首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seasonal and interannual variation of upwelling along the west coast of India between 8°N and 24°N was studied for the period 1985 through 2003 using NOAA-AVHRR sea surface temperature data. The seasonal migration of pronounced upwelling, which follows the seasonal shift of the winds in southwest monsoon period and northeast monsoon, was confined. The temporal mean sea surface temperature images clearly show the upwelling season, as does the seasonal sea surface temperature anomaly. These dominate features of the upwelling system are also the most variable, with most of the variance being explained by the seasonal cycle. Quasi-cyclic behavior of seas surface temperature on interannual scales has also been observed.  相似文献   

2.
Sea surface salinity (SSS) data in the Atlantic Ocean is investigated between 50°N and 30°S based on data collected mostly during the period 1977–2002. Monthly mapping of SSS is done to extract the large-scale variability. This mapped variability indicates fairly long (seasonal) time scales outside the equatorial region. The spatial scales of the seasonal anomalies are regional, but not basin-wide (typically 500–1000 km). These seasonal SSS anomalies are found to respond with a 1–2 month lag to freshwater flux anomalies at the air–sea interface or to the horizontal Ekman advection. This relation presents a seasonal cycle in the northern subtropics and north-east Atlantic indicating that the late-boreal spring/summer season is less active than the boreal winter/early-spring season in forcing the seasonal SSS variability. In the north-eastern mid-latitude Atlantic, SSS is positively correlated to SST, with SSS slightly lagging SST. There are noticeable long-lasting larger-scale signals overlaid on this regional variability. Part of it is related to known climate signals, for example ENSO and NAO. A linear trend is present during the first half of the period in some parts of the basin (usually towards increasing salinities, at least between 20°N and 45°N). Based on a linear regression analysis, these signals combined can locally represent up to 20% of SSS variance (in particular near 30°N/60°W or 40°N/10–30°W), but usually represent less than 10% of the variance.  相似文献   

3.
Flux of siliceous plankton and taxonomic composition of diatom and silicoflagellate assemblages were determined from sediment trap samples collected in coastal upwelling-influenced waters off northern Chile (30°S, CH site) under “normal” or non-El Niño (1993–94) and El Niño conditions (1997–98). In addition, concentration of biogenic opal and siliceous plankton, and diatom and silicoflagellate assemblages preserved in surface sediments are provided for a wide area between 27° and 43°S off Chile. Regardless of the year, winter upwelling determines the maximum production pattern of siliceous microorganisms, with diatoms numerically dominating the biogenic opal flux. During the El Niño year the export is markedly lower: on an annual basis, total mass flux diminished by 60%, and diatom and silicoflagellate export by 75%. Major components of the diatom flora maintain much of their regular seasonal cycle of flux maxima and minima during both sampling periods. Neritic resting spores (RS) of Chaetoceros dominate the diatom flux, mirroring the influence of coastal-upwelled waters at the CH trap site. Occurrence of pelagic diatoms species Fragilariopsis doliolus, members of the Rhizosoleniaceae, Azpeitia spp. and Nitzschia interruptestriata, secondary components of the assemblage, reflects the intermingling of warmer waters of the Subtropical Gyre. Dictyocha messanensis dominates the silicoflagellate association almost year-around, but Distephanus pulchra delivers ca. 60% of its annual production in less than three weeks during the winter peak. The siliceous thanatocoenosis is largely dominated by diatoms, whose assemblage shows significant qualitative and quantitative variations from north to south. Between 27° and 35°S, the dominance of RS Chaetoceros, Thalassionema nitzschioides var. nitzschioides and Skeletonema costatum reflects strong export production associated with occurrence of coastal upwelling. Both highest biogenic opal content and diatom concentration at 35° and 41°–43°S coincide with highest pigment concentrations along the Chilean coast. Predominance of the diatom species Thalassiosira pacifica and T. poro-irregulata, and higher relative contribution of the silicoflagellate Distephanus speculum at 41°–43°S suggest the influence of more nutrient-rich waters and low sea surface temperatures, probably associated with the Antarctic Circumpolar Water.  相似文献   

4.
5.
The seasonal variability of sea surface height (SSH) and currents are defined by analysis of altimeter data in the NE Pacific Ocean over the region from Central America to the Alaska Gyre. The results help to clarify questions about the timing of seasonal maxima in the boundary currents. As explained below, the long-term temporal mean of the SSH values must be removed at each spatial point to remove the temporally invariant (and large) signal caused by the marine geoid. We refer to the resulting SSH values, which contain all of the temporal variations, as the ‘residual’ SSH. Our main findings are:
1. The maximum surface velocities around the boundaries of the cyclonic Alaska Gyre (the Alaska Current and the Alaska Stream) occur in winter, at the same time that the equatorward California Current is weakest or reversed (forming the poleward Davidson Current); the maximum surface velocities in the California Current occur in summer. These seasonal maxima are coincident with the large-scale atmospheric wind forcing over each region.
2. Most of the seasonal variability occurs as strong residuals in alongshore surface currents around the boundaries of the NE Pacific basin, directly connecting the boundaries of the subpolar gyre, the subtropical gyre and the Equatorial Current System.
3. Seasonal variability in the surface velocities of the eastward North Pacific Current (West Wind Drift) is weak in comparison to seasonal changes in the surface currents along the boundaries.
4. There is an initial appearance next to the coast and offshore migration of seasonal highs and lows in SSH, alongshore velocity and eddy kinetic energy (EKE) in the Alaska Gyre, similar to the previously-described seasonal offshore migration in the California Current.
5. The seasonal development of high SSH and poleward current residuals next to the coast appear first off Central America and mainland Mexico in May–June, prior to their appearance in the southern part of the California Current in July–August and their eventual spread around the entire basin in November–December. Similarly, low SSH and equatorward transport residuals appear first off Central America and Mexico in January–February before spreading farther north in spring and summer.
6. The maximum values of EKE occur when each of the boundary currents are maximum.

Article Outline

1. Introduction and background
2. Data and methods
2.1. Altimeter and tide gauge data
2.2. Atmospheric forcing—sea level pressure
2.3. Statistical gridding
3. Results
4. Summary and discussion
4.1. Alaska Gyre
4.2. Connections around the boundaries of the subarctic and subtropical gyres
4.3. Connections to the North Pacific Current
4.4. Offshore ‘propagation’ of the seasonal height and transport signals
4.5. Connections to the equatorial current systems along the boundaries
Acknowledgements
References

1. Introduction and background

This is the first of a two-part analysis of temporal variability of the NE Pacific Ocean’s surface circulation, as measured by satellite altimeters. Here we examine the seasonal variability. In Part 2 (Strub & James, 2002) we analyze the non-seasonal anomalies of the surface circulation over the 1993–1998 period, during which the 1997–1998 El Niño creates the largest signal. Formation of the seasonal cycles discussed here is the first step in creating the non-seasonal anomalies. The seasonal cycles themselves, however, provide new information on the response of the NE Pacific to strong seasonal forcing, on scales not previously addressed. This analysis quantifies the degree of connection, on seasonal time scales, between the boundary currents in the eastern subarctic and subtropical gyres, as well as the connection between the boundaries and the interior NE Pacific. It further shows a connection to the equatorial current system.Numerous papers describe aspects of the seasonal cycles for certain parameters in subregions of our larger domain. Chapters in Robinson and Brink (1998) review some of the past results from the coastal ocean in the regions between the Equator and the Alaska Gyre ( Badan; Hickey and Royer). Fig. 1 presents the climatological surface dynamic height field (relative to 500 m) in the NE Pacific, calculated from the long-term mean climatological temperature and salinity data of Levitus and Gelfeld (1992). The 500 m reference level is used to concentrate on the surface flow seen by altimeters. Although this climatology is overly smooth, it shows the major currents in the area. The broad, eastward North Pacific Current (also called the West Wind Drift) splits into the counterclockwise Alaska Gyre and the equatorward California Current. South of 20°N in summer, the California Current turns westward and flows into the North Equatorial Current, while in winter–spring, part of it continues along the Mexican mainland before turning westward ( Badan; Fiedler and Fiedler). The long-term climatology shows both paths. The North Equatorial Countercurrent (NECC) flows eastward between 5° –10°N to approximately 120°W, but is only weakly seen in the annual climatology from there to the cyclonic flow around the Costa Rica Dome near 8°N, 92°W. The NECC is a shallow current (found in the upper 200 m) and might appear more strongly if a shallower reference were used, but it is also seasonally intermittent. When the Intertropical Convergence Zone (ITCZ) is in its northern location near 10°N (summer), surface divergences and upwelling create a zonal trough in surface height, driving the NECC along the southern side of the trough. When the ITCZ moves south in winter, the NECC weakens or reverses.  相似文献   

6.
Isotherm vertical displacements within the thermocline and surface currents were investigated in the tropical Atlantic Ocean from 12°N to 12°S in 1982–1984, the period of the FOCAL-SEQUAL experiment. The study is based on a numerical simulation of an oceanic general circulation model tuned for the study of the equatorial regions, and on the analysis of the large scale thermocline displacements and currents using observed temperature profiles. Ground truth is provided by temperature and currents from moorings, records from inverted echo sounders and tide gauges as well as from drifting buoys. Comparison of the analysis with the ground truth shows that some important aspects of the low frequency variability are “captured” by the analysis when the data base is large enough.On large scales, the simulation generally resembles the analysis. Along the equator, the upwelling signal propagates eastward. The seasonal set-up of the westerly winds is associated with large westward currents, and a following overshoot of the zonal dynamic topography. Otherwise, the zonal dynamic topography is in near-equilibrium with the winds. The North Equatorial Countercurrent is portrayed comparably in the analysis and the simulation, where, after starting as a narrow eastward flow near 5°N, it extends northward through the northern summer. Interannual variations are found both in the analysis and the simulation. In particular, the thermocline flattened early in 1984.However, the simulation differs in significant respects from the real world: the equatorial undercurrent is too weak in the east and the model produces too much variability south of the equator. The 20°C isotherm is too shallow above the core of the thermocline, and the surface layer is too stratified. Because the surface layer is where the wind stress, main forcing of the model is applied, major effort will have to be devoted to parameterizing the near-surface downward mixing of momentum, heat and fresh water.  相似文献   

7.
Toxic Gymnodinium catenatum blooms usually occur in the Galician Rias at the end of the upwelling season, which necessitates a ban on harvesting shellfish extraction, with subsequent economic losses for this sector. One of the possible causes cited in the literature is the advection of populations from outside the area but no evidence was available to substantiate this.Oceanographic conditions at the end of the upwelling season in the NW coast of the Iberian Peninsula (39°–43°N) have been studied for the years 1986, 1990, 1995 and 1998. Sea surface temperature data from satellite images, wind data, drifter tracks and in situ oceanic data from the Galician Rias have been combined to clarify the oceanographic structures in the area at the commencement of the blooms. On the inner shelf, an inshore poleward current advecting warm water has been identified after the cessation of upwelling. On the middle and outer shelf, a tongue of cold water as a remnant of the previous upwelling continued to move southward. On the slope and offshore, the poleward counter current reported by several authors was detected carrying warm oceanic water northwards.It is suggested that the inshore poleward current, not previously reported in the literature, could advect initial populations of dinoflagellates to the Rias from northern Portuguese waters. This would explain why blooms such as G. catenatum have been found usually in Portuguese waters several weeks before the Galician Rias, showing an apparent northward movement, but cells of this toxic dinoflagellate species have not been found in waters of the offshore poleward counter current.  相似文献   

8.
Using a variational inverse model, a wintertime ocean circulation is obtained in the East Sea of Korea bounded by transects of 34° N, 38° N in latitude and 132° E in longitude and coastlines. The hydrographic data observed by FRDAK (Fisheries Research and Development Agency of Korea) are used for determining the vertical structure and also used as data constraints. In the current study, the model was constrained only by the geostrophic balance and bottom topography. Preliminary model results showed that the vertical distributions of temperature in February 1983 were homogeneous in the coastal region south of 35°30′ N and that the extension of cold water mass along the eastern coast of Korea was noticed in the northern part of the study area. Meandering northward flows with the scale of 150 km are also observed to be dominant in the surface layer (10–100 m).  相似文献   

9.
Daily observations of the sea surface temperature in the Marsdiep tidal inlet, which connects the shallow Dutch western Wadden Sea with the deeper North Sea, already started in the summer of 1860, over 140 years ago. Since the year 2000 the sampling frequency has strongly increased because of the use of electronic sensors and data logging by computer. Analysis of these temperature data has revealed variations with time scales from tidal, daily, seasonal, inter-annual, to centennial. The tidal temperature variations are generated by advection of the seasonally varying temperature gradient between Wadden Sea and North Sea, while the daily variations are mainly caused by the daily variation of solar radiation. The seasonal variation in sea surface temperature only lags a few days behind the coastal surface air temperature, contrary to the sea surface temperature in the deeper nearby North Sea, which is delayed with about 1 month. The North Atlantic Oscillation index has been used as large-scale proxy for the atmospheric forcing of the Wadden Sea temperature. Only for the winter and spring a significant correlation is found between temperature and the winter index. However, this correlation is so strong that also the annual mean temperature is correlated significantly with the North Atlantic Oscillation. At longer time scales, from decadal to centennial, also large temperature variations are observed, of the order of 1.5 °C. However, these are not related to long-term changes of the North Atlantic oscillation. These long-term temperature changes involve a cooling of about 1.5 °C in the first 30 years of the record and a similar warming in the last 25 years. In between, these long-term changes were smaller and more irregular. Similar conclusions can also be applied to individual seasons as well as to the date of the onset of spring.  相似文献   

10.
Comprehensive sea surface surveys of the partial pressure of carbon dioxide (pCO2) have been made in the upwelling system of the coastal (0–200 km from shore) southeastern tropical Pacific since 2004. The shipboard data have been supplemented by mooring and drifter based observations. Air–sea flux estimates were made by combining satellite derived wind fields with the direct sea surface pCO2 measurements. While there was considerable spatial heterogeneity, there was a significant flux of CO2 from the ocean to the atmosphere during all survey periods in the region between 4° and 20° south latitude. During periods of strong upwelling the average flux out of the ocean exceeded 10 moles of CO2 per square meter per year. During periods of weaker upwelling and high productivity the CO2 evasion rate was near 2.5 mol/m2/yr. The average annual fluxes exceed 5 mol/m2/yr. These findings are in sharp contrast to results obtained in mid-latitude upwelling systems along the west coast of North America where the average air–sea CO2 flux is low and can often be from the atmosphere into the ocean. In the Peruvian upwelling system there are several likely factors that contribute to sea surface pCO2 levels that are well above those of the atmosphere in spite of elevated primary productivity: (1) the upwelling source waters contain little pre-formed nitrate and are affected by denitrification, (2) iron limitation of primary production enhanced by offshore upwelling driven by the curl of the wind stress and (3) rapid sea surface warming. The combined carbon, nutrient and oxygen dynamics of this region make it a candidate site for studies of global change.  相似文献   

11.
This study describes the main seasonal stages in oceanographic conditions and phytoplankton off La Coruña (Galicia, NW Spain), during 1991 and 1992, based mainly on monthly cruises near the coast. Upwelling conditions were studied using an upwelling index calculated from local winds. The Galician coast is affected by a long upwelling season for most of the year. The upwelling pulses interact with the thermal stratification-mixing cycle of surface waters, primarily affecting the dynamics of phytoplankton. In addition, the presence of water masses of different salinity in the subsurface layers changes the stratification of the water column. The less-saline North Atlantic Central Water (NACW) was normally associated with upwelling events during summer. However, on several occasions during the study, the presence of Eastern North Atlantic Water (ENAW) of subtropical origin was observed with salinities up to 36·22 and temperatures between 13 and 14 °C.Observations were grouped into five main stages related to the degree of surface stratification and characteristics of phytoplankton communities. These stages were recognized in both annual cycles, and were termed: winter mixing, spring and autumn blooms, summer upwelling, thermal stratification and special events (red tides and downwelling). A homogeneous water column was the main characteristic of the winter stage, with high nutrient concentrations and low phytoplankton biomass. Eastern North Atlantic Water appeared at the end of this stage, which lasted from November to February. The spring and autumn blooms occurred along with weak thermohaline gradients at the surface, producing high phytoplankton concentrations. Favourable upwelling conditions and the presence of ENAW in a subsurface layer were the factors that most likely induced earlier blooms, while thermal gradients developed at the surface could have been more important for later blooms. Upwelling events during summer were related to a reduction in the depth of the surface mixed layer as the pycnocline moved upwards, and can produce significant phytoplankton accumulations. These summer blooms interrupted the thermal stratification stage, characterized by low nutrient and phytoplankton concentrations at the surface. The dominant phytoplankton in the study was composed mainly of diatoms, especially during blooms. However, a proliferation of red-tide dinoflagellates was observed along with weak upwelling conditions in late summer. Also in late summer, strong downwelling conditions caused the accumulation of warmer shelf waters inshore, inducing the sinking of particulate matter produced at the surface.  相似文献   

12.
ENSO related modulation of coastal upwelling in the eastern Atlantic   总被引:1,自引:0,他引:1  
An index of ENSO in the Pacific during early boreal winter is shown to account for a significant part of the variability of coastal SST anomalies measured a few months later within the wind driven West African coastal upwelling region from 10°N to 26°N. This teleconnection is thought to result from an atmospheric bridge between the Pacific and Atlantic oceans, leading to warm (cold) ENSO events being associated with a relaxation (intensification) of the Atlantic trade winds and of the wind-induced coastal upwelling. This ENSO related modulation of the wind-driven coastal upwelling appears to contribute to the connection observed at the basin-scale between ENSO and SST in the north Atlantic. The ability to use this teleconnection to give warnings of large changes in the West African upwelling several months in advance is successfully tested using data from the 1998 and 1999 ENSO events.  相似文献   

13.
Coastal upwelling in the California Current system has been the subject of large scale studies off California and Baja California, and of small scale studies off Oregon. Recent studies of the winds along the entire coast from 25°N to 50°N indicate that there are significant along-shore variations in the strength of coastal upwelling, which are reflected in the observed temperature distribution. Active upwelling appears to be restricted to a narrow coastal band (about 10–25 km wide) along the entire coast, but the region influenced by coastal upwelling may be much wider. Intensive observations of the upwelling zone during summer off Oregon show the presence of a southward coastal jet at the surface, a mean vertical shear, a poleward undercurrent along the bottom, and persistently sloping isopycnals over the continental shelf; most of the upwelling there occurs during relatively short periods (several days long) of upwelling-favorable winds. During the upwelling season off Oregon, the offshore Ekman transport is carried by the surface Ekman layer, and the onshore return flow occurs through a quasi-geostrophic interior. It is not known whether the structure and dynamics observed off Oregon are typical of the upwelling zone along the entire coast, though some of the same features have been observed off Baja California. Current and future research will eventually show whether the Oregon results are also applicable in the region of persistently strong upwelling-favorable winds off northern California, and in the region of complex bathymetry off central and southern California.  相似文献   

14.
The primary purpose of this paper is to describe the seasonal variation of the various currents which comprise the California Current System—the California Current, the California Undercurrent, the Davidson Current and the Southern California Countercurrent—and to investigate qualitatively the dynamical relationships among these currents. Although the majority of information was derived from existing literature, previously unpublished data are introduced to provide direct evidence for the existence of a jet-like Undercurrent over the continental slope off Washington, to illustrate ‘event’-scale fluctuations in the Undercurrent and to investigate the existence of the Undercurrent during the winter season.The existing literature is thoroughly reviewed and synthesized. In addition, and more important, geostrophic velocities are computed along several sections from the Columbia River to Cape San Lazaro from dynamic heights given by (1966), and (1964), and and (1976). From these data and from long-term monthly wind stress data and vertical component of wind stress curl data (denoted curl τ) given by (1977), interesting new conclusions are made. 1. The flow that has been denoted the California Current generally has both an offshore and a nearshore maximum in its alongshore coponent. 2. The seasonal variation of the nearshore region of strong flow appears to be related to the seasonal variation of the alongshore component of wind stress at the coast, τyN, at all latitudes. Curl τ near the coast may also contribute to the seasonal signal, accounting for the lead of maximum current over maximum wind stress from about 40°N northward. Large-scale flow separation and fall countercurrents that of headlands may account for the sudden occurrence of late summer and fall countercurrents that appear as large anomalies from the wind-driven coastal flow south of 40°N. 3. From Cape Mendocino southward a northward mean is imposed on the nearshore current distribution. The mean is largest where curl τ is locally strongest, in particular, off and south of San Francisco and in the California Bight. It may be responsible for the portion of the Davidson Current that occurs off California, for the San Francisco Eddy and for the Southern California Eddy or Countercurrent. When southward wind stress weakens in these regions, the northward mean dominates the flow. Flow separation in the vicinity of headlands may also be responsible for these northward flows. There is some evidence that during periods of northward flow a mean monthly τyN-driven southward current occurs inshore of the mean northward flow. At all latitudes, wind-driven ‘event’-scale fluctuations are expected to be superimposed on the seasonal nearshore flow. 4. The spatial distribution and seasonal variation oftthe offshore region of southward flow appear to be related to the spatial distribution and seasonal variation of curl τ. The seasonal variation of curl τ in these areas, curl τl, is roughly in phase with the seasonal variation of τy near the coast and roughly 180° out of phase with the seasonal variation of curl τ near the coast. Southward flow lags negative curl τ by from two to four months. The offshore region of southward flow is strongest during the summer and early fall. The mean annual location of the maximum flow is at about 250–350 km from shore off Washington and Oregon, and at 430 km off Cape Mendocino, 270 km off Point Conception and 240 km off northern Baja. The offshore branch of the flow bends shoreward near 30°N, which is consistent with the shoreward extension of the region of negative curl τ, so that by Cape San Lazaro (25°N), a single region of strong flow is observed within 200 km of the coast. 5. A third region of strong southward flow occurs at distances exceeding 500 km from the coast. The spatial distribution of this flow appears to be related to the spatial distribution of curl τ. 6. The mean northward flow known as the Davidson Current consists of two regions in which the forcing may be dynamically different—seaward of the continental slope off Washington and Oregon and between Cape Mendocino and Point Conception, the mean monthly northward currents appear to be related to the occurrence of positive curl τ; along the coast of Oregon and Washington the northward currents are not related to the occurrence of positive curl τ but are consistent with forcing by the mean monthly northward wind stress at the coast. 7. A region of southward flow that is continuous with the California Current to the south is generally maintained off Oregon and parts of Washington during the winter. This southward flow appears to separate the northward-flowing Davidson and Alaskan Currents in some time-dependent region south of Vancouver Island. The banded current structure is consistent with the distribution of curl τ, if southward flow is related to negative curl τ. 8. The seasonal progression of the California Undercurrent may be related both to the seasonal variation of the offshore region of strong flow (hence to curl τl) and to the alongshore component of wind stress at the coast. South of Cape Mendocino a northward mean also seems to be superimposed on the flow. This mean may be related to the occurrence of strong positive curl τ near the coast. Velocities at Undercurrent depths have two maxima, one in late summer and one in winter. The slope Undercurrent is indistinguishable, except by location, from the undercurrent that is observed on the Oregon-Washington continental shelf.  相似文献   

15.
Reproduction and larval development of the red squat lobster Pleuroncodes monodon is strongly linked to temperature changes provoked by upwelling along the Chilean coast. Here, we propose the hypothesis that both the breeding cycle and the spatial distribution of egg‐bearing females of P. monodon in Costa Rica are related to decreasing water temperatures during seasonal coastal upwelling. To describe the breeding cycle, squat lobsters were collected between February 2007 and January 2008 from the Central Pacific coast of Costa Rica. The presence of egg‐bearing females in other areas of the Costa Rican coast was studied from samples collected during two latitudinal research cruises (August 2008: rainy season; May 2009: dry season). Our results revealed that P. monodon has a marked seasonal breeding period (from November to March), which is associated with decreasing water surface temperatures registered during coastal upwelling events. All females with embryos close to hatching were found in areas surrounding the Gulf of Nicoya, when upwelling events have been reported. The near absence of egg‐bearing females in zones where upwelling does not occur suggests the existence of a strong correlation between upwelling events and the breeding cycle of Pmonodon. Our information should be considered when developing management measures for the sustainable use of this potential fishery resource in the Pacific coast of Central America.  相似文献   

16.
Seabed distributions of 234Th excess (Thxs) were determined in the upper centimetres of 38 sediment cores from the north-western Iberian Margin, sampled from 41–44°N and from 9–12°E during five OMEX II cruises. Three main areas, a northern, and at 42°38 and 42°N, were investigated during representative seasons (winter, spring and summer). Low 234Thxs activities in summer 1998 (18–252 Bq per kg) were similar to those measured in summer 1997. In winter 234Th also showed moderate excess. The highest values were observed in spring with surface 234Thxs values up to 402 Bq kg−1. Maximum penetration depths of 234Thxs ranged from a few mm to 3 cm. 234Thxs activities always showed a smooth decrease with depth, without any evidence of non-local mixing. Thus particle mixing on a short time scale can be described as an eddy diffusive process, and bioturbation rates, calculated on this basis, range from 0.02 to 3.07 cm2 per year. Data (activities, inventories, bioturbation rates) are discussed in order to relate the observed surface and down-core variations to spatial and seasonal trends. Using 234Thxs data in sediment as a substitute for sediment trap estimates, particle fluxes were calculated from 234Thxs inventories. The range of 234Th-derived particle fluxes for the north-western Iberian Margin is 16–1418 mg.m−2.d−1. Mean values indicate a gradual decrease of mass fluxes from the shelf to the open ocean. On a 100-day scale, the northern area (43–44°N) represents a low sedimentation regime. Further south, around 42°–43°N, particle inputs are more important. On the middle slope, around 1000 to 2000 m depth, high inventories and bioturbation rates indicate enhanced, and probably organic-rich, particle fluxes to the seafloor, particularly in spring.  相似文献   

17.
Nutrient and chlorophyll concentrations were measured in January 1997, 1998 and 1999 in the Gulf of the Farallones, CA at locations stretching north/south from Point Reyes to Half Moon Bay, and seaward from the Golden Gate to the Farallon Islands. The cruises were all carried out during periods of high river flow, but under different climatological conditions with 1997 conditions described as relatively typical or ‘neutral/normal’, compared to the El Niño warmer water temperatures in 1998, and the cooler La Niña conditions in 1999. Near-shore sea-surface temperatures ranged from cold (9.5–10.5°C) during La Niña 1999, to average (11–13°C) during 1997 to warm (13.5–15°C) during El Niño 1998. Nutrients are supplied to the Gulf of the Farallones both from San Francisco Bay (SFB) and from oceanic sources, e.g. coastal upwelling near Point Reyes. Nutrient supplies are strongly influenced by the seasonal cycle of fall calms, with storms (commencing in January), and the spring transition to high pressure and northerly upwelling favorable winds. The major effect of El Niño and La Niña climatic conditions was to modulate the relative contribution of SFB to nutrient concentrations in the coastal waters of the Gulf of the Farallones; this was intensified during the El Niño winter and reduced during La Niña. During January 1998 (El Niño) the oceanic water was warm and had low or undetectable nitrate, that did not reach the coast. Instead, SFB dominated the supply of nutrients to the coastal waters. Additionally, these data indicate that silicate may be a good tracker of SFB water. In January, delta outflow into SFB produces low salinity, high silicate, high nitrate water that exits the bay at the Golden Gate and is advected northward along the coast. This occurred in both 1997 and 1998. However during January 1999, a La Niña, this SFB feature was reduced and the near-shore water was more characteristic of high salinity oceanic water penetrated all the way to the coast and was cold (10°C) and nutrient rich (16 μM NO3, 30 μM Si(OH)4). January chlorophyll concentrations ranged from 1–1.5 μg l−1 in all years with the highest values measured in 1999 (2.5–3 μg l−1) as a result of elevated nutrients in the area. The impact of climatic conditions on chlorophyll concentrations was not as pronounced as might be expected from the high temperatures and low nutrient concentrations measured offshore during El Niño due to the sustained supply of nutrients from the Bay supporting continued primary production.  相似文献   

18.
19.
A three-dimensional numerical model is developed and used to study the coastal upwelling processes and corresponding seasonal changes in the sea level along the west coast of India. The upwelling and associated sea level variations are seen as a response of coastal ocean to pure wind stress forcing. The model is designed to represent coastal ocean physics by resolving surface and bottom Ekman layers as realistically as possible. The prognostic variables are the three components of the velocity field, temperature, salinity and turbulent energy. The governing equations together with their boundary conditions are solved by finite-difference techniques. Experiments are performed to investigate sea level fluctuations associated with the thermal response and alongshore currents of the coastal waters. The model is forced with mean monthly wind stress forcing of January, May, July and September representing northeast monsoon and different phases of the southwest monsoon. It is known from the observational study that the upwelling process reaches to the surface waters by May along the coastal waters of the extreme southwest peninsular region. The process is more intense in July compared to May and September and its strength decreases from south to north. However, during the northeast monsoon season, which is represented by January wind stress forcing in the model, downwelling is simulated along the coast. The model simulations of the coastal response are compared with the observations and are found to be in good agreement. The maximum computed vertical velocity of about 2.0 ×10 -3 cm s -1 is predicted in July in the southern region off the coast.  相似文献   

20.
Deep-circulation flow at mid-latitude in the western North Pacific   总被引:1,自引:1,他引:1  
Direct current measurements with five moorings at 27–35°N, 165°E from 1991 to 1993 and with one mooring at 27°N, 167°E from 1989 to 1991 revealed temporal variations of deep flow at mid-latitude in the western North Pacific. The deep-circulation flow carrying the Lower Circumpolar Deep Water from the Southern Ocean passed 33°N, 165°E northwestward with a high mean velocity of 7.8 cm s−1 near the bottom and was stable enough to continue for 4–6 months between interruptions of 1- or 2-months duration. The deep-circulation flow expanded or shifted intermittently to the mooring at 31°N, 165°E but did not reach 35°N, 165°E although it shifted northward. The deep-circulation flow was not detected at the other four moorings, whereas meso-scale eddy variations were prominent at all the moorings, particularly at 35°N and 29°N, 165°E. The characteristics of current velocity and dissolved oxygen distributions led us to conclude that the deep-circulation flow takes a cyclonic pathway after passing through Wake Island Passage, passing 24°N, 169.5–173°E and 30°N, 168–169°E northward, proceeds northwestward around 33°N, 165°E, and goes westward through the south of the Shatsky Rise. We did not find that the deep-circulation flow proceeded westward along the northern side of the Mid-Pacific Seamounts and eastward between the Hess Rise and the Hawaiian Ridge toward the Northeast Pacific Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号