首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
Performance and operational feasibility of very high-frequency (VHF) Doppler radar have been demonstrated in a region dominated by strong tidal currents. An analysis of remote measurements of sea surface currents acquired by Courants de Surface MEsureacutes par Radar (COSMER)-pulsed Doppler radar during Evaluation et Preacutevision de l'Environnement Littoral (EPEL) experiment (supported by the French Navy) is presented in this paper. The VHF COSMER radar was deployed to provide continuous sea surface current measurements within an area of about 25 km times 25 km in the Normand Breton Gulf, France. This paper presents VHF measurement comparisons with observations such as acoustic Doppler current profiler (ADCP), as well as comparisons with numerical model TELEMAC 2-D. Results of tidal waves extraction, using harmonic analysis and residual currents, are shown in this paper. We also present a case where radar method is limited, due to the presence of additional peaks in the Doppler spectrum  相似文献   

3.
Seafloor geomorphology and surficial stratigraphy of the New Jersey middle continental shelf provide a detailed record of sea-level change during the last advance and retreat of the Laurentide ice sheet (120 kyr B.P. to Present). A NW–SE-oriented corridor on the middle shelf between water depths of 40 m (the mid-shelf “paleo-shore”) and 100 m (the Franklin “paleo-shore”) encompasses 500 line-km of 2D Huntec boomer profiles (500–3500 Hz), an embedded 4.6 km2 3D volume, and a 490 km2 swath bathymetry map. We use these data to develop a relative stratigraphy. Core samples from published studies also provide some chronological and sedimentological constraints on the upper <5 m of the stratigraphic succession.The following stratigraphic units and surfaces occur (from bottom to top): (1) “R”, a high-amplitude reflection that separates sediment >46.5 kyr old (by AMS 14C dating) from overlying sediment wedges; (2) the outer shelf wedge, a marine unit up to 50 m thick that onlaps “R”; (3) “Channels”, a reflection sub-parallel to the seafloor that incises “R”, and appears as a dendritic system of channels in map view; (4) “Channels” fill, the upper portion of which is sampled and known to represent deepening-upward marine sediments 12.3 kyr in age; (5) the “T” horizon, a seismically discontinuous surface that caps “Channels” fill; (6) oblique ridge deposits, coarse-grained shelly units comprised of km-scale, shallow shelf bedforms; and (7) ribbon-floored swales, bathymetric depressions parallel to modern shelf currents that truncate the oblique ridges and cut into surficial deposits.We interpret this succession of features in light of a global eustatic sea-level curve and the consequent migration of the coastline across the middle shelf during the last 120 kyr. The morphology of the New Jersey middle shelf shows a discrete sequence of stratigraphic elements, and reflects the pulsed episodicity of the last sea-level cycle. “R” is a complicated marine/non-marine erosional surface formed during the last regression, while the outer shelf wedge represents a shelf wedge emplaced during a minor glacial retreat before maximum Wisconsin lowstand (i.e., marine oxygen isotope stage 3.1). “Channels” is a widespread fluvial subarial erosion surface formed at the late Wisconsin glacial maximum 22 kyr B.P. The shoreline migrated back across the mid-shelf corridor non-uniformly during the period represented by “Channels” fill. Oblique ridges are relict features on the New Jersey middle shelf, while the ribbon-floored swales represent modern shelf erosion. There is no systematic relationship between modern seafloor morphology and the very shallowly buried stratigraphic succession.  相似文献   

4.
运用高频地波雷达测量表层海流矢量,一般均采用双站测量方案,因而,需要大量的人力和昂贵的设备投入。该项研究在分析双站测量原理的基础上,结合海洋学原理和合理的假设,推导并给出了利用单站地波雷达测量表层海流的原理和公式,从而使单站测量表层海流成为可能。可预期该方案虽然在一定程度上,适当降低了空间分辨率,但却可以大幅度降低观测成本,减少人力物力的投入,并显著提高现场观测效率。  相似文献   

5.
A transformation method is presented by which current profiles (of tidal or wind-induced origin) can be extracted at any horizontal position and moment in time from a vertically integrated, two-dimensional, hydrodynamic numerical model. An arbitrary vertical variation of eddy viscosity can be included in the method, which can incorporate a no-slip bottom boundary condition. The technique assumes that the sea is homogeneous.The method is used to improve the representation of bottom stress within the two-dimensional model, whereby the bottom stress is no longer related simply to the depth-mean current as in the “conventional” two-dimensional, vertically integrated model.Idealized calculations for a range of eddy viscosity profiles, show that elevations, current profiles, and time series of current extracted from this “enhanced” two-dimensional numerical model are in good agreement with currents obtained from a full three-dimensional model.  相似文献   

6.
Sheet flow and suspension of sand in oscillatory boundary layers   总被引:1,自引:0,他引:1  
after revisionTime-dependent measurements of flow velocities and sediment concentrations were conducted in a large oscillating water tunnel. The measurements were aimed at the flow and sediment dynamics in and above an oscillatory boundary layer in plane bed and sheet-flow conditions. Two asymmetric waves and one sinusoidal wave were imposed using quartz sand with D50 = 0.21 mm. A new electro-resistance probe with a large resolving power was developed for the measurement of the large sediment concentrations in the sheet-flow layer. The measurements revealed a three layer transport system consisting of a pick-up/deposition layer, an upper sheet flow layer and a suspension layer.In the asymmetric wave cases the total net transport was directed “onshore” and was mainly concentrated in the thin sheet flow layer (< 0.5 cm) at the bed. A small net sediment flux was directed “offhore” in the upper suspension layer. The measured flow velocities, sediment concentrations and sedimenl fluxes showed a good qualitative agreement with the results of a (numerical) 1DV boundary-layer flow and transport model. Although the model did not describe all the observed processes in the sheet-flow and suspension layer, the computational results showed a reasonable agreement with measured net transport rates in a wide range of asymmetric wave conditions.  相似文献   

7.
The seakeeping characteristics of various boom geometries in irregular waves and currents are investigated. The response of a floating boom section on the open sea is a function of a number of parameters, such as boom geometry, distribution of mass, buoyancy/weight ratio, and wave and current characteristics. To understand the relationship between these design parameters more clearly, a series of regular and irregular wave tests were conducted with six different 1:4 scale models for three current velocities and six different wave conditions. To simplify the problem, only rigid boom sections consisting of a buoyancy cylinder and vertical skirt were used. In parallel with this experimental program, a numerical model for the responses of two-dimensional floating boom sections in small-amplitude waves is also developed. The numerical results are compared with our large-scale experimental results. The boom effectiveness on the open sea is evaluated based on the concept of “effective draft” and “effective freeboard” assuming that drainage and oversplashing failures are the prime mechanisms of containment failure. Using the present results, a guideline for the optimum design/selection of future booms is developed.  相似文献   

8.
HF radar has become an increasingly important tool for mapping surface currents in the coastal ocean. However, the limited range, due to much higher propagation loss and smaller wave heights (relative to the saltwater ocean), has discouraged HF radar use over fresh water, Nevertheless, the potential usefulness of HF radar in measuring circulation patterns in freshwater lakes has stimulated pilot experiments to explore HF radar capabilities over fresh water. The Episodic Events Great Lakes Experiment (EEGLE), which studied the impact of intermittent strong wind events on the resuspension of pollutants from lake-bottom sediments, provided an excellent venue for a pilot experiment. A Multifrequency Coastal HF Radar (MCR) was deployed for 10 days at two sites on the shore of Lake Michigan near St. Joseph, MI. Similarly, a single-frequency CODAR SeaSonde instrument was deployed on the California shore of Lake Tahoe. These two experiments showed that when sufficiently strong surface winds (2 about 7 m/s) exist for an hour or more, a single HE radar can be effective in measuring the radial component of surface currents out to ranges of 10-15 km. We also show the effectiveness of using HF radar in concert with acoustic Doppler current profilers (ADCPs) for measuring a radial component of the current profile to depths as shallow as 50 cm and thus potentially extending the vertical coverage of an ADCP array  相似文献   

9.
Residual (i.e. non-tidal) components of flow in the Dover Straits are determined from measurements recorded by the OSCR H.F. Radar system. The data are divided into 10 monthly sets, obtained from 5 months of dual radar deployments on the English side of the Straits and a corresponding 5 months from the French side. For each of these sets the tidal component was removed by subtracting constituents derived from separate (monthly) harmonic analyses.In each deployment, surface currents were measured at 700 locations at 20-min intervals, providing spatial resolution on a grid as fine as 660 m. This fine spatial resolution reveals distinct patterns of monthly-mean residual circulations never previously recognized. In particular, a residual gyre is shown to be a dominating feature along the French side, with currents exceeding 20 cm s-1 and a diameter of 20 km. The previous obscurity of this feature may be attributable to the large (> 1·5 m s-1) and strongly spatially variable tidal currents. In these conditions, tidal advection will rapidly smear any surface signature obtained from satellite observations. Likewise, fine resolution (grid spacings of an order of 1 km) is required to reproduce these gyre dynamics in numerical models.The time-varying residual currents were correlated with wind recordings. Significant correlations were obtained for an 'open-sea' response (as represented by Ekman theory), with the wind-driven surface current veering at angles of up to 45° to the right of the wind direction. This 'open-sea' response is modified close to the coast where the generation of surface gradients force the currents to align with the topography.Larger-scale residual motions were identified from modal analyses. The primary modes, on both sides, involved large-scale flows through the Straits partially correlated with local winds. However for winds aligned approximately north-south, the components of these flows on the English and French sides are in opposition. These modes also revealed large oscillatory motions with periods of between 20 and 40 h.Estimates of net residual flows through the Straits from the radar measurements confirm earlier calculations of the range of variability in this parameter. However the increasing complexity of the flow patterns revealed in this study emphasizes the difficulty in quantifying the long-term net flow.  相似文献   

10.
HF radar systems are designed to measure spatially variable sea surface currents. A methodology was developed to complement these data with information about the current variability over the water column in a stratified shallow sea. Current profiles were estimated using a diagnostic model driven by surface current measurements from an HF radar system and by sea surface slopes derived from tide gauge data. The structure of the model has a physical basis but its parameters were derived from an analysis of in-situ current profile measurements. Application of the model to HF radar data from the SCAWVEX Rhine outflow experiment showed fair agreement with in-situ current data. As applications, estimation and tidal analysis of current fields are demonstrated.  相似文献   

11.
Many marine ecosystems exhibit a characteristic “wasp-waist” structure, where a single species, or at most several species, of small planktivorous fishes entirely dominate their trophic level. These species have complex life histories that result in radical variability that may propagate to both higher and lower trophic levels of the ecosystem. In addition, these populations have two key attributes: (1) they represent the lowest trophic level that is mobile, so they are capable of relocating their area of operation according to their own internal dynamics; (2) they may prey upon the early life stages of their predators, forming an unstable feedback loop in the trophic system that may, for example, precipitate abrupt regime shifts. Experience with the typical “boom-bust” dynamics of this type of population, and with populations that interact trophically with them, suggests a “predator pit” type of dynamics. This features a refuge from predation when abundance is very low, very destructive predation between an abundance level sufficient to attract interest from predators and an abundance level sufficient to satiate available predators, and, as abundance increases beyond this satiation point, decreasing specific predation mortality and population breakout. A simple formalism is developed to describe these dynamics. Examples of its application include (a) a hypothetical mechanism for progressive geographical habitat expansion at high biomass, (b) an explanation for the out-of-phase alternations of abundances of anchovies and sardines in many regional systems that appear to occur without substantial adverse interactions between the two species groups, and (c) an account of an interaction of environmental processes and fishery exploitation that caused a regime shift. The last is the example of the Baltic Sea, where the cod resource collapsed in concert with establishment of dominance of that ecosystem by the cod’s ‘wasp-waist” prey, herring and sprat.  相似文献   

12.
A turbidity survey of Narragansett Bay, Rhode Island, was made during the summer months of 1971 and included measurements of the attenuation function for scalar irradiance for daylight and the volume attenuation function for white tungsten light at various depths. One hundred and three stations were made at 17 different locations. Variations in the optical parameters were large, one standard deviation at any given location ranging from 7 to 23 per cent of the mean value. This variation was only slightly dependent on the state of the tidal currents, depth of the location, or weather factors. The magnitude of turbidity variations was almost 4-fold over a north-south range of 31 km within the estuary, with clearest water at the southern mouths of the Bay. A good correlation exists between turbidity parameters and Autumn values of suspended-material concentration found by Morton (1967), with both data sets showing highest turbidity and suspended concentrations in the West Passage of the Bay. “Wedges” and “bulges” of clear water were detected throughout the Bay but were most evident at the southern (Atlantic Ocean) end.Although it was not possible to fully define the parameters producing these temporal and geographic variations in estuarine turbidity, it is suggested that knowledge of these parameters can assist those concerned with the physical and biological state of an estuary, as well as divers and photographers plying their trades within its boundaries.  相似文献   

13.
Dynamic responses of structures due to earthquake excitation are the important problems in engineering, thus, the information concerned is plenty. However, most of the literature is relating to the discrete methods, particularly to the finite element method (FEM), and the one relating to the method combining both the “continuous” and “discrete” models is rare. The objective of this paper is to provide some information in this respect. First, the analytical solution for the natural frequencies and normal mode shapes of a “continuous” tower, without contacting water (or “dry” tower), carrying an eccentric tip mass possessing rotary inertia is determined. Next, the partial differential equation of motion for the forced vibration of the tower, contacting water (or “wet” tower), subjected to support excitation is transformed into a matrix equation by using the last natural frequencies and normal modes shape of the freely vibrating dry tower. Finally, the numerical integration method is used to solve the matrix equation to yield the seismic response of the wet tower. In theory, the mode superposition method is correct only if the total number of modes considered approaches infinity, however, numerical results of this paper reveal that superposition of only the lowest six modes will yield excellent results to be very close to the corresponding ones obtained from the conventional FEM. For this reason, the CPU time required by the presented approach is less than 5% of that required by the conventional FEM.  相似文献   

14.
According to the current paradigm of modern climatology and oceanography, the global ocean thermohaline circulation works as the so-called “global ocean salinity conveyor belt” – a system of currents connecting different ocean basins and most notably – the northern North Atlantic and northern North Pacific Oceans – the most distant regions of the world ocean. It is shown here that a slight disparity in freshwater redistribution between the Atlantic and Pacific oceans can be sufficient for building up and maintaining a global conveyor-type ocean thermohaline circulation. On the other hand, relatively small changes in this disparity leading to change in sea surface salinity contrasts between and in the north-south within the northern parts of these two oceans can easily change the conveyor.  相似文献   

15.
A sighting device, called a “probe sight”, is described which simplifies the measurement, taken, from a helicopter, of the float separations from a deployed expendable surface current probe. The separation distance between the floats (along with a known time release) is a measure of the surface current speed. The sighting device can be used at any altitude. Comparisons of the readings using the probe sight and the “normal” measurements taken from aerial photographs for 180 stations in the Chukchi Sea, show that the difference between the two methods is less than 10% when the current speed is greater than 10 cm sec−1. The largest difference (15%) occurs at those stations where the current speed is less than 10 cm sec−1.  相似文献   

16.
High-frequency (HF) radars have been developed to map surface currents offshore by means of land-based stations. Presently available radar systems use frequencies between 25 and 30 MHz and allow a spatial resolution of 1 km and ranges of up to 50 km. This paper reports on the experience with a shipborne radar and discusses problems which arise for the azimuthal resolution on a metal ship, the correction for the ship's speed, and limitations due to pitch-and-roll motions. Current measurements during cruises to the North Atlantic are presented. It has been found that, with the support of the satellite-supported Global Positioning System, the shipborne HF radar can measure surface current velocities with an accuracy of some 5 cm·s-1  相似文献   

17.
18.
A practical, low order and potential-based surface panel method is presented to predict the flow around a three-dimensional rectangular foil section including the effect of boundary layer. The method is based on a boundary-integral formulation, known as the “Morino formulation” and the boundary layer effect is taken into account through a complementary thin boundary layer model. The numerical approach used in the method presents a strongly convergent solution based on the iterative wake roll-up and contraction model including the boundary layer effect. The method is applied to a three-dimensional foil section for which the velocity distribution around the foil was measured using a 2D Laser Doppler Velocimetry system in a large cavitation tunnel. Comparison of the predicted velocity distributions both inside and outside of the boundary layer of the foil as well as the boundary layer shapes obtained from the numerical model show fairly good correlation with the measurements, indicating the robustness and practical worthiness of the proposed method.  相似文献   

19.
Seiche modes in a compound harbour (an “Outer Harbour” connected both to the sea and to an “Inner Harbour”) were studied using water level data and a numerical model. A variety of harbour oscillations are present, with periods up to 67 min. Periods longer than 25 min exceed resonant modes of the harbour. This paper addresses the characteristics and causes of the open-basin modes. The dual harbour open-basin mode is modified by constriction at the connection between harbours, by partial reflection at the antinode, and by the geometry of the entrance. The single-harbour open-basin mode excites the dual harbour closed-basin mode, which has nearly the same period. This forcing moves the closed-basin antinode and slightly changes the modal period, but the coupling permits the amplitude to increase through the closed-basin resonance. The water level response to wind stress is weak, but significant residual currents can occur, which take the form of clockwise gyres in each basin. Energetic peaks in the water level spectrum at 26, 35, and 67 min are shown to correspond to possible edge waves on the local shelf. The work has practical implications to port design, e.g. towards minimisation of ship ranging while at anchor.  相似文献   

20.
The Breaking Celerity Index (BCI) is proposed as a new wave breaking criterion for Boussinesq-type equations wave propagation models (BTE).The BCI effectiveness in determining the breaking initiation location has been verified against data from different experimental investigations conducted with incident regular and irregular waves propagating along uniform slope [Utku, M. (1999). “The Relative Trough Froude Number. A New Criteria for Wave Breaking”. Ph.D. Dissertation, Dept. of Civil and Enviromental Engineering, Old Dominion University, Norfolk, VA; Gonsalves Veloso dos Reis, M.T.L. (1992). “Characteristics of waves in the surf zone”. MS Thesis, Department of Civil Engineering, University of Liverpool., Liverpool; Lara, J.L., Losada, I.J., and Liu, P.L.-F. (2006). “Breaking waves over a mild gravel slope: experimental and numerical analysis”. Journal of Geophysical Research, VOL 111, C11019] and barred beaches [Tomasicchio, G.R., and Sancho, F. (2002). “On wave induced undertow at a barred beach”. Proceedings of 28th International Conference on Coastal Engineering, ASCE, New York, 557–569]. The considered experiments were carried out in small-scale and large-scale facilities. In addition, one set of data has been obtained by the use of the COBRAS model based upon the Reynolds Averaged Navier Stokes (RANS) equations [Liu, P.L.-F., Lin, P., Hsu, T., Chang, K., Losada, I.J., Vidal, C., and Sakakiyama, T. (2000). “A Reynolds averaged Navier–Stokes equation model for nonlinear water wave and structure interactions”. Proceedings of Coastal Structures ‘99, Balkema, Rotterdam, 169–174; Losada, I.J., Lara, J.L., and Liu, P.L.-F. (2005). “Numerical simulation based on a RANS model of wave groups on an impermeable slope”. Proceedings of Fifth International Symposium WAVES 2005, Madrid].Numerical simulations have been performed with the 1D-FUNWAVE model [Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B., and Dalrymple, R.A. (1998). “FUNWAVE 1.0 Fully Nonlinear Boussinesq Wave Model Documentation and User's Manual”. Research Report No CACR-98-06, Center for Applied Coastal Research, University of Delaware, Newark]. With regard to the adopted experimental conditions, the breaking location has been calculated for different trigger mechanisms [Zelt, J.A. (1991). “The run-up of nonbreaking and breaking solitary waves”. Coastal Engineering, 15, 205–246; Kennedy, A.B., Chen, Q., Kirby, J.T., and Dalrymple, R.A. (2000). “Boussinesq modeling of wave transformation, breaking and run-up. I: 1D”. Journal of Waterway, Port, Coastal and Ocean Engineering, 126, 39–47; Utku, M., and Basco, D.R. (2002). “A new criteria for wave breaking based on the Relative Trough Froude Number”. Proceedings of 28th International Conference on Coastal Engineering, ASCE, New York, 258–268] including the proposed BCI.The calculations have shown that BCI gives a better agreement with the physical data with respect to the other trigger criteria, both for spilling and plunging breaking events, with a not negligible reduction of the calculation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号