首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for wave?permeable breakwater?porous seabed interactions is built based on an improved N?S equation.A numerical wave flume is constructed,and numerical studies are carried out by applying the finite difference method.In combination with a physical model test,the accuracy of the numerical simulation results is verified by comparing the calculated and measured values of wave height at measurement points and the seepage pressure within the breakwater and seabed.On this basis,the characteristics of the surrounding wave field and the internal flow field of the pore structure,as well as the evolution process of the fluctuating pore water pressure inside the breakwater and seabed,are further analyzed.The spatial distribution of the maximum fluctuating pore water pressure in the breakwater is compared between two cases by considering whether the seabed is permeable,and then the effect of seabed permeability on the dynamic pore water pressure in the breakwater is clarified.This study attempts to provide a reference for breakwater design and the protection of nearby seabeds.  相似文献   

2.
Zhang  Chong-wei  Zhuang  Qian-ze  Li  Jin-xuan  Huang  Luo-feng  Ning  De-zhi 《中国海洋工程》2022,36(5):667-681

A novel concept of wave attenuator is proposed for the defense of long waves, through integrating a flexible tail to the lee-side surface of a pile breakwater. The flexible tail works as a floating blanket made up of hinged blocks, whose scale and stiffness can be easily adjusted. A two-phase-flow numerical model is established based on the open-source computational fluid dynamics (CFD) code OpenFOAM to investigate its wave attenuation performance. Incompressible Navier—Stokes equations are solved in the fluid domain, where an additional computational solid mechanics (CSM) solver is embedded to describe the elastic deformation of the floating tail. The coupling of fluid dynamics and structural mechanics is solved in a full manner to allow assess of wave variation along the deforming body. The accuracy of the numerical model is validated through comparison with experimental data. Effects of the flexible tail on performance of the pile breakwater are investigated systematically. Dynamic behaviours of the tail are examined, and characteristics of its natural frequency are identified. For safety reasons, the wave loads impacting on the main body of the pile breakwater and the stress distribution over the tail are specially examined. It is found that both the length and stiffness of the tail can affect the wave-attenuation performance of the breakwater. A proper choice of the length and stiffness of the tail can greatly improve the long-wave defending capability of the pile breakwater. The maximum stress over the flexible tail can be restrained through optimising the deformation and stiffness of the tail.

  相似文献   

3.
Han  Qing-hua  Ma  Ye-xuan  Feng  Xin-xin  Xu  Wan-hai 《中国海洋工程》2019,33(2):226-236
How to reconstruct a dynamic displacement of slender flexible structures is the key technology to develop smart structures and structural health monitoring(SHM), which are beneficial for controlling the structural vibration and protecting the structural safety. In this paper, the displacement reconstruction method based on cubic spline fitting is put forward to reconstruct the dynamic displacement of slender flexible structures without the knowledge of modeshapes and applied loading. The obtained strains and displacements are compared with the results calculated by ABAQUS to check the method's validity. It can be found that the proposed method can accurately identify the strains and displacement of slender flexible structures undergoing linear vibrations, nonlinear vibrations, and parametric vibrations. Under the concentrated force, the strains of slender flexible structures will change suddenly along the axial direction. With locally densified measurement points, the present reconstruction method still works well for the strain concentration problem.  相似文献   

4.
In this paper a new approach is introduced for structural health monitoring of offshore jacket platforms. The procedure uses the measured ambient vibration responses and the corresponding readable natural frequencies and mode shapes of the structural system. Since offshore platforms are composed of heavy topsides supported by jacket structures, participation of the first mode is dominant in each direction in the response of the structure under field excitations. Moreover, ambient vibrations such as wave loads and boat impacts only excite the first modes of the structure. Therefore, it is difficult to find higher modes and the pertinent frequencies by use of accelerometers data. The introduced innovative method in this research uses the first few fundamental frequencies and mode shapes of the structure. The algorithm employs the inverse vibration technique to develop a simple two and three dimensional reference model for monitoring health of the structure. To show the efficiency of the proposed procedure, a case study is carried out on the models of a jacket-type platform in the Persian Gulf, namely SPD2. Finally, an uncertainty analysis is performed, due to the existence of noises and uncertainties in input data collected by accelerometers. Results indicate that the proposed method has the ability to detect the induced damages by a high level of accuracy considering probable sources of error.  相似文献   

5.
This paper presents an analytical, computationally efficient method for the wave reflection and dynamic displacement of a submerged flexible breakwater. The solution of the two-dimensional linearized hydrodynamic problem introduced is based on the eigenfunction expansion technique. The breakwater is assumed to be thin, impermeable, flexible, moored to the bed through tethers and kept in tension by means of a floating buoy at its tip. The beam structure is considered to be either clamped or hinged at the sea bed, situated in an arbitrary water depth and subjected to normal linear waves. Numerical examples presented by this method are compared with those obtained by the Boundary Integral Equation Method, presented by Williams et al. Comparisons show an excellent agreement over a wide range of parameters for the wave reflection and the dynamic displacement. Numerical results are presented, mainly to show the effect of the breakwater rigidity and the method of fixation on the wave reflection and the structural displacement over a wide range of wave frequencies.  相似文献   

6.
新型开孔工字板组合式防波堤波浪力特性试验研究   总被引:1,自引:1,他引:0  
开孔工字板组合式防波堤是基于透空板式防波堤的一种新型结构形式,具有自重轻、材料省的特点。为充分了解新型开孔组合式防波堤的受力特性,基于室内水槽物理模型试验,测量新型开孔工字板组合式防波堤上的波压力与结构总力,研究相对波高H/d、相对波长L/B对该新型防波堤结构表面压力的影响,讨论了该新型防波堤所受波浪力荷载与相对波高H/d、相对波长L/B的关系。结果表明,相对波高H/d是决定新型防波堤结构表面波压力和结构总力的主要影响因素。该新型防波堤结构波浪力荷载以垂直方向受力为主,新型防波堤结构所受竖向总力远大于水平总力,最大可达到15倍。新型防波堤水平总力随相对波长L/B先增大后趋于稳定。相对波长L/B=3.617是防波堤结构水平总力变化幅度的分界点。  相似文献   

7.
Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a vertical rear wall. The width of QCB' s base slab is about half that of SCB, which makes QCB suitable to be used on relatively finn soil foundation. The numerical wave flume based on the Reynolds averaged Navier-Stokes equations for impressible viscosity fluid is adopted in this paper to simulate the hydraulic performances of QCB. Since the geometry of both breakwaters is similar and SCB has been studied in depth, the hydraulic performances of QCB are given in comparison with those of SCB.  相似文献   

8.
The PEMs' (Pressure Equalizing Modules) passive vertical drainage system was tested at the coast just south of Egmond (The Netherlands) from November 2006 to December 2010. The present study aims at providing qualitative and quantitative insight into the impact of the PEMs on the nearshore morphological development at Egmond. The evaluation is based on a comparison of the annually observed temporal evolution of the nearshore morphology prior, during and after the PEM installation period. To this end a number of aggregated volumetric profile parameters derived from the surveys were compared for the test area and for an adjacent area which acted as a reference. Besides the PEMs, the study area is also influenced by beach and shoreface nourishments. Therefore, the nourishments carried out just north and south of the Test and Reference areas in 2004 and 2005 prior to the installation of the PEMs were specifically considered in the analysis. From 2008 onward the morphological behavior of the nearshore zone was dominated by the alongshore coherent net offshore migration of the multiple bar system and no obvious feeding of sand from the nourishments toward the Test and Reference areas could be identified. The influence of the nourishments, the PEMs, and the natural variability were difficult to distinguish at the Test and Reference areas. Therefore, the morphological development of the Test area relative to that of the Reference area was adopted as the primary evaluation criteria. Interestingly, the installation period (2007–2010) exhibited statistically significant different CSIs (coastal state indicators) compared with the 4 years prior to installation (2003–2006) for both the Test and the Reference areas. Because both the Test and the Reference areas exhibited very similar behavior prior, during and after the PEM installation period, the analysis was unable to identify the impact of the PEMs. No influence of the PEMs on the local beach and dune morphology could be established. Considering the above and given the fact that the PEM system was also not able to induce a measurable accretion at a similar experiment in Denmark we consider it unlikely any efficacy of the PEM system will be identified in future experiments.  相似文献   

9.
Fraser Winsor   《Ocean Engineering》2003,30(1):504-84
The subject of wave impact on offshore structures and their components is important to vessel designers and operators for many reasons. They are often required to quantify these impact loads. Standard methods for wave load prediction will underestimate the forces on these structures due to intermittent loading. This necessitates the use of physical model tests to establish wave impact loads. The model measurement systems are designed to have high stiffness. This ensures that the natural frequency of the structure is above the wave frequency. However, it is widely believed that impacting waves contain high-frequency energy components that cause the structure to vibrate at its modal frequencies. This impact-induced vibration is recorded by the measuring system as a force (inertial force), and corrupts the actual applied force measurement. Before scaling can occur, the inertial force must be removed from the measured signal.A number of techniques for removing inertial force from measured signals are described in the published literature. Three methods are discussed, implemented and compared in this paper. The algorithms and procedures are presented. Each technique contains inherent and unique problems, while some are common to all methods.Neither of the techniques produced results that are fully satisfactory. The main problem is unwanted high-frequency content after the application of the methods. While neither method offers the perfect solution, the use of digital filtering techniques is recommended based on their relative performance and ease of implementation.  相似文献   

10.
Free spanning pipelines are suspended between two points on an uneven seaffoor. The variations of structural conditions, such as the changes in soil property, flow velocity, axial force and span length etc., directly affect working performance of the whole submarine pipeline system. But until now few researches have focused on condition identification for free span (CIFS). A method to identify the operational conditions of free spanning submarine pipelines based on vibration measurements is proposed in this paper. Firstly, the ill-posedness of CIFS is analyzed in detail. Secondly, the framework for CIFS based on the nonlinear kernel discriminant analysis (KDA) is established. Thirdly, the internal structural characteristics of natural frequencies, normalized frequencies and frequency change ratios are studied. And then the condition feature vector for CIFS is extracted by use of the vibration measurements. Finally, the validity of the proposed approach is evaluated by a case study. The results demonstrate that the proposed approach can effectively identify each condition of free span when condition variation occurs even if under measurement noise. It is concluded that the proposed method is a promising tool for CIFS in real applications.  相似文献   

11.
《Coastal Engineering》2001,44(2):117-139
In this paper, laboratory data for free surface displacements and velocity fields in front of a caisson breakwater covered with wave-dissipating blocks, together with wave pressures acting on the caisson, are presented and discussed. The core of the breakwater is made of a concrete caisson with a vertical front wall. The caisson is protected by a thick layer of tetrapods and is supported by a rubble mound. The breakwater is placed on the 1/25 impermeable slope. Two types of incident waves are used in the experiments: nonbreaking waves and spilling-type breaking waves. In the breaking wave case, the incident wave breaks offshore before it reaches the breakwater. The velocity data are obtained by using both the Laser Doppler Velocimeter (LDV) and the Electromagnetic Current Meter (EMCM). The raw data are analyzed using a numerical-filtering scheme so that turbulent fluctuations are separated from the phase-dependent wave motions. The vertical profiles of the time-averaged (over a wave period) turbulent velocity components at several vertical cross-sections in front of the breakwater are then analyzed. The spatial variations of the time-averaged turbulence velocity suggest that turbulence is generated inside the protective armor layer and transported into the flow region in front of the breakwater. The wave pressures on the vertical face and on the bottom of the caisson are also reported.  相似文献   

12.
This is a theoretical study of a breakwater-seawall wave-trapping system. The breakwater, being flexible, porous and thin beam-like, is held fixed in the sea bed and idealized as one-dimensional beam of uniform flexural rigidity and uniform mass per unit length. The seawall, being vertical, rigid and impermeable, is located behind the breakwater by a distance of L. The velocity potentials of the wave motion are coupled with the equation of motion of the breakwater. Analytical solutions in closed forms are obtained for the reflected and transmitted velocity potentials together with the displacement of the breakwater. The free-surface elevation, hydrodynamic forces acting on both the breakwater and the seawall are determined. It is found that the values of L, at which the minimum reflected-wave amplitudes reach, are in the range of λ to λ for breakwaters with different rigidity and permeability. It is shown that, when the spacing L maintains values in the range of λ to λ, the resultant amplitudes in both regions can be reduced to a favorable amount for any wave and structural parameters. It is also shown that the hydrodynamic forces on the breakwater decrease as the structural flexibility and porosity increase. However, with increases of the structural porosity and flexibility, the seawall experiences an increase of the hydrodynamic forces. Various results are presented in this paper to illustrate the effects of the structural and perous parameters together with the spacing on the response and efficiency of the breakwater-seawall wave-trapping system.  相似文献   

13.
This paper presents results obtained from a series of experiments conducted in wave flume to assess the influence of the offshore low-crested breakwater as a defence structure in reducing the wave forces on vertical seawall. The main aim of the tests was to know the effect of crest elevation of the offshore low-crested breakwater as a rehabilitation structure for the existing damaged shore protection structures. In this study five relative breakwater heights are used and associated flow evolution was analyzed. With the sections proposed in this study, it is possible to achieve considerable reduction of wave force on the seawall. Modification factor is proposed to estimate the shoreward force on the seawall defenced by low-crested breakwater.  相似文献   

14.
针对海工作业平台、海洋养殖网箱等海洋装备的安全防护问题,提出了一种带空气透平的后弯管浮式防波堤,该空气透平既可将作用在防波堤上的波浪能转化成机械能并用于发电,还可显著减小防波堤的锚链力。在介绍了防波堤原理和结构特点的基础上,设计了物理实验模型,并在实验室造波池内进行了模型试验,研究了波浪周期、波高、吃水深度与弯管数量等因素对后弯管浮式防波堤透射系数和锚链力的影响规律。研究结果表明,波浪周期越短,波高越低,防波堤的透射系数越小,锚 链力越小,其消波性能优于传统的浮式防波堤.  相似文献   

15.
YANG  He-zhen 《中国海洋工程》2003,17(4):495-504
In this paper Nondestructive Damage Detection (NDD) for offshore platforms is investigated under operational conditions. As is known, there is no easy way to measure ambient excitation, so damage detection methods based on ambient excitation have become very vital for the Structural Health Monitoring (SHM) of offshore platforms. The modal parameters (natural frequencies, damping ratios and mode shapes) are identified from structural response data with the Natural Excitation Technique (NExT) in conjunction with the Eigensystem Realization Algorithm (ERA) . A new method of damage detection is presented, which utilizes the invariance property of element modal strain energy. This method is to assign element modal strain energy to two parts, and defines two damage detection indicators. One is compression modal strain energy change ratio (CMSECR); the other is flexural modal strain energy change ratio (FMSECR). The present modal strain energy is obtained by incomplete modal shape and structural stiffness matr  相似文献   

16.
Dynamic Response Behaviors of Upright Breakwaters Under Breaking Wave Impact   总被引:10,自引:0,他引:10  
- The dynamic response behaviors of upright breakwaters under broken wave impact are analysed based on the mass-damper-spring dynamic system model. The effects of the mass, damping, stiffness, natural period, and impulse duration (or oscillation period) on the translation, rotation, sliding force, overturning moment, and corresponding dynamic amplifying factors are studied. It is concluded that the ampli-ying factors only depend on the ratio of the system natural period to impulse duration (or oscillation period) under a certain damping ratio. Moreover, the equivalent static approach to breakwater design is also discussed.  相似文献   

17.
A seabed-type of breakwater applicable to very soft ground without the need for soil improvement is newly developed. This type of soft-ground breakwater is expected to ensure sufficient lateral resistance and prevent excessive consolidation settlement due to self-weight of the breakwater. In this paper, lateral and consolidation behaviors of soft-ground breakwater were investigated by performing model tests and finite element simulations. The results revealed that the bottom wall and buoyant box, which are the main features of soft-ground breakwater, contribute to the increase in lateral resistance and to the control of the consolidation settlements, respectively, and that Terzaghi's consolidation theory could be conservatively adopted in deriving the consolidation settlements of soft-ground breakwater proposed herein.  相似文献   

18.
针对T型透空式防波堤,通过浪高仪采集防波堤前后不同位置波面变化曲线,使用声学多普勒流速仪(NDV)测量不同位置流速随时间的变化,并分析了其相位平均流速的分布。基于VOF法的二维波浪数值水槽,对规则波作用下T型防波堤附近的动力特性进行了计算,水槽模型试验结果和数值模拟结果对比表明,数值计算结果与实验值吻合较好。采用该模型进一步对T型防波堤附近波浪场、流线、紊动动能、紊动动能耗散率变化以及不同尺寸的防波堤消浪效果进行模拟计算,重点分析了入射波高、防波堤入水深度和防波堤宽度变化的影响。  相似文献   

19.
人类活动和自然因素共同但有区别的作用引起了长江口及邻近海域富营养化,造成夏季底层水体低氧现象加剧,成为近海生态健康恶化的重要征兆。本文梳理了国内外学者在该海域低氧研究中获得的重要认识,分析了底层水体溶解氧的潮周期尺度、事件尺度和年际尺度的变化特征,重点从层化与物质输运角度,介绍了长江冲淡水、台湾暖流、海洋锋面、风和潮等过程影响底层水体中氧气消耗或补充的机制,揭示了本海域主要低氧现象分别位于长江口和浙江近海的特征,对比了两处低氧区形成与演变的异同机制。目前,对低氧形成机制的定性认识和多尺度变化特征的了解已经有较好的基础,未来需要从多学科交叉角度加强现场试验和定量研究,掌握低氧的长期演变趋势,研发底层水体低氧的预测预警技术,支撑我国河口近海的生态预警监测工作。  相似文献   

20.
基于1987年和1988年夏季在古镇口港直立堤前的实测资料,对波浪和波压力连续记录进行了统计分析和谱估计,研究了在堤前海浪不发生破碎条件下,堤前波浪和堤面不同高程上压力波的波面高度概率分布、堤前波浪波高和周期与波压力幅度和周期的概率分布特征、入射波行近提前过程中的谱变化及堤面不同高程上压力谱的变化特征。主要结果总结在本文最后一节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号