首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved Fe, Mn and Al concentrations (dFe, dMn and dAl hereafter) in surface waters and the water column of the Northeast Atlantic and the European continental shelf are reported. Following an episode of enhanced Saharan dust inputs over the Northeast Atlantic Ocean prior and during the cruise in March 1998, surface concentrations were enhanced up to 4 nmol L− 1 dFe, 3 nmol L− 1 dMn and 40 nmol L− 1 dAl and returned to 0.6 nmol L− 1 dFe, 0.5 nmol L− 1 dMn and 10 nmol L− 1 dAl towards the end of the cruise three weeks later. A simple steady state model (MADCOW, [Measures, C.I., Brown, E.T., 1996. Estimating dust input to the Atlantic Ocean using surface water aluminium concentrations. In: Guerzoni. S. and Chester. R. (Eds.), The impact of desert dust across the Mediterranean, Kluwer Academic Publishers, The Netherlands, pp. 301–311.]) was used which relies on surface ocean dAl as a proxy for atmospheric deposition of mineral dust. We estimated dust input at 1.8 g m− 2 yr− 1 (range 1.0–2.9 g m− 2 yr− 1) and fluxes of dFe, dMn and dAl were inferred. Mixed layer steady state residence times for dissolved metals were estimated at 1.3 yr for dFe (range 0.3–2.9 yr) and 1.9 yr for dMn (range 1.0–3.8 yr). The dFe residence time may have been overestimated and it is shown that 0.2–0.4 yr is probably more realistic. Using vertical dFe versus Apparent Oxygen Utilization (AOU) relationships as well as a biogeochemical two end member mixing model, regenerative Fe:C ratios were estimated respectively to be 20 ± 6 and 22 ± 5 μmol Fe:mol C. Combining the atmospheric flux of dFe to the upper water column with the latter Fe:C ratio, a ‘new iron’ supported primary productivity of only 15% (range 7%–56%) was deduced. This would imply that 85% (range 44–93%) of primary productivity could be supported by regenerated dFe. The open ocean surface data suggest that the continental shelf is probably not a major source of dissolved metals to the surface of the adjacent open ocean. Continental shelf concentrations of dMn, dFe, and to a lesser extent dAl, were well correlated with salinity and express mixing of a fresher continental end member with Atlantic Ocean water flowing onto the shelf. This means probably that diffusive benthic fluxes did not play a major role at the time of the cruise.  相似文献   

2.
Atmospheric iron and underway sea-surface dissolved (<0.2 μm) iron (DFe) concentrations were investigated along a north–south transect in the eastern Atlantic Ocean (27°N/16°W–19°S/5°E). Fe concentrations in aerosols and dry deposition fluxes of soluble Fe were at least two orders of magnitude higher in the Saharan dust plume than at the equator or at the extreme south of the transect. A weaker source of atmospheric Fe was also observed in the South Atlantic, possibly originating in southern Africa via the north-easterly outflow of the Angolan plume. Estimations of total atmospheric deposition fluxes (dry plus wet) of soluble Fe suggested that wet deposition dominated in the intertropical convergence zone, due to the very high amount of precipitation and to the fact that a substantial part of Fe was delivered in dissolved form. On the other hand, dry deposition dominated in the other regions of the transect (73–97%), where rainfall rates were much lower. Underway sea-surface DFe concentrations ranged 0.02–1.1 nM. Such low values (0.02 nM) are reported for the first time in the Atlantic Ocean and may be (co)-limiting for primary production. A significant correlation (Spearman's rho=0.862, p<0.01) was observed between mean DFe concentrations and total atmospheric deposition fluxes, confirming the importance of atmospheric deposition on the iron cycle in the Atlantic. Residence time of DFe in the surface waters relative to atmospheric inputs were estimated in the northern part of our study area (17±8 to 28±16 d). These values confirmed the rapid removal of Fe from the surface waters, possibly by colloidal aggregation.  相似文献   

3.
We have combined the available total CO2, temperature, salinity and oxygen data from the TTO, SAVE and WOCE programs in the Atlantic Ocean to parameterize TCO2 below 500 m depth as a function of potential temperature, salinity and apparent oxygen utilization. We then use the Levitus data set of temperature, salinity and oxygen to compute the TCO2 profiles at the resolution of the Levitus data set on a 1° × 1° grid with a vertical resolution of 33 layers, more densely spaced in the upper 1500 m than below. Depending on the method used to interpolate the data (along isopycnals or vertically by station), the estimated random uncertainty of the computed TC02 values in the Atlantic Ocean throughout the water column below the wintertime mixed layer depth ranges from ± 7.1 μmol kg−1 to t 5.9 μmol kg−1.  相似文献   

4.
Particulate fluxes of trace elements (Al, Cd, Co, Cu, Fe, Mn, Ni, P, Ti, V and Zn) in the northeast Atlantic Ocean (three positions at latitudes from 33°N to 54°N along ∼20°W) were measured using time-series sediment traps between March 1992 and September 1994. Significant variabilities of fluxes with season and depth (1000 m to maximum of 4000 m) were observed only for ‘biogenic elements’, such as Cd, Ni, Zn or P. On the other hand, we found a distinct large-scale increase of fluxes into the deep-sea traps to the south for Al, Co, Fe, Mn and V. We attribute this latitudinal gradient to the increasing influence of the Saharan dust plume. The biogenic flux decreased towards the south. This trend was clearly visible for Cd and P only. The fluxes of other ‘nutrient-like’ elements, such as Ni or Zn, exhibited a general decrease between 53°N and 33°N. We compared our sedimentation flux data with published data from the western North Atlantic basins. For this purpose we corrected the deep-sea fluxes of Cu, Mn, Ni and Zn for their lithogenic fractions on the basis of Al, with average crustal material and granitic rocks as references. The comparison indicates that these ‘excess’ fluxes are a factor of at least 2 higher in the western basins for the selected elements. Estimated fluxes are in good agreement with reported atmospheric deposition in the two areas. The noted imbalance between the non-lithogenic atmospheric input of Mn and the determined ‘excess flux’ in the deep northeast Atlantic indicates an additional input in the form of a lateral flux of dissolved Mn(II) species and scavenging onto sinking particles. With respect to the mechanism of sedimentation, a unique behaviour is noticed for the refractory elements Co, Fe, Mn, Ti and V, which were found to correlate with the vertical transport of Al (clay). The ‘excess’ fluxes of Cu, Ni and Zn are linearly related to Corg, whereas the overall relation of Cd to P fluxes exhibits a molar Cd/P ratio of 2.0×10-4, which is close to the ratio in the dissolved fractions in the northeast Atlantic.  相似文献   

5.
Data are presented for the concentrations of Al, Fe, Mn, Ni, Co, Cr, V, Cu, Zn, Pb and Cd in aerosols collected over two contrasting regions of the Indian Ocean. These are: (1) the northern Arabian Sea (AS), from which samples were collected in the northeast monsoon, during which the region receives an input of crustal material from the surrounding arid land masses; and (2) the Tropical Southern Indian Ocean (TSIO), a remote region from which samples were collected from air masses for which there were no large-scale up-wind continental aerosol sources. The TSIO samples can be divided into two populations: Population I aerosols, collected from air masses which have probably impinged on Madagascar, and Population II aerosols, which have been confined to open-ocean regions to the south of the area.The data indicate that there are strong latitudinal variations in the chemical signatures of aerosols over the Indian Ocean. The input of crustal material to the Arabian Sea gives rise to an average Al concentration of about 1000 ng m−3 of air in the northeast monsoon regime. As a result, the concentrations of all trace metals are relatively high, and the values of crustal enrichment factors are less than 10 for most metals, in the AS aerosols. In contrast, TSIO Population II ‘open-ocean southern air’ sampled during the southwest monsoon season, has an average Al concentration of only about 10 ng m−3 of air. Trace metal concentrations in the TSIO ‘open-ocean southern air’ during the southwest monsoon season are representative of ‘clean’ remote marine air and are generally similar to those reported over the central North Pacific.Mineral dust concentrations over the Indian Ocean decrease in a north to south direction, from about 15–20 μg m−3 of air in the extreme north to about 0.01–0.25 μg m−3 of air in the far south. The deposition of mineral dust over the northern Arabian Sea can account for approximately 75% of the non-carbonate material incorporated into the underlying sediments.In the Arabian Sea the dissolved atmospheric inputs of all the trace metals, with the exception of Cu and Co, exceed those from fluvial run-off by factors which range from 9.6 for Pb to 1.6 for Cr.  相似文献   

6.
The study of aerosols and rainwater presented here demonstrates that episodic atmospheric deposition events associated with southeasterly flow are quantitatively significant for large areas of the North Atlantic Ocean. This paper considers aluminium and manganese, with predominantly crustal sources, and lead and zinc, which are mobilised into the atmosphere primarily through anthropogenic activity. High levels of all trace metals are associated with southeasterly flow from Europe as the air passes over heavily populated and industrialised regions before reaching the northeast Atlantic Ocean. Fluxes calculated using the 1% HNO3 acid soluble metal concentration show that, although the climatological norm for this area is westerly flow, short-lived southeasterly transport events dominate the input of trace metals to this ocean region. This material may be toxic to phytoplankton or may be represent a new source of nutrients to the biological community. A significant decrease in atmospheric lead levels in polluted air is seen between June 1996 and May 1997, reflecting the decrease in use of leaded fuels in Europe. Comparing atmospheric flux values to sediment trap metal fluxes shows that the atmosphere represents the dominant source of zinc to the deep ocean, whereas an additional, non-atmospheric, manganese source this required, perhaps from mobilisation of sedimentary material from the continental shelf or long range advection of manganese rich Saharan material.  相似文献   

7.
The thermal phase transformation of the iron-manganese phase of the Pacific Ocean manganese nodules were studied by the differential thermal and X-ray diffraction methods. X-ray powder patterns of the heated samples at the temperature of 600°C to 1000°C show the occurrence of hematite, bixbyite and cubic and tetragonal (Fe, Mn)3O4. Bixbyite produced by the heat treatment of the iron-manganese phase gives an abnormal X-ray pattern in comparison with the standard sample of bixbyite. Cubic (Fe, Mn)3O4 is produced not only by the reaction of bixbyite with hematite over 900°C, but also at the lower temperature, such as 600°C. While, tetragonal (Fe, Mn)3O4 is a reaction product of cubic (Fe, Mn)3O4 with bixbyite over 900°C in the case of manganese rich nodules. The species and quantities of the products after the heat treatment are assumed to be mostly influenced by the relative contents of iron and manganese in the manganese nodule.  相似文献   

8.
大气气溶胶中铁(Fe)和磷(P)溶解度决定了其沉降入海后对海洋初级生产及固碳能力的影响。本文分析了2017—2018年冬季在青岛采集的PM2.5样品中总态、溶解态Fe(Total Fe,TFe;Soluble Fe,SFe)和总态、溶解态P(Total P,TP;Soluble P,SP)浓度,讨论了雾、雾霾、霾和晴天对Fe和P浓度及溶解度的影响。平均而言,TFe浓度在雾天和雾霾天显著低于晴天,霾天则与晴天基本相当;SFe在雾天和雾霾天显著高于晴天,霾天也高于晴天,但二者无显著差异。Fe溶解度在雾天时最高,为16.8%,其次是雾霾天,平均为8.9%,霾天和晴天基本相当,为3.5%左右。TP与TFe和SP与SFe具有显著相关关系,其浓度变化趋势一致,但不同天气下P浓度的差异明显小于Fe。P溶解度在雾天和雾霾天约为80%,霾天时为45%,均显著高于晴天时的27%。PM2.5中Fe和P主要来自地壳源的贡献,未受人为活动影响时,Fe、P溶解度分别为1.5%~2%和16%~18%。大气酸化作用和相对湿度(Relative humidity,RH)的协同作用是不同天气条件下Fe、P溶解度产生差异的主要机制。霾天时气溶胶Fe、P溶解度明显低于雾霾天,其原因是霾天时低于60%的RH限制了大气酸化作用对溶解度的影响。  相似文献   

9.
We report results from the first deployment of a buoy-mounted aerosol sampler on the Bermuda Testbed Mooring (BTM) in the Sargasso Sea, in which a time-series of 21 aerosol samples were collected over the period May 5–September 29, 2004. These aerosol samples were analyzed for iron and soluble sodium (as a proxy for sea salt). Also analyzed was a time-series of 22 aerosol samples collected over the same period at the Tudor Hill atmospheric sampling tower on Bermuda. The buoy sampler worked as intended and successfully collected a time-series of aerosol samples, thus demonstrating that moored buoys can be used as oceanic observatories to provide information on the temporal (weekly, monthly and seasonal) variability in the concentration of aerosol iron (and other trace elements) over the surface ocean. The magnitude and time variation of aerosol Fe concentrations calculated from the BTM buoy samples are in close agreement with the corresponding aerosol Fe record from the Tudor Hill tower, which is located approximately 80 km northwest of the mooring site. Both the BTM and Tudor Hill samples record periods of high aerosol iron loadings in late June and late July 2004, reflecting the transport of soil dust from North Africa, with the highest concentration of aerosol iron at the BTM site (0.83 μg m−3) measured in late June. Concentrations of sea-salt aerosol calculated from the BTM samples are comparable to values measured over the Sargasso Sea and for samples collected at the Tudor Hill tower. Sea-salt aerosols do not appear to impede the collection of mineral aerosols by the buoy-mounted sampler.  相似文献   

10.
Using objectively analyzed seasonal fields of dissolved oxygen content, percent oxygen saturation, and apparent oxygen utilization (AOU), we describe the large-scale seasonal variability of oxygen for the Atlantic and Pacific Oceans in the upper 400 m. The winter minus summer basin zonal averages of AOU reveal a two-layer feature in both the Atlantic and the Pacific, for both hemispheres. Biological activity and seasonal stratification in the summer give the upper 50–75 m of the water column in each basin a lower AOU in summer than winter. Greater mixing of upper ocean waters in winter gives the 75–400 m layer lower AOU values in that season. The basin integral seasonal volumes of oxygen for both the North Atlantic and the North Pacific mirror what is occurring in the atmosphere, indicating that there is a seasonal flux of oxygen across the air–sea interface. Winter total O2 volume in the ocean is above the annual mean; the summer volume is below. Larger seasonal differences in the total O2 content are observed in the North Atlantic Ocean than the North Pacific Ocean. A seasonal net outgassing (SNO) of 8.3×1014 moles O2 is calculated from basin means, which is 25% higher than previous results.  相似文献   

11.
The factors controlling the distributions of the trace metals Al, Co, Ni, Cu and Pb in a series of 25 individual rain water samples collected at Cap Ferrat, a site on the Western Mediterranean coast, are interpreted in relation to aerosols taken simultaneously at the same site. The trace metal chemistry and pH of the rain waters are constrained by the scavenged aerosols, which are composed of a mixture of urban-dominated (European) and crust-dominated (Saharan) components. Thus, the pH values of the rain waters, which range between 3.95 to 6.77, reflect the type of aerosol scavenged from the air; urban-dominated aerosol components giving rise to acidic rains, and crust-dominated aerosol resulting in neutral to basic rains. The average solubilities of the trace metals in the rain waters increase in the order Al (17%), Co (36%), Ni (53%), Pb (65%) and Cu (76%). The paniculate ↔ dissolved speciation of the non-crust-dominated metals Cu and Pb varies with pH, being more soluble at lower pH values, and exhibits the classical pH ‘adsorption edge’. However, the pH of rain can vary during an individual rain event in response to the sequential scavenging of crust-dominated and urban-dominated aerosol components. As a result, the solubility of non-crust-dominated trace metals, such as Pb, can also vary sequentially during an individual rain event; the maximum solubility being related to a ‘dip’ in pH associated with the scavenging of urban-rich aerosol components, followed by a return to the initial pH as the pH-influencing components are exhausted. Data from the present study therefore indicate that the pH-controlled trace metal solubility relationship reported for individual rain events can also occur sequentially in the same event. The particulate material in the rain waters does not contain the relatively high concentrations of Ni, Cu and Pb found in the parent aerosols, and its composition approaches that of crust-dominated aerosols transported to the Mediterranean. Data from the present study, together with those for other Western European coastal locations, indicate that there is a Pb-Cu fractionation between aerosols and rainwaters which results in a significantly greater fraction of the aerosol Pb, relative to Cu, escaping precipitation scavenging in the coastal zone and so becoming available for long-range atmospheric transport.  相似文献   

12.
This paper reports the initial results of a study of groundwater and coastal waters of southern Brazil adjacent to a 240 km barrier spit separating the Patos Lagoon, the largest coastal lagoon in South America, from the South Atlantic Ocean. The objective of this research is to assess the chemical alteration of freshwater and freshwater–seawater mixtures advecting through coastal permeable sands, and the influence of the submarine discharge of these fluids (SGD) on the chemistry of coastal waters. Here we focus on dissolved iron in this system and use radium isotopic tracers to quantify SGD and cross-shelf fluxes. Iron concentrations in groundwaters vary between 0.6 and 180 μM. The influence of the submarine discharge of these fluids into the surf zone produces dissolved Fe concentrations as high as several micromolar in coastal surface waters. The offshore gradient of dissolved Fe, coupled with results for Ra isotopes, is used to quantify the SGD flux of dissolved Fe from this coastline. We estimate the SGD flux to be 2 × 106 mol day− 1 and the cross-shelf flux to be 3.2 × 105 mol day− 1. This latter flux is equal to about 10% of the soluble atmospheric Fe flux to the entire South Atlantic Ocean. We speculate on the importance of this previously unrecognized iron input to regional ocean production and on the potential significance of this source to understanding variations in glacial–interglacial ocean production.  相似文献   

13.
In September 1993 (M26) and June/July 1996 (M36), a total of 239 surface samples (7 m depth) were collected on two transects across the open Atlantic Ocean (224 samples) and northwest European shelf edge area. We present an overview of the horizontal variability of dissolved Cd, Co, Zn, and Pb in between the northwest and northeast Atlantic Ocean in relation to salinity and the nutrients. Our data show a preferential incorporation of Cd relative to P in the particulate material of the surface ocean when related to previously published parallel measurements on suspended particulate matter from the same cruise. There is a good agreement with results recently estimated from a model by Elderfield and Rickaby (Nature 405 (2000) 305), who predict for the North Atlantic Ocean a best fit for αCd/P=[Cd/P]POM/[Cd/P]SW of 2.5, whereas the approach of our transect shows a αCd/P value of 2.6. The Co concentrations of our transects varied from <5 to 131 pmol kg−1, with the lowest values in the subtropical gyre. There were pronounced elevations in the low-salinity ranges of the northwest Atlantic and towards the European shelf. The Co data are decoupled from the Mn distribution and support the hypothesis of marginal inputs as the dominant source. Zinc varied from a minimum of <0.07 nmol kg−1 to a maximum of 1.2 and 4.8 nmol kg−1 in regions influenced by Labrador shelf or European coastal waters, respectively. In subtropical and northeast Atlantic waters, the average Zn concentration was 0.16 nmol kg−1. Zinc concentrations at nearly three quarters of the stations between 40°N and 60°N were <0.1 nmol kg−1. This suggests that biological factors control Zn concentrations in large areas of the North Atlantic surface waters. The Pb data indicated that significant differences in concentration between the northwest and northeast Atlantic surface waters presently (1996) do not exist for this metal. The transects in 1993 and 1996 exhibited Pb concentrations in the northeast Atlantic surface waters of 30 to 40 pmol kg−1, about a fifth to a quarter of the concentrations observed in 1981. This decline is supported by our particle flux measurements in deep waters of the same region.  相似文献   

14.
Aerosol (soluble and total) iron and water-column dissolved (DFe, < 0.2 μm) and total dissolvable (TDFe, unfiltered) iron concentrations were determined in the Canary Basin and along a transect towards the Strait of Gibraltar, in order to sample across the Saharan dust plume. Cumulative dust deposition fluxes estimated from direct aerosol sampling during our one-month cruise are representative of the estimated deposition fluxes based on near surface water dissolved aluminium concentrations measured on board. Iron inventories in near surface waters combined with flux estimates confirmed the relatively short residence time of DFe in waters influenced by the Saharan dust plume (6–14 months). Enhanced near surface water concentrations of DFe (5.90–6.99 nM) were observed at the Strait of Gibraltar mainly due to inputs from metal-rich rivers. In the Canary Basin and the transect towards Gibraltar, DFe concentrations (0.07–0.76 nM) were typical of concentrations observed in the surface North Atlantic Waters, with the highest concentrations associated with higher atmospheric inputs in the Canary Basin. Depth profiles showed that DFe and TDFe were influenced by atmospheric inputs in this area with an accumulation of aeolian Fe in the surface waters. The sub-surface minimum of both DFe and TDFe suggests that a simple partitioning between dissolved and particulate Fe is not obvious there and that export may occur for both phases. At depths of around 1000–1300 m, both regeneration and Meddies may explain the observed maximum. Our data suggest that, in deep waters, higher particle concentrations likely due to dust storms may increase the scavenging flux and thus decrease DFe concentrations in deep waters.  相似文献   

15.
We discuss nitrous oxide (N2O) and methane (CH4) distributions in 49 vertical profiles covering the upper ∼300 m of the water column along two ∼13,500 km transects between ∼50°N and ∼52°S during the Atlantic Meridional Transect (AMT) programme (AMT cruises 12 and 13). Vertical N2O profiles were amenable to analysis on the basis of common features coincident with Longhurst provinces. In contrast, CH4 showed no such pattern. The most striking feature of the latitudinal depth distributions was a well-defined “plume” of exceptionally high N2O concentrations coincident with very low levels of CH4, located between ∼23.5°N and ∼23.5°S; this feature reflects the upwelling of deep waters containing N2O derived from nitrification, as identified by an analysis of N2O, apparent oxygen utilization (AOU) and NO3, and presumably depleted in CH4 by bacterial oxidation. Sea-to-air emissions fluxes for a region equivalent to ∼42% of the Atlantic Ocean surface area were in the range 0.40–0.68 Tg N2O yr−1 and 0.81–1.43 Tg CH4 yr−1. Based on contemporary estimates of the global ocean source strengths of atmospheric N2O and CH4, the Atlantic Ocean could account for ∼6–15% and 4–13%, respectively, of these source totals. Given that the Atlantic Ocean accounts for around 20% of the global ocean surface, on unit area basis it appears that the Atlantic may be a slightly weaker source of atmospheric N2O than other ocean regions but it could make a somewhat larger contribution to marine-derived atmospheric CH4 than previously thought.  相似文献   

16.
Background concentrations of Fe, Mn, Cu, Zn, Pb, Cd, and Ni were calculated for thalli of abundant algae of Fucus, Silvetia, Sargassum, Cystoseira spp. from the northwest Sea of Japan during 1987–2008. As the upper threshold levels of metal background concentrations, the median values plus double medians of absolute deviations from the medians were used (Me + 2MAD). The lower threshold level of the background concentration equal to the physiological need for an element is the median of 15% minimum values in the sampling minus the double median of absolute deviations from the median (Me15–2MAD15). The range of Me15 ± 2MAD15 is considered the natural background range of concentrations.  相似文献   

17.
As a result of ubiquitous excretion by micro-organisms, extracellular polymeric substances are reported in high concentrations in marine systems. The majority of this material is exopolysaccharide (EPS). Despite previous studies showing that EPS can affect carbon as well as trace metal cycling, little is known about the effect on Fe – a critical nutrient limiting primary productivity in up to 40% of the ocean. Here, we have characterised an EPS purified from bacteria isolated from the pelagic Southern Ocean (Pseudoalteromonas sp.) and investigated its role in Fe chemical speciation, solubility, as well as bioavailability for two keystone Southern Ocean phytoplankton strains. This EPS has an average molecular weight of 4.6 MDa, exhibiting mainly –OH, COO– and –NH2 functional groups. An asymmetrical flow field-flow fractionation coupled online with UV-spectrophotometer, differential refractive index, and multiangle laser light scattering (aFlFFF-UV-DRI-MALS) demonstrates that this EPS is polydisperse with three, not well resolved, size populations having molar masses in the range from 0.57 to 15.8 MDa. Fe was exclusively associated with the medium size fraction of this EPS and was the most abundant trace metal with 2.2 nM Fe per nM EPS. Only a third of this Fe was chemically labile, and the strength of Fe-EPS complexes increased with equilibration time. 1 nM EPS is efficient to retain Fe in solution, mainly in the colloidal phase (0.02–0.2 μm). Fe bound to the EPS was highly bioavailable (25% as much as for inorganic Fe). Due to combined effect of EPS on Fe solubility and bioavailability, it can increase the residence time of bioavailable Fe in the euphotic zone, therefore possibly sustaining and controlling primary productivity in sensitive oceanic regions, such as the Southern Ocean.  相似文献   

18.
The impacts of dust loaded, Saharan Air Layer (SAL) during the life cycle of African Easterly Waves (AEWs) is a many-faceted scientific problem. It entails possible radiative effects of dust aerosols, impacts of dust on cloud physics, and the cloud nuclei of condensation, advective effects, that is, intrusions of dry dusty air versus humid air into the interior of storms. This paper addresses several such AEWs of the eastern Atlantic Ocean, where we have made use of special aircraft reconnaissance data sets that include wind and humidity profiles in the vertical. Using what are called adaptive observational strategies within a mesoscale model, we show the impacts of adding such observations in the analysis and in short-range forecasts of several AEWs. We do not have the direct and indirect effects of aerosols, but we do include the advective component. Our results show that the inclusion of humidity profiling distinguishes between developing versus nondeveloping AEWs from the use of these additional data sets via the adaptive observational strategies.  相似文献   

19.
An iron enrichment experiment, EisenEx, was performed in the Atlantic sector of the Southern Ocean during the Antarctic spring of 2000. Deck incubations of open ocean water were performed to investigate the influence of ultraviolet B (UVB: 280–315 nm) and ultraviolet A (UVA: 315–400 nm) on the speciation of iron in seawater, using an addition of the radioisotopes 59Fe(III) (1.25 nM) or 55Fe(III) (0.5 nM). Seawater was sampled inside and outside the iron-enriched region. The radioisotopic Fe(II) concentration was monitored during daylight under three different light conditions: the full solar spectrum (total), total minus UVB, and total minus UVB+UVA. A distinct diel cycle was observed with a clear distinction between the three different light regimes. A clear linear relationship was found for the concentration of radioisotopic Fe(II) versus irradiance. UVB produced most of the Fe(II) followed by UVA and visible light (VIS: 400–700 nm), respectively. UVB produced 4.89 and 0.69 pM m2 W−1 radioisotopic Fe(II) followed by UVA with 0.33 and 0.10 pM m2 W−1 radioisotopic Fe(II) and VIS with 0.04 and 0.03 pM m2 W−1 radioisotopic Fe(II).  相似文献   

20.
We examined metal (Al, V, Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb) and particulate organic carbon (OC) concentrations of the marine vertical export flux at the DYFAMED time-series station in the Northwestern Mediterranean Sea. We present here the first data set of natural and anthropogenic metals from sediment trap moorings deployed at 1000 m-depth between 2003 and 2007 at the DYFAMED site. A highly significant correlation was observed between most metal concentrations, whatever the nature and emission source of the metal. Cu, Zn and Cd exhibit different behaviors, presumably due to their high solubility and complexation with organic ligands. The observed difference of atmospheric and marine fluxes in terms of temporal variability and elemental concentration suggests that dense water convection and primary production and not atmospheric deposition control the marine vertical export flux. This argument is strengthened by the fact that significant Saharan dust events did not result in concomitant marine vertical export fluxes nor did they generate significant changes in metal concentrations of trapped particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号