的Monte Carlo法计算直立式防波堤的可靠性,概率意义明确.以秦皇岛典型直立堤为算例,采用基于神经网络的Monte Carlo法对直立式防波堤进行可靠性分析时,将直立堤滑动破坏和倾覆破坏的极限状态方程中的所有参数均作为变量处理,并将计算结果与Monte Carlo模拟的直接抽样法、重要抽样法以及独立变量JC法的计算结果进行对比.结果表明:基于神经网络的Monte Carlo法和Monte Carlo模拟的直接抽样法、重要抽样法计算结果相近,而比独立变量JC法的计算结果略低.  相似文献   

4.
Predicting the stability of armor blocks of breakwaters and revetments is a very important issue in coastal and ocean engineering. Recently, soft computing tools such as artificial neural networks and fuzzy logic have been used to predict the stability number of armor blocks. However, these tools are not as transparent as empirical formulas. This study presents another soft computing approach, i.e. model trees for predicting the stability number of armor blocks. The main advantage of model trees is that, unlike the other data learning tools, they are easier to use and more importantly they represent understandable mathematical rules. A total of 579 experimental test data from Van der Meer 1988 are used for developing the model. The conventional governing parameters were selected as the input variables and the obtained results were compared with those of measurements, empirical and soft computing models. Using statistical measures, it was shown that the developed models are more accurate than previous empirical and soft computing models. Furthermore, some simple rules are given for armor blocks’ design.  相似文献   

5.
The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison with the reshaping of a large Norwegian breakwater exposed to the North Sea waves. As a motivation for applying the Van der Meer formula a discussion of design parameters related to berm breakwater stability formulae is given. Comparisons of front erosion predicted by the use of the Van der Meer formula with model test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height, relative berm width, method of armour stone placement, and hydraulic parameters. The formulae should cover the structure range from statically stable berm breakwaters to conventional double layer armoured breakwaters.  相似文献   

6.
The ocean wave system in nature is very complicated and physical model studies on floating breakwaters are expensive and time consuming. Till now, there has not been available a simple mathematical model to predict the wave transmission through floating breakwaters by considering all the boundary conditions. This is due to complexity and vagueness associated with many of the governing variables and their effects on the performance of breakwater. In the present paper, Adaptive Neuro-Fuzzy Inference System (ANFIS), an implementation of a representative fuzzy inference system using a back-propagation neural network-like structure, with limited mathematical representation of the system, is developed. An ANFIS is trained on the data set obtained from experimental wave transmission of horizontally interlaced multilayer moored floating pipe breakwater using regular wave flume at Marine Structure Laboratory, National Institute of Technology Karnataka, Surathkal, India. Computer simulations conducted on this data shows the effectiveness of the approach in terms of statistical measures, such as correlation coefficient, root-mean-square error and scatter index. Influence of input parameters is assessed using the principal component analysis. Also results of ANFIS models are compared with that of artificial neural network models.  相似文献   

7.
Rubble mound breakwaters usually consist of armour, filter and core layers. The units used in the armour layer are natural rock or concrete. Although natural rock is usually preferred, it is not always possible to apply it. There are some advantages to using concrete units: they have a high stability coefficient under wave attack, and they are easily produced at work sites. Tetrapod and cube blocks are widely used in breakwaters as armour units.Rubble mound breakwaters are subjected not only to wave activity but also other types of environmental loading, such as earthquakes. Although rubble-mound breakwaters are most likely the most common type of breakwaters, they have received little attention regarding their response to seismic activity. The objective of this study is to present the dynamic response of a breakwater armoured by tetrapods placed by two different placement methods and armoured by cubes during seismic loadings experimentally and numerically. A shaking tank was developed for the experimental study. The breakwater models sit on a rigid bed, and the model scale is 1/50. A one-dimensional shaking tank was used to understand simple responses of the rubble mound breakwaters under seismic loads. The tank allows only one degree of freedom. A raining crane system was developed to achieve the same packing density and porosity for the core material. The shape of the model breakwater before and after the tests was measured using a profiler and was recorded by computer. However, crest lowering and the level of damage on slopes were determined from profiler records. The dynamic responses of the model breakwaters were also investigated using an image processing technique. For numerical simulation, software using finite element method was used.The results obtained from the experiment and numerical model may help designers build breakwaters armoured by artificial units.  相似文献   

8.
Chan-Hoo Jeon  Yong-Sik Cho   《Ocean Engineering》2006,33(14-15):2067-2082
Numerical and laboratory experiments are performed to investigate characteristics of the Bragg reflection due to multi-arrayed trapezoidal submerged breakwaters. The numerical model is based on the Reynolds averaged Navier–Stokes equations with the VOF method and the k–ε turbulence closure model. As expected, the reflection coefficients increase as the array of submerged breakwaters increases in both laboratory measurements and numerical results. The resonant periods provide similar relative wave numbers regardless of the permeability and the number of arrays. The reflection coefficients due to porous breakwaters are smaller than those due to non-porous breakwaters. The velocity contours for two and three arrays are also described.  相似文献   

9.
波浪对斜坡堤护面结构的冲刷破坏作用受诸多因素的影响,如波浪要素、水深条件、坡面角度、护面块体型式等。在进行某项有关斜坡堤护面块体的课题研究中发现,当防波堤断面结构确定后,护面人工块体的稳定性主要取决于波高及波周期的变化。在进行这方面内容设计计算中,通常波高的取值都能给予足够的重视,但波周期对护面块体稳定性的影响容易被忽视。本研究通过物理模型试验,针对波浪周期对斜坡堤护面块体稳定性的影响进行了总结分析,为防波堤设计提供参考。  相似文献   

10.
Berms deployed at the toe of conventional rubble mound breakwaters can be very effective in improving the stability of the armor layer. Indeed, their design is commonly tackled by paying attention to armor elements dimensioning. Past research studies showed how submerged berms can increase the stability of the armor layer if compared to straight sloped conventional breakwaters without a berm. To fill the gap of knowledge related to the interaction between breakwaters with submerged berm, waves and soil, this research aims to evaluate how submerged berms configuration influences the seabed soil response and momentary liquefaction occurrences around and beneath breakwaters foundation, under dynamic wave loading. The effects of submerged berms on the incident waves transformation have been evaluated by means of a phase resolving numerical model for simulating non-hydrostatic, free-surface, rotational flows. The soil response to wave-induced seabed pressures has been evaluated by using an ad-hoc anisotropic poro-elastic soil solver. Once the evaluation of the seabed consolidation state due to the presence of the breakwater has been performed, the dynamic interaction among water waves, soil and structure has been analyzed by using a one-way coupling boundary condition. A parametric study has been carried out by varying the berm configuration (i.e. its height and its length), keeping constant the offshore regular wave condition, the berm and armor layer porosity values, the water depth and the elastic properties of the soil. Results indicate that the presence of submerged berms tends to mitigate the liquefaction probability if compared to straight sloped conventional breakwater without a berm. In addition, it appears that the momentary liquefaction phenomena are more influenced by changing the berm length rather than the berm height.  相似文献   

11.
This paper discusses some previous, and presents some new experimental results on wave transmission over submerged breakwaters. The objective of this study is to evaluate wave transmission coefficient and develop a two-dimensional (2D) model as an improvement to the existing wave transmission coefficient models. Factors which affect wave transmission over stbmerged breakwaters are discussed through a series of laboratory experiments. Basic recommendations for evaluation and design of submerged rubble-monud breakwaters are presented. From the test results, a calculation formula of wave transmission coefficient is proposed.  相似文献   

12.
A series of laboratory experiments was carried out to investigate the strong reflection of regular water waves over a train of submerged breakwaters. Rectangular and trapezoidal shapes of submerged breakwaters are employed and compared for reflecting capability of incident waves. Measured reflection coefficients of regular waves over impermeable submerged breakwaters are verified by comparing with those of the eigenfunction expansion method. A very good agreement is observed. Reflection coefficients of permeable submerged breakwaters are less than those of impermeable breakwaters. The trapezoidal shape is recommended for a submerged breakwater in terms of reflecting capability and practical application.  相似文献   

13.
Geotextile Sand Containers (GSC) are increasingly used worldwide for shore protection structures such as seawalls, groins, breakwaters, revetments and artificial reefs. However, reliable design formulae for the hydraulic stability based on a good understanding of the processes involved in the wave-structure interactions are still needed.Although the effect of the deformations of the sand containers on the hydraulic stability is significant, no stability formula is available to account for those deformations and the associated processes leading to the observed failures. Therefore, based on the results of extensive experimental and numerical studies ([Recio J. 2008, Hydraulic Stability of Geotextile Sand Containers for Coastal Structures – Effect of Deformations and Stability Formulae – PhD Thesis, Leichtweiss Institute for Hydraulic Engineering and Water Resources, www.digibib.tu-bs.de/?docid=00021899]), analytical stability formulae are developed that account for the effect of the deformations of the individual GSCs for sliding and overturning stability. The required drag, inertia and lift coefficients are determined experimentally from hydraulic model experiments specially designed for this purpose. Several types of GSC configurations which are representative for a wide range of GSC-structure types are investigated under wave action. Moreover, deformation factors to account for the deformation of the containers on the stability are analytically derived and implemented in the stability formulae.Finally, Stability formulae for each type of coastal structures made of geotextile sand containers such as breakwaters, revetments, sea walls, dune reinforcement and scour protection systems are proposed and recommendations are given with respect to the practical application of the proposed hydraulic stability formula, including their limitations.  相似文献   

14.
海底底质特性描述及分类是当今浅海声学的研究热点,海底沉积物的物理结构特性与其声学响应特征密切相关。在分析海底沉积物声传播特性的基础上,应用现代计算机信号分析技术手段,对海底沉积物声学响应波形提取了4个特征参数:声速、波幅指数、波形关联维分形指数和声波频谱的频率矩。以这4个特征参数作为输入向量,海底沉积物的结构类型作为输出向量,建立径向基概率神经网络模型。研究表明建立的神经网络模型具有较强的海底沉积物分类预报能力。  相似文献   

15.
刘勇  姚卓琳  李华军 《海洋工程》2015,29(6):793-806
The present study proposes a new semi-immersed Jarlan-type perforated breakwater including a perforated front wall, a solid rear wall, and a horizontal perforated plate connecting the lower tips of the two walls. An analytical solution is developed to estimate the hydrodynamic performance of the new breakwater. The analytical solution is confirmed by solutions for special cases, an independently developed multi-domain boundary element method solution and experimental data. Numerical examples based on the analytical solution indicate that compared with previous semi-immersed breakwaters, the new breakwater may have better wave-absorbing performance and smaller wave forces. Some useful results are presented for practical designs of semi-immersed Jarlan-type perforated breakwaters.  相似文献   

16.
The use of hard coastal-defence structures, like breakwaters and seawalls, is rapidly increasing to prevent coastal erosion. We compared low-shore assemblages between wave-protected and wave-exposed habitats on breakwaters along a sandy shore of Tuscany (North-Western Mediterranean). Assemblages were generally characterized by a low diversity of taxa, with space monopolized by Mytilus galloprovincialis and Corallina elongata on the seaward side of breakwaters and by filamentous algae on the landward side. Assemblages in wave-protected habitats were characterized by greater temporal stability than those in exposed habitats and supported non-indigenous macroalgae such as Caulerpa racemosa and Codium fragile ssp. tomentosoides. Hence, the introduction of hard coastal-defence structures in otherwise soft-bottom dominated areas, attracting native and exotic rocky-bottom species, should be of great concern for the conservation of marine biodiversity at local and regional scales and for the management of biological invasions.  相似文献   

17.
This paper proposes ten types of improved floating breakwaters for experiment with regular waves, based on the experience in the development and manufacture of existing floating breakwaters both at home and abroad, and on the results of experimental studies on the hydraulic characteristics of several types of floating breakwaters. The wave heights before and behind the breakwaters are measured, the movements of floating breakwaters are observed and the chain forces of the floating breakwaters are measured. The paper studies and compares the hydraulic characteristics of the improved rectangular floating breakwaters of which the internal and external structures and their installation methods are changed. Finally the optimal type of structure is selected through experiments.  相似文献   

18.
In the present work, the improved version of the meshless singular boundary method(ISBM) is developed for analyzing the performance of bottom standing submerged permeable breakwaters in regular normally incident waves and in the proximity of a vertical wall. Both single and dual prismatic breakwaters of rectangular and trapezoidal forms are examined. The physical problem is cast in terms of the Laplace equation governing an irrotational flow and incompressible fluid motion with appropriate mixed type boundary conditions, and solved numerically using the ISBM. To model the permeability of the breakwaters fully absorbing boundary conditions are assumed. Numerical results are presented in terms of hydrodynamic quantities of the reflection coefficients. These are firstly validated against the results of a multi-domain boundary element method(BEM) developed independently for a previous study. The agreement between the results of the two methods is excellent. The coefficients of reflection are then computed and discussed for a variety of structural conditions including the breakwaters height, width, spacing, and absorbing permeability. Effects of the proximity of the vertical plane wall are also investigated. The breakwater's width is found to have only marginal effects compared with its height. Permeability tends to decrease the minimum reflections. These coefficients show periodic variations with the spacing relative to the wavelength. Trapezoidal breakwaters are found to be more cost-effective than the rectangular breakwaters. Dual breakwater systems are confirmed to perform much better than single structures.  相似文献   

19.
The height of a wave at the time of its breaking, as well as the depth of water in which it breaks, are the two basic parameters that are required as input in design exercises involving wave breaking. Currently the designers obtain these values with the help of graphical procedures and empirical equations. An alternative to this in the form of a neural network is presented in this paper. The networks were trained by combining the existing deterministic relations with a random component. The trained network was validated with the help of fresh laboratory observations. The validation results confirmed usefulness of the neural network approach for this application. The predicted breaking height and water depth were more accurate than those obtained traditionally through empirical schemes. Introduction of a random component in network training was found to yield better forecasts in some validation cases.  相似文献   

20.
Tetrapod, one of the well-known artificial concrete units, is frequently used as an armor unit on breakwaters. Two layers of tetrapod units are normmaly placed on the breakwaters with different placement methods. In this study, the stability of tetrapod units with two different regularly placement methods are investigated experimentally in irregular waves. Stability coefficients of tetrapod units for both placement methods are obtained. The important characteristic wave parameters of irregular waves causing the same damage ratio as those of the regular waves are also determined. It reveals that the average of one-tenth highest wave heights within the wave train (H1/10) causes the similar damage as regular waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号