首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
南海表层流场的卫星跟踪浮标观测结果分析   总被引:14,自引:1,他引:14  
运用卫星跟踪漂移浮标资料分析南海表层海流 ,研究了有关海域的表层海流特征。结果表明 ,秋、冬季入侵南海的黑潮水有一小部分沿台湾南岸折回黑潮主干 ,并有时在台湾西南外海形成反气旋涡旋 ,其余大部分黑潮水西行进入南海内部。吕宋岛西部沿岸流始于 1 3°N以南 ,沿菲律宾西海岸北上抵达吕宋岛西北角 ,与黑潮水混合后西行  相似文献   

2.
冬季东海黑潮上层水变化特征的分析   总被引:2,自引:0,他引:2  
东海黑潮水团是东海海域的主要水团。夏季,东海黑潮水团一般划分为四层结构:黑潮表层水、黑潮次表层水、黑潮中层水和黑潮深层水。在冬季,由于大陆沿岸水系势力减弱,以及强烈的表层冷却产生的垂直对流作用,使黑潮表层水变性而和次表层水融为一体,从而使海面至400米层左右的黑潮水体呈现高盐特征。因此,冬季的东海黑潮水团变为三层结构,即黑潮上层水、黑潮中层水和黑潮  相似文献   

3.
黑潮与邻近东海生源要素的交换及其生态环境效应   总被引:2,自引:0,他引:2  
宋金明  袁华茂 《海洋与湖沼》2017,48(6):1169-1177
黑潮与东海生源要素的交换对东海的生态环境有重大影响,交换主要是经台湾东北部海域输送至东海陆架和通过日本九州西南海域由东海陆架向外海的黑潮输出两个通道。中国科学院海洋先导专项对黑潮与邻近东海生源要素的交换特征进行了系统的调查和研究,获得了一些新的认识:(1)在台湾东北部区域,碳主要以表层水-次表层水为载体输入,秋季的输入量高于夏季;黑潮溶解态营养盐的输入占据绝对主导地位,且以黑潮次表层热带水-中层水的输入为主,输入通量春季高于夏、秋季,可为东海春季水华提供一定的物质基础,但输入到东海的黑潮水其氮磷比与Redfield比值(16:1)接近,这些"正常水"——黑潮的输入显然对调和东海异常高的氮磷比有重要的作用,从而对东海的生态环境起到"稳定和缓冲"作用。所以,黑潮水对东海的输入不仅维持补充了东海生态系统运转所需的生源要素,更为重要的是缓冲了受人为影响强烈的东海海水的高氮磷比,使东海本已失常的营养盐结构向合适的氮磷比方向转变。因此,黑潮与东海生源要素的输入在一定程度上起着稳定和缓和东海生态环境的作用。(2)通过构建的海水Ba-盐度新指标体系,定量细致刻画了黑潮对东海生源物质在台湾东北部区域的输入范围和程度,黑潮次表层水从台湾东北陆架坡折处沿底部向北偏西方向入侵东海,其近岸分支可以入侵到浙江近岸,其黑潮次表层水占比仍可达到65%左右。垂直方向上,陆架外侧站位受黑潮次表层水的影响范围更大,黑潮水占50%比例位置可延伸至外侧TW0-1站位(122.59°E,25.49°N)表层,而内侧靠近大陆的站位则只限于陆架中部位置底层。  相似文献   

4.
东海黑潮锋面涡旋在陆架水与黑潮水交换中的作用   总被引:7,自引:2,他引:7  
根据NOAA卫星红外影像和水文、化学、生物的观测资料,分析了黑潮锋面涡旋中的黑潮水向陆架一侧倒卷,陆架混合水被卷入黑潮,以及深层富营养盐水被泵吸到上层海洋的基本形态。分析表明黑潮锋面涡旋在陆架水与黑潮水的交换中起十分重要的作用。本文对3个锋面涡中的水交换量进行计算得到:卷入到黑潮中的陆架混合水平均为0.44×105m3/s,而进入陆架的倒卷黑潮暖水仅为0.04×106m3/s.对于整个东海陆架边缘,锋面涡作用可使1.8×106m3/s的陆架混合水卷入黑潮。在锋面涡存在情况下,被泵吸到真光层并向陆架方向输运的NO3-N,其单宽输运量为974μmol/(m·s),而无锋面涡存在时仅为79μmol/(m·s).锋面涡造成的陆架方向的NO3-N输运量为1.7×105t/a.  相似文献   

5.
东海PN断面水团分布的季节变化   总被引:1,自引:0,他引:1  
利用PN断面的高分辨率CTD温度、盐度和密度资料,采用曲线族拟合的水团分析方法分析发现,PN断面处的水团有明显的陆架水和黑潮水的交汇特征,且随着季节的变化PN断面处的水团特征也发生明显的变化.夏季,黑潮水核心离陆架的距离最远且深度较深,陆架水与黑潮的混合水浮置于黑潮水本体之上且向深海拓展的最远,隶属度在PN断面上200 m的分布几乎呈水平状;秋季,黑潮水主体离陆架的距离最近,并将陆架混合水向陆架压迫,使得隶属度等值线由夏季的平直状态向陆地弯曲;冬季,黑潮水团的核心占据了深海区域的整个表层和次表层,且位置相对于秋季更向深海移动,黑潮水与陆架水的交汇处也由秋季的陆架移向陆坡;春季,是唯一可以清楚地看到陆架混合水隶属度分布的季节,此时陆架混合水充满整个陆架海域,而黑潮水的核心进一步远离陆架.海面风场和净热通量场通过改变混合层的深度影响PN断面处黑潮水和陆架水之间的混合,而海面降水对于PN断面上的水团分布特征没有显著影响.  相似文献   

6.
前言 长期以来,海洋学界为阐明黑潮与陆架水的混合机制,长年累月进行着现场调查与研究。本文在此提出应用卫星红外信息,能够直观、快速、大范围和同步获取作为其中一个主要环节的表层水系配置。这至少对东海表层水来说,进一步认识对马暖流及其分支黄海暖流的主体是源于黑潮水系和陆架水的混合水,而不是日本九州西南海域分出来的黑潮水,有着重要的意义。  相似文献   

7.
东海陆架水域营养盐的季节变化和物理输运的规律   总被引:11,自引:2,他引:11  
本文利用“中日黑潮联合调查研究”的资料探讨营养盐在陆架水域的分布和物理输运的基本特征、形成原因和季节变化过程.研究表明,东海陆架水中的营养盐是冬季沿岸低盐的富营养盐水向东海北部和南部输入并与入侵陆架的黑潮上层低营养盐水混合变性形成的.指出陆架富营养盐水的边界位置随季节变化而有明显的移动规律.叙述了营养盐随沿岸水东扩、和黑潮水北上等过程中的混合扩散和输运规律.  相似文献   

8.
依据自适应数值模型,模拟了东中国海冬、夏季三维斜压Lagrange环流。模拟发现:台湾暖流的上层水来自台湾海峡入流和台湾东北黑潮的表层水;50m以下的深底层水主要由台湾东北黑潮的次表层水入侵陆架生成。冬季对马暖流外海一侧主要由黑潮水构成,而其近陆一侧由台湾暖流和陆架混合水构成,西朝鲜沿岸流在济州海峡汇入对马暖流;夏季它还包含转向后的长江冲淡水。冬季黄海暖流并非对马暖流的直接分支,黄海暖流水是对马暖流水和陆架水混合而成,这与传统观点相悖,而与中韩黄海水循环动力学合作调查结果一致。黄海暖流东西两侧分别为2支向南流动的滑岸流。夏季黄海环流构成基本封闭的逆时针环流。冬季渤海环流主要有一逆时针大环流,但辽东湾的环流是顺时针向的。渤海环流冬强夏弱,水流在渤海海峡北进南出。  相似文献   

9.
对马暖流水起源的模糊分析   总被引:1,自引:0,他引:1  
应用模糊集的数量指标分析方法和模糊识别的择近原理,采用1987年夏、冬季和1988年春、秋季“向阳红09”号黑潮调查资料,定量地分析了对马暖流水的源区的模糊特性及其起源.结论是:(1)对马暖流表层水位于其源区的强混合区中,其水体具有混合水的特性.(2)对马暖流水的来源一年四季不尽相同,具有复杂的结构.春季在近表层主要来源于东海沿岸水(包括东海陆架水),而东海混合水与黑潮表层水次之(属沿岸型);夏季由于表层盐度锋的影响,在近表层主要来源于黑潮表层水,而东海混合水次之(属黑潮型);在秋季与冬季,因大陆径流影响减弱,海水的对流与涡动混合逐步加剧,对马暖流表层水的来源呈现出东海型与黑潮型交错的复杂状态.此外,对马暖流深层水一年四季均由黑潮次表层水演变而来. 本文将水的混合性质与水的来源区别开来,以利于对传统的看法和近几年流行的新观点作进一步讨论.  相似文献   

10.
利用1994年8-9月期间,由台湾海峡两岸的4艘海洋调查船在南海东北部海域所获之CTD和ADCP资料,并结合1992年3月间在同一海域获取的CTD资料及部分历史水文资料,对该区域的海水特性以及黑潮水入侵南海等问题进行了分析探讨。结果表明:调查期间,本海区水团分布与冬末、春初(1992年3月)航次基本相似,即南海和西北太平洋海域的海水结构有着各自相对独立的温、盐度特性。虽发现有黑潮水穿越巴上海峡进入南海,但其势力甚弱。因此,在夏末秋初,黑潮亦无直接的分支深入南海,即使在巴士海峡北端进入台湾海峡的黑潮水,其影响也是十分微弱的。由等密度面、地转流分析和实测ADCP资料显示,在调查海区的东南海域存在一支较强的N向流动。它沿菲律宾西海岸北上,绕过吕宋岛西北角流向东北,在巴上海峡呈现与黑潮水混合的迹象,其水体在冬季明显呈高温、低盐的特性;夏季则为相对低温、低盐。故在冬季的几幅卫星图像上也有较好的体现,很有可能长年存在。  相似文献   

11.
渤、黄、东海夏季环流的数值模拟   总被引:18,自引:1,他引:18  
在POM的基础上 ,建立一个σ坐标系下的三维斜压预报模式 ,考虑了海底地形、外来流、长江径流、海面风应力、海面热交换等多方面因素的影响 ,较好地模拟了夏季东中国海环流的情况。其结果表明 ,黑潮在流经东海时沿东海陆坡流动 ,其途径随陆坡等深线走向而变 ,在其两侧出现一些涡旋。夏季台湾暖流上层水主要来自台湾海峡 ,底层水主要由台湾东面黑潮的次表层水入侵陆架生成。夏季进入朝鲜海峡的对马暖流的来源是多方面的 ,其中有 :台湾暖流、黑潮分支、长江冲淡水与西朝鲜沿岸流的混合水。长江冲淡水在出长江口后 ,很快转向北流动 ,到34°N附近转向东南方向。在长江口东北面存在两个中尺度的涡旋。夏季黄海冷水环流由南北两部分组成 ,表层流速大 ,底层流速小。在青岛 石岛附近还存在一个中尺度的反气旋型涡旋  相似文献   

12.
基于1993—2017年卫星高度计海面高度异常中尺度涡旋追踪数据集,对东海陆架区及从西北太平洋入侵东海的涡旋进行路径分类、季节变化及特征参量统计分析,并结合再分析流场资料,进行背景流场、涡度场分析。研究结果显示,近25 a,在东海追踪到318个气旋涡和276个反气旋涡。根据涡旋运动路径将其分为:东海陆架浅海生成往深海传播型(148个)、深海生成向东海陆架浅海传播型(35个)、沿等深线运动型(180个)、徘徊型(121个)、外来入侵到达东海陆架型(25个)及外来入侵到达东海深海型(85个)。6类涡旋的数量存在明显的季节分布,各个类型气旋与反气旋涡数量的季节分布也各不相同。其中,沿等深线运动型涡在春、夏季的数量高于秋、冬季。陆架浅海区生成往深海运动型涡的季节分布较为平均,气旋式涡在夏季数量最少,在春季和冬季数量较多。黑潮与涡旋数量的季节分布有关。徘徊型涡的平均生命周期最长,约为44 d;陆架浅海生成往深海运动型及外来入侵到达东海陆架的中尺度涡具有最大的平均振幅,为13.2 cm;外来入侵到达东海陆架型涡具有最大的直径,为122 km;外来入侵到达东海深海型涡在进入东海后的生命周期、振幅、直径在数值上均为最小。  相似文献   

13.
As a fundamental study to evaluate the contribution of the Kuroshio to primary production in the East China Sea (ECS), we investigated the seasonal pattern of the intrusion from the Kuroshio onto the continental shelf of the ECS and the behavior of the intruded Kuroshio water, using the RIAM Ocean Model (RIAMOM). The total intruded volume transport across the 200m isobath line was evaluated as 2.74 Sv in winter and 2.47 Sv in summer, while the intruded transport below 80m was estimated to be 1.32 Sv in winter and 1.64 Sv in summer. Passive tracer experiments revealed that the main intrusion from the Kuroshio to the shelf area of the ECS, shallower than 80m, takes place through the lower layer northeast of Taiwan in summer, with a volume transport of 0.19 Sv. Comparative studies show several components affecting the intrusion of the Kuroshio across the 200 m isobath line. The Kuroshio water intruded less onto the shelf compared with a case without consideration of tide-induced bottom friction, especially northeast of Taiwan. The variations of the transport from the Taiwan Strait and the east of Taiwan have considerable effects on the intrusion of the Kuroshio onto the shelf.  相似文献   

14.
利用NOAA卫星AVHRR传感器反演的MCSST图像 ,分析了台湾东北海域冷涡的季节变化。结果表明 :( 1 )台湾东北海域冷涡终年存在 ,出现在彭佳屿附近海域、台湾岛北部沿岸海域和东岸北部沿岸海域 3处 ,夏、秋季有 3涡或双涡并存现象。 ( 2 )彭佳屿附近海域冷涡 ,最早出现于 3月底 ,最迟发生于 1 1月中 ,冬季消失 ,表层形态、尺度、位置和强度有明显的季节性变化。 ( 3)冷涡的季节性变化可能与黑潮锋面弯曲的摆动和台湾海峡水入侵东海陆架间的动力平衡有关。  相似文献   

15.
东海西部陆架海域水团的季节特征分析   总被引:3,自引:1,他引:2  
On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis method. The results show that the distributions and temperature-salinity characteristics of the water masses in the study area are of distinct seasonal difference. In the western East China Sea shelf area, there are three water masses during winter, i.e., continental coastal water(CCW), Taiwan Warm Current surface water(TWCSW) and Yellow Sea mixing water(YSMW), but four ones during summer, i.e., the CCW, the TWCSW, Taiwan Warm Current deep water(TWCDW) and the YSMW. Of all, the CCW, the TWCSW and the TWCDW are all dominant water masses. The CCW, primarily characterized by a low salinity, has lower temperature, higher salinity and smaller spatial extent in winter than in summer. The TWCSW is warmer, fresher and smaller in summer than in winter, and it originates mostly from the Kuroshio surface water(KSW) northeast of Taiwan, China and less from the Taiwan Strait water during winter, but it consists of the strait water and the KSW during summer. The TWCDW is characterized by a low temperature and a high salinity, and originates completely in the Kuroshio subsurface water northeast of Taiwan.  相似文献   

16.
This paper describes the water circulation in the Kuril Basin and its role in the formation and seasonal variation in intensity of the large anticyclonic eddies which occur in the basin. Oceanographic data for the period June 1977 through June 1979 suggest that these eddies develop in summer and decay in winter. In summer, the eddy development is associated with a deepening of the isopycnals caused by the surface flow of the Soya Warm Current over the basin, and the deep advection of cold, less saline, oxygen-rich water from Terpenia Bay and the eastern continental shelf of Sakhalin Island. In winter, the eddy decay is caused by surface cooling and convective mixing downward of the warm, saline surface water, which causes the isopycnals to rise and leads to an attenuation of the eddies. This combination of the summer influx of water into the region, and the fall and winter cooling of the eddies leads to the annual variation in eddy intensity.  相似文献   

17.
东海陆架环流季节变化的模拟与分析   总被引:10,自引:2,他引:10  
在改进POM模式基础上,建立1个中国东部海域斜压准预报模式,利用全球海洋模式结果并结合实测资料以及高精度卫星遥感SST资料,进行了东海陆架海域温盐及环流年循环的数值模拟,并系统分析了东海陆架环流系统及其季节变化、各暖流的路径等广为关注的问题。模式结果表明:黑潮主轴主体沿陆架坡折走向,中段黑潮流幅由南至北增宽,流速变大,流核所达深度变浅。浙闽沿岸流是一典型的季风环流,台湾暖流终年表现出东、北两分支结构,其分支表现出明显的季节性变化特征。在东海东北部陆架海域,冬季黑潮以其分支形式向北入侵,夏季则主要以大陆边缘流的形式向北进入陆架。论文对各暖流的水源也进行了相应的分析。  相似文献   

18.
The kuroshio,originating from the sea southeast of Taiwan andeast of bashi channel,is the western boundary current of the pacific and has the characterisics of strong flows,high temperature and high salinity.mesoscale eddies have strong kinetie energy with a vertical extent of 100m and a horizontal magnitude of 100km. the submarine topography northeast of Taiwan has complicated strucrures.the continental shelf region shallower than 200m occupies the western and middle part of the east china sea(ecs).in the southeastern ECS lies the deep okinawa trough,in which the main depth can reach more than 1000m.it is the geomorphological separatrix between the continental shelf and the ryukyu islands,. the kuroshio enters the ECS along the east coast of taiwen,flows northeastward along the shelf slope,and hence intrudes across the shelf break.in this paper,our concern is the interaction between the kuroshio in ECS and the taiwan strait waters on the continental shelf. meanwhile the mesoscale eddies in the north of Taiwan is another attention point.  相似文献   

19.
夏季,黑潮在台湾东北向东海陆架的入侵表现为黑潮次表层水的强烈涌升,并在陆架上形成明显的冷穹。本研究利用ROMS(Regional Ocean Modeling System)模式,模拟了夏季黑潮入侵所形成的冷穹及上升流的三维结构,并讨论了上升流形成的动力机制。结果表明,冷穹中心在50 m以上的深度位于25.5°N,122.5°E附近,最大降温5 ℃以上;在50 m以下的深度,冷穹的中心位于台湾岛北缘。表层黑潮在台湾北缘不存在明显入侵,在陆坡东向转向附近则以气旋式环流入侵至陆架以上。此外,上升流主要位于陆坡坡度最大的区域,且黑潮次表层水的涌升存在两个较为明显的路径,分别位于台湾岛以北的100 m与200 m等深线之间以及东向转向的陆坡区域。在上层,平流作用是上升流产生的主要机制;而在近底层,平流作用与底摩擦都对上升流有贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号