首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three warm currents, the Kuroshio, its shelf intrusion branch in the northeast of Taiwan and the Taiwan Warm Current (hereafter TWC), dominate the circulation pattern in the East China Sea (hereafter ECS). Their origination, routes and variation in winter and summer are studied. Their relationship with four major high and low temperature centers is analyzed. Differing from the previous opinion, we suggest that the four major centers are generated to a great extent by the interaction of the currents in the ECS. In summer, a cold water belt in the northeast of Taiwan is preserved from winter between the Kuroshio and the TWC. The shelf intrusion branch of the Kuroshio separates the water belt, and two low temperature centers generate in the northeast of Taiwan. In the southern ECS, the TWC transports more heat flux northward to form a warm pool. But it is separated in the lower layer by the cold water driven by the intrusion branch of the Kuroshio. So the TWC and the intrusion branch of the Kuroshio play a dominating role to generate the high temperature center. The interaction among the eastward TWC, the northward Tsushima Warm Current (hereafter TSWC) and the southward Su Bei Coastal Flow (hereafter SBCF) generates the low temperature center in the northern ECS. In winter, the strengthening of the shelf intrusion branch of the Kuroshio obscures the two low temperature centers in the northeast of Taiwan. For the weakening of the TWC, the high temperature center in the southern ECS vanishes, and the low temperature center in the northern ECS shifts to south.  相似文献   

2.
台湾东北部黑潮次表层水入侵的季节变化规律   总被引:5,自引:1,他引:4  
台湾东北部,黑潮次表层水常年入侵东海陆架。但是黑潮次表层水入侵的季节变化规律,尚存在很多不明之处。本文基于2009至2011年间东海4个航次的CTD实测数据,研究了黑潮次表层水入侵东海过程的季节变化规律,发现:黑潮次表层水入侵在春末夏初开始加强,夏季最强,秋季开始减弱,冬季最弱。入侵的黑潮次表层水起源深度也随季节变化有所不同。另外,结果还表明黑潮次表层水入侵存在明显的短期变动。  相似文献   

3.
为了研究黑潮跨过200m等深线对东海入侵的年际变化特征,本文基于ROMS(Regional Ocean Modeling System)海洋模式,对西北太平洋海域进行了高分辨率的数值模拟,模式水平分辨率高达4km,该分辨率可以很好地分辨黑潮以东区域的中尺度涡旋等过程。模式首先进行了6年的气候态模拟,然后进行了1993到2015年的后报模拟。模式很好地再现了东海陆架已知的环流结构,模拟出的对马海峡和台湾海峡的年平均流量和观测结果也比较一致。基于模式结果,利用旋转经验正交函数(REOF)的方法,对黑潮跨过200m等深线流量的年际变化进行分析。REOF的主要模态表明,黑潮跨过200m等深线对东海陆架的入侵主要发生台湾东北,并且入侵主要集中在黑潮次表层水中。主要模态的时间系数表明,黑潮入侵东海陆架的年平均流量存在一个8年的变化周期。相关性分析表明,黑潮入侵东海陆架的年际变化和太平洋年代际振荡PDO(Pacific Decadal Oscillation)指标具有显著的负相关,其相关系数达–0.63。该相关可以通过如下过程解释:PDO会导致东太平洋风应力涡度异常,由Sverdrup关系可知向赤道的体积输运也会相应地产生异常,根据质量守恒,向赤道体积输运的异常必然通过西边界流-黑潮的异常来平衡,从而导致黑潮入侵东海陆架强烈的年际变化。  相似文献   

4.
The hydrographic surveys in an area immediately northeast of Taiwan showed that the Kuroshio surface water intruded onto the shelf in the spring and there was a thick mixed layer and weak vertical stratification in the Kuroshio at the time. During the summer season, a strong thermocline was developed in the Kuroshio and the flow shifted offshore from Taiwan in front of the continental shelf break of the East China Sea. A numerical model is used to examine the effect of this seasonal thermocline on the flow pattern of the survey area. We find that the surface strength of the disturbance above the Su-Ao ridge is closely related to the occurrence of the on-shelf intrusion of Kuroshio. The presence of a seasonal thermocline in the Kuroshio can greatly diminish this disturbance in the surface level.  相似文献   

5.
夏季,黑潮在台湾东北向东海陆架的入侵表现为黑潮次表层水的强烈涌升,并在陆架上形成明显的冷穹。本研究利用ROMS(Regional Ocean Modeling System)模式,模拟了夏季黑潮入侵所形成的冷穹及上升流的三维结构,并讨论了上升流形成的动力机制。结果表明,冷穹中心在50 m以上的深度位于25.5°N,122.5°E附近,最大降温5 ℃以上;在50 m以下的深度,冷穹的中心位于台湾岛北缘。表层黑潮在台湾北缘不存在明显入侵,在陆坡东向转向附近则以气旋式环流入侵至陆架以上。此外,上升流主要位于陆坡坡度最大的区域,且黑潮次表层水的涌升存在两个较为明显的路径,分别位于台湾岛以北的100 m与200 m等深线之间以及东向转向的陆坡区域。在上层,平流作用是上升流产生的主要机制;而在近底层,平流作用与底摩擦都对上升流有贡献。  相似文献   

6.
In order to clarify detailed current structures over the continental shelf margin in the East China Sea, ADCP measurements were carried out in summers in 1991 and 1994 by the quadrireciprocal method (Katoh, 1988) for removing diurnal and semidiurnal tidal flows from observed flows, together with CTD measurements. We discussed the process of the Tsushima Current formation in the East China Sea. The Tsushima Current with a volume transport of 2 Sv (1 Sv=106 m3s–1) was found north of 31°N. A current with a volume transport of 0.4 Sv was clearly found along the 100 m isobath. Between the Kuroshio and the current along the 100 m isobath, southeastward component of velocity was dominant compared to northwestward one. Four eastward to southeastward currents were found over the sea bed shallower than 90 m depth. Total volume transport of these four currents was 1 Sv, and they seemed to be originated from the Taiwan Strait. Intrusion of offshore water into the inner shelf northwest of Amami Oshima was estimated to have a volume transport of 0.6 Sv. It is concluded that the Tsushima Current is the confluence of these currents over the continental shelf margin with the offshore water intruding northwest of Amami Oshima.  相似文献   

7.
依据自适应数值模型,模拟了东中国海冬、夏季三维斜压Lagrange环流。模拟发现:台湾暖流的上层水来自台湾海峡入流和台湾东北黑潮的表层水;50m以下的深底层水主要由台湾东北黑潮的次表层水入侵陆架生成。冬季对马暖流外海一侧主要由黑潮水构成,而其近陆一侧由台湾暖流和陆架混合水构成,西朝鲜沿岸流在济州海峡汇入对马暖流;夏季它还包含转向后的长江冲淡水。冬季黄海暖流并非对马暖流的直接分支,黄海暖流水是对马暖流水和陆架水混合而成,这与传统观点相悖,而与中韩黄海水循环动力学合作调查结果一致。黄海暖流东西两侧分别为2支向南流动的滑岸流。夏季黄海环流构成基本封闭的逆时针环流。冬季渤海环流主要有一逆时针大环流,但辽东湾的环流是顺时针向的。渤海环流冬强夏弱,水流在渤海海峡北进南出。  相似文献   

8.
东海环流的一个两层模式   总被引:3,自引:1,他引:3  
本文用一个两层原始方程数值模式,对东海的环流现象进行了机制性的探讨。从整体上来看,海区的一些主要流态特征彼此密切相关,且在动力上都是比较稳定的。黑潮在台湾东北的入侵主要表现在下层。底斜联合效应(JEBAR)、惯性效应、摩擦效应都是这支入侵流态的发生机制,而底形与行星β效应则使它表现出向岛强化的特征。下层黑潮入侵后,大部分作反气旋回转,成为台湾暖流(TWC)下层的外海分支。TWC下层沿岸分支能否形成,则取决于黑潮入流上下流速比γ的大小,以及上层海峡入流是否北上。TWC上层流动的形成是海峡水入侵后在β效应作用下的结果,它在温州外海也将分出一支向外海流去。文章指出,台湾东北的冷水块不是“尾涡”所致,而是下层黑潮舌状入侵的具体表征;台湾北部的暖涡则是上层TWC北上时与冷水块相互作用的结果。此外,本文对钓鱼岛以北的锋涡与逆流现象也作了一些初步的分析与讨论。  相似文献   

9.
Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves are summarized. Observations using acoustic Doppler current profilers (ADCPs) suggest that the connectivity of mean-volume-transports is incomplete between the Tsushima (2.6 Sverdrups; 1 Sv = 106 m3/s) and Taiwan Straits (1.2 Sv). The remaining 1.4-Sv transport must be supplied by onshore Kuroshio intrusion across the East China Sea shelf break. The Yellow Sea Warm Current is not a persistent ocean current, but an episodic event forced by northerly winter monsoon winds. Nevertheless, the Cheju Warm Current is detected clearly regardless of season. In addition, the throughflow in the Taiwan Strait may be episodic in winter when northeasterly winds prevail. The throughflow strengthens (vanishes) under moderate (severe) northeasterly wind conditions. Using all published ADCP-derived estimates, the throughflow transport (V) in the Taiwan Strait is approximated as
where V 0, V 1, K are 1.2 Sv, 1.3 Sv, and 157 days, respectively, t is yearday, and T is 365.2422 days (i.e., 1 year). The difference between the throughflow transports in the Tsushima and Taiwan Straits suggests that the onshore Kuroshio intrusion across the shelf break increases from autumn to winter. The China Coastal Current has been observed in winter, but shelf currents are obscure in summer.  相似文献   

10.
A two-layers model for the summer circulation of the East China Sea   总被引:1,自引:0,他引:1  
Atwo-layersmodelforthesummercirculationoftheEastChinaSea¥LiangXiangsanandSuJilan(SecondInstituteofOceanography,StateOceanicAd...  相似文献   

11.
The main processes of interaction between the coastal water, shelf water and Kuroshiowater in the Huanghai Sea (HS) and East China Sea (ECS) are analyzed based on the observation and study results in recent years. These processes include the intrusion of the Kuroshio water into the shelf area of the ECS, the entrainment of the shelf water into the Kuroshio, the seasonal process in the southern shelf area of the ECS controlled alternatively by the Taiwan Strait water and the Kuroshio water intruding into the shelf area, the interaction between the Kuroshio branch water, shelf mixed water and modified coastal water in the northeastern ECS, the water-exchange between the HS and ECS and the spread of the Changjiang diluted water.  相似文献   

12.
The effect of the Taiwan Strait Current on the onshore intrusion of Kuroshio, both contributing to the formation of Tsushima Warm Current, is addressed theoretically by invoking a geostrophic adjustment model previously proposed. The idealized model assumes two unbounded basins, shallow and deep, separated by an infinitely long and thin barrier. On either side of the barrier, a western boundary current in the deep basin and a shelf current in the shallow basin flow along the barrier with the surface elevation of the former higher than that of the latter. When a part of the barrier is removed and a gap is created, the onshore part of the western boundary current intrudes onto the shallow basin through the gap while conserving its potential vorticity. Both the intruding current and the shelf current will later geostrophically adjust themselves to the disturbances created by the intrusion. Model results show that the transport of onshore intrusion increases with the sea level difference imposed initially between the deep and shallow basins across the barrier, indicating that the sea level rise associated with the strengthening of shelf current inhibits the shelf-ward intrusion. The intruding current is in jet mode when its transport is maximized, which otherwise is in coastal mode. The maximization of transport occurs when the sea level difference between the two basins is sufficiently large. Although this model greatly idealizes the problem, it explains well the observed fact that the transport of Tsushima Warm Current is fed mostly by the Taiwan Strait Current in summer when the latter becomes the strongest, and by the onshore intrusion of Kuroshio in winter when the Taiwan Strait Current nearly vanishes, suggesting that the seasonal variation of the onshore intrusion of Kuroshio is largely due to the seasonal variation in the strength of the Taiwan Strait Current.  相似文献   

13.
东海西部陆架海域水团的季节特征分析   总被引:3,自引:1,他引:2  
On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis method. The results show that the distributions and temperature-salinity characteristics of the water masses in the study area are of distinct seasonal difference. In the western East China Sea shelf area, there are three water masses during winter, i.e., continental coastal water(CCW), Taiwan Warm Current surface water(TWCSW) and Yellow Sea mixing water(YSMW), but four ones during summer, i.e., the CCW, the TWCSW, Taiwan Warm Current deep water(TWCDW) and the YSMW. Of all, the CCW, the TWCSW and the TWCDW are all dominant water masses. The CCW, primarily characterized by a low salinity, has lower temperature, higher salinity and smaller spatial extent in winter than in summer. The TWCSW is warmer, fresher and smaller in summer than in winter, and it originates mostly from the Kuroshio surface water(KSW) northeast of Taiwan, China and less from the Taiwan Strait water during winter, but it consists of the strait water and the KSW during summer. The TWCDW is characterized by a low temperature and a high salinity, and originates completely in the Kuroshio subsurface water northeast of Taiwan.  相似文献   

14.
依据1987年6月、1996年12月、1997年2月和1998年7月在东海北部所取得的悬浮体、温度和盐度资料就该区冬季和夏季的悬浮体分布、影响因素和输运进行了研究,结果表明该区悬浮体分布具有明显的季节性变化,在中、外陆架区悬浮体含量冬季明显高于夏季.悬浮体的分布及输运受到东海环流、风暴和潮流等的影响,其中东海环流的季节性变化是主要影响因素.受台湾暖流的阻隔,冬季和夏季长江入海泥沙在东海基本不能越过124°00'E以东海域.黄海沿岸流携带着老黄河口水下三角洲的再悬浮沉积物向陆架东南扩散,其搬运的量和在中、外陆架区的扩散范围冬季显著大于夏季.在黄海暖流的阻隔下,陆架悬浮体冬季和夏季在32°N断面很少能扩散至126°30'E以东海域.台湾暖流和黑潮爬升水的阻隔作用使得冬季和夏季陆架悬浮体在P-N断面也基本不能扩散至陆架边缘.冬季在东海北部可有部分陆架悬浮体输送到冲绳海槽,但有区域性,其输送的可能位置是在P-N断面以北、32°N断面以南之黄海沿岸流向东南延伸的陆架边缘;夏季陆架悬浮体基本滞留在陆架区.  相似文献   

15.
黑潮与邻近东海生源要素的交换及其生态环境效应   总被引:2,自引:0,他引:2  
宋金明  袁华茂 《海洋与湖沼》2017,48(6):1169-1177
黑潮与东海生源要素的交换对东海的生态环境有重大影响,交换主要是经台湾东北部海域输送至东海陆架和通过日本九州西南海域由东海陆架向外海的黑潮输出两个通道。中国科学院海洋先导专项对黑潮与邻近东海生源要素的交换特征进行了系统的调查和研究,获得了一些新的认识:(1)在台湾东北部区域,碳主要以表层水-次表层水为载体输入,秋季的输入量高于夏季;黑潮溶解态营养盐的输入占据绝对主导地位,且以黑潮次表层热带水-中层水的输入为主,输入通量春季高于夏、秋季,可为东海春季水华提供一定的物质基础,但输入到东海的黑潮水其氮磷比与Redfield比值(16:1)接近,这些"正常水"——黑潮的输入显然对调和东海异常高的氮磷比有重要的作用,从而对东海的生态环境起到"稳定和缓冲"作用。所以,黑潮水对东海的输入不仅维持补充了东海生态系统运转所需的生源要素,更为重要的是缓冲了受人为影响强烈的东海海水的高氮磷比,使东海本已失常的营养盐结构向合适的氮磷比方向转变。因此,黑潮与东海生源要素的输入在一定程度上起着稳定和缓和东海生态环境的作用。(2)通过构建的海水Ba-盐度新指标体系,定量细致刻画了黑潮对东海生源物质在台湾东北部区域的输入范围和程度,黑潮次表层水从台湾东北陆架坡折处沿底部向北偏西方向入侵东海,其近岸分支可以入侵到浙江近岸,其黑潮次表层水占比仍可达到65%左右。垂直方向上,陆架外侧站位受黑潮次表层水的影响范围更大,黑潮水占50%比例位置可延伸至外侧TW0-1站位(122.59°E,25.49°N)表层,而内侧靠近大陆的站位则只限于陆架中部位置底层。  相似文献   

16.
According to historical mean ocean current data through the field observations of the Taiwan Ocean Research Institute during 1991–2005 and survey data of nutrients on the continental shelf of the East China Sea(ECS) in the summer of 2006, nutrient fluxes from the Taiwan Strait and Kuroshio subsurface waters are estimated using a grid interpolation method, which both are the sources of the Taiwan Warm Current. The nutrient fluxes of the two water masses are also compared. The results show that phosphate(PO4-P), silicate(SiO3-Si) and nitrate(NO3-N) fluxes to the ECS continental shelf from the Kuroshio upwelling water are slightly higher than those from the Taiwan Strait water in the summer of 2006. In contrast, owing to its lower velocity, the nutrient flux density(i.e., nutrient fluxes divided by the area of the specific section) of the Kuroshio subsurface water is lower than that of the Taiwan Strait water. In addition, the Taiwan Warm Current deep water, which is mainly constituted by the Kuroshio subsurface water, might directly reach the areas of high-frequency harmful alga blooms in the ECS.  相似文献   

17.
Review on current and seawater volume transport through the Taiwan Strait   总被引:12,自引:0,他引:12  
Patterns and features of currents and seawater volume transports in the Taiwan Strait have been reviewed by examining the results from more than 150 research papers in recent decades. It is noted that there are diverse or even conflicting viewpoints on these subjects. Here both common and different opinions are summarized. This review paper covers the studies involving in situ measurements and numerical modeling of current velocity, analyses of hydrographic data, and classification of water masses. Generally speaking, there are three currents in the Taiwan Strait: the China Coastal Current along the Fujian coast in the western Taiwan Strait, the extension of the South China Sea Warm Current in the western and central Taiwan Strait, and the Kuroshio’s branch or loop current intruding through the eastern Taiwan Strait. The current pattern in winter is quite different from that in summer, and the currents also exhibit differences between the upper and lower layers. The seawater volume transport through the Taiwan Strait is about 2.3 Sv northward in summer but about 0.8 Sv northward in winter. Both the current pattern and the seawater transport vary with local winds in the Taiwan Strait. This is particularly true in winter when the currents and the transport in the upper layer are significantly affected by strong northeasterly winds.  相似文献   

18.
东海温度锋的分布特征及其季节变异   总被引:8,自引:4,他引:8  
汤毓祥 《海洋与湖沼》1996,27(4):436-444
根据1934-1988年东海水文观测资料,重点分析东海温度锋的分布特征及其季节变异,并结合近期中日黑潮合作调查研究成果,初步探讨温度锋季节变异和水团演变的关系,所得主要结论是:(1)东海不仅常年存在浙闽沿岸锋,东海北部陆架锋和黑潮锋,而且、春、夏两季,在东海南部还出现一条东海中部出架锋。(2)江海温度锋季节变化的特点是:冬季,锋的宽度和强度皆是表层最强,夏季,表层温度锋仅出现在浙江近岸小范围海域。  相似文献   

19.
本文根据日本气象厅在台湾以北获得的调查资料及近几年国家海洋局在该海域获得的调查资料,结合卫星图片,分析了夏季和冬季台湾以北海域陆架水与黑潮水的混合与交换过程以及涡旋在水交换过程中所起的作用。结果表明,夏季陆架水从表层向外海方向扩展,与黑潮水进行混合与交换;在陆架底部,黑潮次表层水涌升陆架后与陆架底层水进行混合。冬季由于黑潮表层水大举入侵陆架,低温的陆架水只能沿陆架向南流动,并在台湾西北部转向东沿台湾北岸向东流动,该海域存在的涡旋就象一个旋转泵,在陆架水与黑潮水的混合与交换过程中起了重要的作用。最后,文中还对陆架水与黑潮水的交换量进行了估算。  相似文献   

20.
Basic patterns of the reversal of the Kuroshio water toward the shelf, intrusion of the shelf mixed waterinto the Kuroshio and uplifting of the near-bottom nutrient-rich water into the upper layer by the pumping of the frontal eddy are analyzed on the basis of satellite infrared images and hydrologic, chemical and biological observations. Results show that the Kuroshio frontal eddies play a very important role in the exchange between the shelf water and the Kuroshio water. The estimation of the average volume transports for three frontal eddy events indicates that the shelf mixed water entrained by an eddy into Kuroshio is 0.44×10~6 m3/s and the reversal Kuroshio water onto the shelf region only 0.04×10~6 m3/s. Along the whole shelf edge, the volume transport of the shelf mixed water entrained by the eddies into the Kuroshio is 1.8×10~6 m3/s. The nutrient (NO3-N) flux pumped to the euphotic zone and input to the continental shelf through a column with 1 m wide is 974 μmol/(s·m) when there is frontal eddy and only 79 μmol/(s·m) in the case of no frontal eddy. Yearly nutrient (NO3-N) flux input to the shelf area caused by the frontal eddy is 1.7×10~5 t/a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号