首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As a fundamental study to evaluate the contribution of the Kuroshio to primary production in the East China Sea (ECS), we investigated the seasonal pattern of the intrusion from the Kuroshio onto the continental shelf of the ECS and the behavior of the intruded Kuroshio water, using the RIAM Ocean Model (RIAMOM). The total intruded volume transport across the 200m isobath line was evaluated as 2.74 Sv in winter and 2.47 Sv in summer, while the intruded transport below 80m was estimated to be 1.32 Sv in winter and 1.64 Sv in summer. Passive tracer experiments revealed that the main intrusion from the Kuroshio to the shelf area of the ECS, shallower than 80m, takes place through the lower layer northeast of Taiwan in summer, with a volume transport of 0.19 Sv. Comparative studies show several components affecting the intrusion of the Kuroshio across the 200 m isobath line. The Kuroshio water intruded less onto the shelf compared with a case without consideration of tide-induced bottom friction, especially northeast of Taiwan. The variations of the transport from the Taiwan Strait and the east of Taiwan have considerable effects on the intrusion of the Kuroshio onto the shelf.  相似文献   

2.
Water mass properties along cross-sections of the Kuroshio in the East China Sea (ECS) are investigated in detail. We used temperature, salinity and dissolved oxygen data from 2000 and 2002, together with historical temperature and salinity data from 1987 to 2004. Water properties were divided into two groups: high and low salinities or oxygen at temperatures warmer than 15 and 12 °C, respectively. We found the existence of outer shelf water W2, as defined by clear modes in frequency distributions of salinity and oxygen within various temperature segments. The outer shelf water was different from both Kuroshio Tropical Water (KTW) and coastal water. We mapped horizontal and vertical distributions of W2, along with W1 and KTW. The outer shelf water was distributed with density σ t = 22.5–25.5 over a relatively broad area, from the outer continental shelf to the continental slope, particularly in autumn. Vertical distribution of the water suggests that W2 spread from the outer shelf to just the shelf side of the Kuroshio Current velocity maximum. Seasonal variations are examined with historical data along PN section over 17 years, and suggest that the appearance of W2 is distinct in summer and autumn. By comparing temperature–salinity (T–S) diagrams from Taiwan Strait and east of Taiwan, the outer shelf water (W2) originates from South China Sea Tropical Water (SCSTW), as suggested by Chen, J Geophys Res 110:C05012 (2005). The present study of the ECS clearly shows that SCSTW is transported along the east coast of Taiwan or through the Taiwan Strait into the ECS. It then spreads over a relatively wide area from the outer shelf to just the shelf side of the Kuroshio axis, and there is some horizontal mixing between SCSTW and KTW around the shelf break.  相似文献   

3.
Three warm currents, the Kuroshio, its shelf intrusion branch in the northeast of Taiwan and the Taiwan Warm Current (hereafter TWC), dominate the circulation pattern in the East China Sea (hereafter ECS). Their origination, routes and variation in winter and summer are studied. Their relationship with four major high and low temperature centers is analyzed. Differing from the previous opinion, we suggest that the four major centers are generated to a great extent by the interaction of the currents in the ECS. In summer, a cold water belt in the northeast of Taiwan is preserved from winter between the Kuroshio and the TWC. The shelf intrusion branch of the Kuroshio separates the water belt, and two low temperature centers generate in the northeast of Taiwan. In the southern ECS, the TWC transports more heat flux northward to form a warm pool. But it is separated in the lower layer by the cold water driven by the intrusion branch of the Kuroshio. So the TWC and the intrusion branch of the Kuroshio play a dominating role to generate the high temperature center. The interaction among the eastward TWC, the northward Tsushima Warm Current (hereafter TSWC) and the southward Su Bei Coastal Flow (hereafter SBCF) generates the low temperature center in the northern ECS. In winter, the strengthening of the shelf intrusion branch of the Kuroshio obscures the two low temperature centers in the northeast of Taiwan. For the weakening of the TWC, the high temperature center in the southern ECS vanishes, and the low temperature center in the northern ECS shifts to south.  相似文献   

4.
Spring phytoplankton bloom in the fronts of the East China Sea   总被引:2,自引:0,他引:2  
Frontal areas between warm and saline waters of the Kuroshio currents and colder and diluted waters of the East China Sea (ECS) influenced by the Changjiang River were identified from the satellite thermal imagery and hydrological data obtained from the Coastal Ocean Process Experiment (COPEX) cruise during the period between March 1st and 10th, 1997. High chlorophyll concentrations appeared in the fronts of the East China Seas with the highest chlorophyll-a concentration in the southwestern area of Jeju Island (~2.9 mg/m3) and the eastern area of the Changjiang River Mouth (~2.8 mg/m3). Vertical structures of temperature, salinity and density were similar, showing the fronts between ECS and Kuroshio waters. The water column was well mixed in the shelf waters and was stratified around the fronts. It is inferred that the optimal condition for light utilization and nutrients induced both from the coastal and deep waters enhances the high phytoplankton productivity in the fronts of the ECS. In addition, the high chlorophyll-a in the fronts seems to have been associated with the water column stability as well.  相似文献   

5.
东海西部陆架海域水团的季节特征分析   总被引:3,自引:1,他引:2  
On the basis of the CTD data and the modeling results in the winter and summer of 2009, the seasonal characteristics of the water masses in the western East China Sea shelf area were analyzed using a cluster analysis method. The results show that the distributions and temperature-salinity characteristics of the water masses in the study area are of distinct seasonal difference. In the western East China Sea shelf area, there are three water masses during winter, i.e., continental coastal water(CCW), Taiwan Warm Current surface water(TWCSW) and Yellow Sea mixing water(YSMW), but four ones during summer, i.e., the CCW, the TWCSW, Taiwan Warm Current deep water(TWCDW) and the YSMW. Of all, the CCW, the TWCSW and the TWCDW are all dominant water masses. The CCW, primarily characterized by a low salinity, has lower temperature, higher salinity and smaller spatial extent in winter than in summer. The TWCSW is warmer, fresher and smaller in summer than in winter, and it originates mostly from the Kuroshio surface water(KSW) northeast of Taiwan, China and less from the Taiwan Strait water during winter, but it consists of the strait water and the KSW during summer. The TWCDW is characterized by a low temperature and a high salinity, and originates completely in the Kuroshio subsurface water northeast of Taiwan.  相似文献   

6.
On the basis of hydrographic data and current measurement (the mooring system, vessel-mounted ADCP and toward ADCP) data obtained in June 1999, the circulations in the southern Huang-hai Sea (HS) and northern East China Sea (ECS) are computed by using the modified inverse method. The Kuroshio flows northeastward through eastern part of the investigated region and has the main core at Section PN, a northward flow at the easternmost part of Section PN, a weaker anti-cyclonic eddy between these two northward flows, and a weak cyclonic eddy at the western part of Section PN. The above current structure is one type of the current structures at Section PN in ECS. The net northward volume transport (VT) of the Kuroshio and the offshore branch of Taiwan Warm Current (TWCOB) through Section PN is about 26.2×106m3/s in June 1999. The VT of the inshore branch of Taiwan Warm Current (TWCIB) through the investigated region is about 0.4×106m3/s. The Taiwan Warm Current (TWC) has much effect on the currents over the  相似文献   

7.
东海东北部春季若干重要水文结构的分析   总被引:7,自引:2,他引:7  
本文主要基于韩国海洋研究所在东海沿岸海洋过程试验中收集的CTD资料,分析了1995年春季出现在东海东北部的一些重要水文结构。结果表明,一种锋涡状结构出现在黑潮向东转折点附近。它不仅使邻近海域的水文结构变得更复杂,而且诱发黑潮水与陆架水间活跃的交换。在陆架坡折处观测到若干孤立的陆架水块,可能是锋涡的卷挟作用所致;该海域存在4个水团,即黑潮水、对马暖流水、陆架水和混合水。对马暖流水分为上下两层:上层水为变性黑潮水,盐度比黑潮水约低0.1,底层对马暖流水仅位于冲绳海槽区,并有着与黑潮中层水相同的温、盐特性;一种双锋结构出现在邻近黑潮的陆架边缘附近。在内陆架形成的陆架锋,由北向南伸展时,愈来愈偏向陆架边缘。而黑潮锋沿九州以西深槽的陆架边缘向北伸展。在黑潮转折点附近,两锋几乎合并为一条锋。狭窄的锋带由黑潮水及其变性水和陆架水的混合水所占据。  相似文献   

8.
The optimum multiparameter (OMP) method was often used to determine the percentages of water masses based on temperature, salinity and other parameters, like nutrient or dissolved oxygen (DO). There are a number of water masses in the East China Sea (ECS), a marginal sea of the western Pacific Ocean. However, it is difficult to clarify the proportion of water masses using traditional parameters, such as temperature, salinity, nutrient or DO because of the occurring of intensive biogeochemical processes in the near shore and shelf areas. Here, we reported the use of 234U/238U activity ratio embedded in the OMP method. The results indicate that seawater in the northern ECS mainly consisted of the estuarine water of Changjiang River (CEW), Kuroshio water (KW), and Yellow Sea Coastal Current (YSCC). In March 2017, the CEW only influenced the offshore waters shallower than 30 m; the KW affected the east edge and the YSCC contributed more than 75% in the northern ECS.  相似文献   

9.
东海温度锋的分布特征及其季节变异   总被引:8,自引:4,他引:8  
汤毓祥 《海洋与湖沼》1996,27(4):436-444
根据1934-1988年东海水文观测资料,重点分析东海温度锋的分布特征及其季节变异,并结合近期中日黑潮合作调查研究成果,初步探讨温度锋季节变异和水团演变的关系,所得主要结论是:(1)东海不仅常年存在浙闽沿岸锋,东海北部陆架锋和黑潮锋,而且、春、夏两季,在东海南部还出现一条东海中部出架锋。(2)江海温度锋季节变化的特点是:冬季,锋的宽度和强度皆是表层最强,夏季,表层温度锋仅出现在浙江近岸小范围海域。  相似文献   

10.
According to historical mean ocean current data through the field observations of the Taiwan Ocean Research Institute during 1991–2005 and survey data of nutrients on the continental shelf of the East China Sea(ECS) in the summer of 2006, nutrient fluxes from the Taiwan Strait and Kuroshio subsurface waters are estimated using a grid interpolation method, which both are the sources of the Taiwan Warm Current. The nutrient fluxes of the two water masses are also compared. The results show that phosphate(PO4-P), silicate(SiO3-Si) and nitrate(NO3-N) fluxes to the ECS continental shelf from the Kuroshio upwelling water are slightly higher than those from the Taiwan Strait water in the summer of 2006. In contrast, owing to its lower velocity, the nutrient flux density(i.e., nutrient fluxes divided by the area of the specific section) of the Kuroshio subsurface water is lower than that of the Taiwan Strait water. In addition, the Taiwan Warm Current deep water, which is mainly constituted by the Kuroshio subsurface water, might directly reach the areas of high-frequency harmful alga blooms in the ECS.  相似文献   

11.
Basic patterns of the reversal of the Kuroshio water toward the shelf, intrusion of the shelf mixed waterinto the Kuroshio and uplifting of the near-bottom nutrient-rich water into the upper layer by the pumping of the frontal eddy are analyzed on the basis of satellite infrared images and hydrologic, chemical and biological observations. Results show that the Kuroshio frontal eddies play a very important role in the exchange between the shelf water and the Kuroshio water. The estimation of the average volume transports for three frontal eddy events indicates that the shelf mixed water entrained by an eddy into Kuroshio is 0.44×10~6 m3/s and the reversal Kuroshio water onto the shelf region only 0.04×10~6 m3/s. Along the whole shelf edge, the volume transport of the shelf mixed water entrained by the eddies into the Kuroshio is 1.8×10~6 m3/s. The nutrient (NO3-N) flux pumped to the euphotic zone and input to the continental shelf through a column with 1 m wide is 974 μmol/(s·m) when there is frontal eddy and only 79 μmol/(s·m) in the case of no frontal eddy. Yearly nutrient (NO3-N) flux input to the shelf area caused by the frontal eddy is 1.7×10~5 t/a.  相似文献   

12.
Surface maps of nitrate, phosphate and silicate of the East China Sea (ECS) have been constructed and are described. Reports on exchanges of material between the ECS and the South China Sea (SCS) through the Taiwan Strait are reviewed. Recent advances seem to have reversed the earlier view that the SCS exports nutrients to the ECS through the Taiwan Strait. This is because the northward flow of seawater in the summer carries little nutrient. On the other hand, the waters flowing southward along the coast of China in winter carry orders of magnitude higher nutrient concentrations. The outflow of subsurface waters from the SCS, however, is the major source of new nutrients to the ECS continental shelves because these subsurface waters flow out of the Luzon Strait, join the northwardly flowing Kuroshio and enter the Okinawa trough. Around 10% of the nutrients exported from the SCS through the Luzon Strait upwell onto the ECS shelf. These inputs are larger than the aggregate of all the rivers that empty into the ECS, contributing 49% of the externally sourced nitrogen, 71% of the phosphorous, and 54% of the silica for the ECS.  相似文献   

13.
基于2014年5—6月对黑潮主流径及毗邻东海陆架海区的调查,研究了该区域水体中无机碳体系参数(p H、总碱度TAlk、溶解无机碳DIC及DIC/TAlk)的垂直与水平分布,在此基础上定量评估了黑潮输入对东海陆架海区无机碳收支的影响。结果表明,黑潮水体中DIC、TAlk与DIC/TAlk总体而言随水深增加而升高,p H降低,综合体现了浮游植物生产、海-气界面交换、有机物降解及Ca CO3溶解等过程的影响;上升流中心站位无机碳参数均受较深层水体上涌影响,与黑潮主流径其它站位略有不同。东海陆架海区外侧站位表层、30m层无机碳主要受台湾海峡暖流影响,高p H、低DIC/TAlk的黑潮表层水影响区域局限于东南部;而在底层,低p H、高DIC/TAlk的黑潮入侵流离开黑潮主流径向正北方延伸并抬升至钱塘江口附近;上升流对无机碳的影响持续至表层,其携带的黑潮中层水因此也可能进入陆架海区。水量模型估算黑潮水在5—10月间跨域陆架边缘向东海陆架区输入溶解无机碳总计58798.9×109mol,净输入达37382.9×109mol,而东海向外输出的无机碳绝大部分经由对马海峡进入日本海。  相似文献   

14.
东海表层水二氧化碳及其海气通量   总被引:19,自引:2,他引:19  
1994年春、秋季在东海进行了两个航次的调查,采用气相色谱法和CO2采样系统测定了表层水和大气CO2分压。结呆表明,东海大部分海区CO2处于不饱和状态,可视为大气CO2的汇点。东海陆采区表层水CO2分压呈明显的季节变化趋势,即春季近岸低,大洋高;秋季西北部高,大洋低。黑潮区表层水CO2分压较低,无明显的季节性变化。利用通量模式,估算了大气输入东海海域的CO2通量为45.1g/(m2·a)。  相似文献   

15.
黑潮对邻近中国海的影响和琉球海流研究在物理海洋学是一个很重要的、有趣的课题。为了深入地阐明由中国科学家自2010年7月至2015年5月期间所作研究的进展,本文在以下三个方面进行评述。第一方面是关于黑潮入侵南海以及在吕宋海峡周围的环流,分为以下二个很重要论题做阐述:黑潮入侵的季节和年际变化以及黑潮入侵的机制;黑潮对吕宋海峡海流和南海北部环流的影响。第二方面是关于黑潮及其对东海相互作用的变化,分为以下四个有趣的论题来阐述:东海黑潮研究的评述;黑潮入侵东海,水交换以及动力因子;由于黑潮作用营养物质通量在下游增加;从卫星遥感的应用对黑潮入侵东海对陆地物质通量的影响。第三方面,琉球海流与东海黑潮相互作用也被讨论。最后本文主要点作了总结,对今后进一步需要研究也被讨论。  相似文献   

16.
中国东部边缘海冬季硅酸盐的分布特征及主要来源   总被引:1,自引:0,他引:1  
利用2007年1~2月的调查资料,分析讨论了中国东部陆架边缘海(南黄海、东海)冬季硅酸盐的分布特征及其主要影响因素。结果表明:近岸海域硅酸盐的高值区位于受长江冲淡水影响的区域;东海的硅酸盐浓度高于南黄海。长江冲淡水和黑潮水是影响东海和南黄海硅酸盐分布的主要因素。黑潮中层水是东海陆架区硅酸盐的主要来源。  相似文献   

17.
Sea surface temperature (SST) and sea surface salinity variations at Fukue Island (located southwest of the Tsushima Straits) were investigated. In spring, low-frequency SST fluctuations with periods of 10–20 days predominate. Synthetic analysis of in situ observation and satellite infrared image reveals that these SST fluctuations are caused by movement of mixed warm water masses which have a temperature intermediate between those of the Kuroshio and the East China Sea (ECS) shelf waters. Since these fluctuations do not correspond with those in the Tsushima Straits, it is indicated that these water masses can hardly pass the Tsushima Straits while retaining their original water properties. In July, SST fluctuations with a period of several days are also found at Fukue Island. Since these SST fluctuations show an opposite correspondence with its salinity fluctuations and a good correspondence with the SST fluctuations at Okinoshima in the Tsushima Straits, it is inferred that warm and low-salinity water originated from the ECS shelf water causes these fluctuations and intrudes into the Tsushima Straits.  相似文献   

18.
OntheoriginoftheTsushimaWarmCurrentWater¥TangYuxiangandHeung-JaeLie(FirstinstituteOfOceanography,StateOceanicAdministration,Q...  相似文献   

19.
本文利用近十年来获得的NOAA卫星红外影像,较为系统地分析了东海海洋锋(黑潮锋、对马暖流锋和浙江沿岸锋)的波动谱特征以及形态的演变。同时还利用浮标测流结果分析了锋面波动中的流态。分析结果表明:东海黑潮锋通常存在4~5个折叠波形,其波长平均约200km,波动随黑潮流向东北方向传播,速度约16cm/s。浙江沿岸锋的波动多呈锯齿形,其波长较短,波数多。在浙江沿岸锋波动发展过程中,其波长从开始的20~40km发展成30~60km,它们约以18cm/s的速度向东北方向传播。东海海洋锋波动演变形态复杂,其中黑潮锋的波动可能演变成锋面涡旋、暖丝和暖环。  相似文献   

20.
Winter Distribution of Diatom Assemblages in the East China Sea   总被引:3,自引:0,他引:3  
We examined the spatial distributional relationships between diatom assemblages and water types during the winter in the East China Sea. Principal component analysis was used to identify two water types and two diatom assemblages in the study area. Coastal water types along the mainland China coastline had low temperature and salinity levels, but high nitrate levels. The shelf-mixing water type in the rest of the study area had higher temperatures and salinities and lower levels of nitrate. Diatom assemblage distribution was not spatially consistent with water type. The Kuroshio assemblage had a large standing stock, distributed along the surface of the shelf break. This assemblage is likely the result of Kuroshio surface water coming into contact with nutrient-rich water in the shelf area, triggering proliferation of certain diatom species. A background assemblage with low standing stock level persisted over the entire study area in both coastal water and the shelf-mixing water types. Our results support previous research: the background assemblage is due to poor growth conditions such as the convection of water during winter; there were no significant seasonal variations in the species composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号