首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
The sources and distributions of terrigenous organic matter (OM) were investigated in a small tropical estuary in the Hainan Island, South China. Plants, suspended particulate matter (SPM), and surface sediments samples in the estuary and coast were collected. Bulk properties [organic carbon (OC%), total nitrogen (TN%), stable carbon isotope (δ13C) and grain size] and lignin phenol concentrations were measured. OC% of mangrove plants was (43.4 ± 2.1)%, which is similar to the values reported for mangrove plants in other regions. OC% of sediment samples ranged from 0.07% to 1.42%, and they were related to the sediment texture. Lignin phenols in the sediment ranged from 5.16 mg/100 mg OC in the uppermost station to 0.51mg/100mg OC in the coast. The molar ratio of organic carbon to total nitrogen (C/N) (~7) and δ 13 C (~-31.1×10-3 ) of riverine SPM revealed that the major OM sources of riverine SPM were aquatic OM (phytoplankton and/or bacteria). Moreover, the lower lignin concentration (Λ8) and higher (Ad/Al)v of lignin phenols suggest that terrestrial OM in riverine SPM were mainly from soil. Furthermore, C/N ratio, δ13C and lignin phenols reveal that mangrove plants were the predominant OM sources of mangrove surface sediment. Based on the δ13C and lignin phenols, it can be concluded that the major OM sources in estuarine and coastal surface sediments were marine phytoplankton, riverine SPM and mangrove surface sediment. In addition, the higher (Ad/Al)v of lignin phenols in those coastal sediments indicate that seagrass might be a potential OM source in coastal sediments, however, the lower (Ad/Al)v in the estuarine sediments in turn suggests that seagrass could not be transported to the mangrove fringed region. A three-end-member model which is based on lignin concentrations and δ13C was applied to evaluate the contribution of mangroves to the organic matter preserved in the surface sediments. Around the mangrove fringed region, mangrove could contribute more than 50% to the sedimentary OM, and this value is much higher than riverine OM. Nevertheless, mangrove OM could not be efficiently transported to the coastal region. Our study suggests that mangrove forest is an important OM source in this small estuary.  相似文献   

2.
Nanxiaohong and Nangang main south channel are chosen as the typical flood and ebb channels. Hydrodynamics analysis based on field hydrological and sediment data is conducted with Gao-Collins model to analyse sediment transport trends. Also, the grain size distribution analysis of the bottom sediment sampled in Sep. 2001 is used as the base of the analysis. The result shows that the sediment in Nanxiaohong is from the rive mouth area. The sediment transports upwards with the flood flow which is stronger than the ebb flow, i.e., in the direction of SE-WN. The sediment in main south channel comes from upward. They transport downwards with the ebb flow. which is stronger than the flood flow, i.e., in the direction of WN-SE. The directions, sources and mechanism of sediment transport are identified according to comprehensive analyses of the observed data on hydrodynamics and sediment.  相似文献   

3.
Distributions and sources of total organic carbon (TOC)in seabed sediments and their implications for hydrodynamics are analyzed, in the turbidity maximum of the Changjiang Estuary. Ecology ecoenvironmental effects of estuary water on the continuously increasing terrigenous organic carbon from the Changjiang River are also explored through variations of organic carbon content and water quality indicators. Results show that, hydrodynamics exert important influences on distributions of organic carbon in the tur- bidity maximum of Changjiang Estuary. For their redistribution effect of terrigenous organic carbon within the moving layer in the whole region, variations from land to sea are not indicated by surficial and vertical average values of TOC and total nitrogen (TN) contents in core sediment, as well as organic stable carbon isotopes in surface sediments. However, on the long-time scale, the trend of terrigenous organic carbon decreasing from land to sea is still displayed by variations of stable carbon isotopic average values becoming heavier from land to sea. Previous studies have shown that high content of Chl a cannot appear in the Changjiang Estuary in despite of adequate nourishment supply, because photosynthesis of phytoplankton is constrained by high suspended sediment concentration(SSC). However, an area with a high content of Chl a occurs, which may be caused by resuspended benthic algae with bottom fine grain-size sediments. Tremendous pressures are imposed on the environment of Changjiang Estuary, because of uhrophication trends and special hydrodynamics. Phytoplankton bloom area tends to extend from the outer sea to the mouth of Changjiang River.  相似文献   

4.
Feng  Zhi-yong  Tan  Guang-ming  Xia  Jun-qiang 《中国海洋工程》2019,33(2):207-218
Sediment transport capacity is a fundamental parameter in sediment transport theory and its accurate calculation is important from both theoretical and engineering viewpoints. The capacity of sediment transport has been studied extensively by many researchers in the last decades. Nevertheless, the underlying mechanism behind sediment transport capacity in estuaries remains poorly understood. The current study aims to explore the impact of the river–tide interaction on sediment transport and establish a formula of sediment transport capacity under the river–tide interaction. The impact of the river–tide interaction on the hydrodynamics and sediment dynamics in the Changjiang Estuary was analyzed, a practical method for describing the variation in tide-runoff ratio was established,and a formula of sediment transport capacity considering the impact of river–tide interaction was proposed by introducing the tide-runoff ratio. The new method bridged the gap between two well-known sediment transport capacity methods by considering the variation in the index a for the gravitational term and overcomes the drawback of distinguishing flood/dry season or spring/ebb tide in the calculation of estuarine sediment transport. A large amount of flow and sediment data obtained from the Changjiang Estuary were collected to verify the proposed formula. The effect of salt-fresh water mixture and the morphological evolution on sediment transport capacity of the Changjiang Estuary were discussed.  相似文献   

5.
Particulate samples were collected from the Changjiang river system during a flood period, in May 1997, and POC, stable isotope and lipids associated with particles were examined. Results showed the decrease (0.84% ~ 1.88%) of organic carbon content from the upper reaches to the estuary.δ13C values of particulate organic carbon was in the range of -24.9×10-3 to -26.6×10-3, which were close to the isotopic signature of continental C3 vegetation. Total particulate n-alkanes concentrations varied from 1.4 to 10.1μg/dm3,or from 23.7 to 107μg/g of total suspended matter. Fatty acids were present in all the samples, from 1.4 to 5.4μg/dm3, with saturated and unsaturated straight-chain and branched compounds in the carbon number range from C12 to C30. Both δ13C and the ratio of carbon content to nitrogen content indicate the predominance of terrestrial inputs (soil organic matter) among the particles. The biomarker approach has been used to identify the relative portion of terrigenous and autochthonous fraction in the particulate samples. The distribution of fatty acids suggests a striking phytoplanktonic and microbial signal in most particle samples. The terrestrial alkanes are used to estimate the contribution of terrestrial inputs along the mainstream.  相似文献   

6.
红树林海岸的沉积物输运和碳沉降特征   总被引:1,自引:0,他引:1  
Mangroves play an important role in sequestering carbon and trapping sediments. However, the effectiveness of such functions is unclear due to the restriction of knowledge on the sedimentation process across the vegetation boundaries. To detect the effects of mangrove forests on sediment transportation and organic carbon sequestration, the granulometric and organic carbon characteristics of mangrove sediments were investigated from three vegetation zones of four typical mangrove habitats on the Leizhou Peninsula coast. Based on our results, sediment transport was often "environmentally sensitive" to the vegetation friction. A transition of the sediment transport mode from the mudflat zone to the interior/fringe zone was often detected from the cumulative frequency curve. The vegetation cover also assists the trapping of material, resulting in a significantly higher concentration of organic carbon in the interior surface sediments. However, the graphic parameters of core sediments reflected a highly temporal variability due to the sedimentation process at different locations. The sediment texture ranges widely from sand to mud, although the sedimentary environments are restricted within the same energy level along the fluvial-marine transition zone. Based on the PCA results, the large variation was mainly attributed to either the mean grain size features or the organic carbon features. A high correlation between the depth and δ13C value also indicated an increasing storage of mangrove-derived organic carbon with time.  相似文献   

7.
Naturally existing stable carbon and nitrogen isotopes are important in the study of sedimentary organic matter sources. To identify the sources of sedimentary organic matter in Sanggou Bay and its adjacent areas, which is characterized by high-density shellfish and seaweed aquaculture, the grain size, organic carbon(OC), total nitrogen(TN), carbon and nitrogen isotopic composition(δ13C and δ15N) of organic matter in the surface sediment were determined. The results showed that, in August, sedimentary OC and TN ranged from 0.17% to 0.76% and 0.04% to 0.14%, respectively. In November, OC and TN ranged from 0.23% to 0.87% and 0.05% to 0.14%, respectively. There was a significant positive correlation between OC and TN(R=0.98, P0.0001), indicating that OC and TN were homologous. In August, the δ13C and δ15N of organic matter varied from-23.06‰ to-21.59‰ and 5.10‰ to 6.31‰, respectively. In November, δ13C and δ15N ranged from-22.87‰ to-21.34‰ and 5.13‰ to 7.31‰, respectively. This study found that the major sources of sedimentary organic matter were marine shellfish biodeposition, seaweed farming, and soil organic matter. Using a three-end-member mixed model, we estimated that the dominant source of sedimentary organic matter was shellfish biodeposition, with an average contribution rate of 65.53% in August and 43.00% in November. Thus, shellfish farming had a significant influence on the coastal carbon cycle.  相似文献   

8.
Nonylphenol(NP) and bisphenol A(BPA) are endocrine disruptors causing harmful effects including feminization and carcinogenesis to various organisms,and consequently,their contamination in natural environment has received wide concerns.This study reports the distribution characteristics of NP and BPA in surface sediments and their deposition history based on a dated sediment core in the Changjiang River(Yangtze River) Estuary and its adjacent East China Sea.The contents of NP and BPA in surface sediments ranged from 1.56-35.8 and 0.72-13.2 ng/g(dry mass),respectively,with high values recorded in the two mud zones,the Changjiang River Estuarine Mud Zone and the Zhejiang Coastal Mud Zone.High values in the Zhejiang Coastal Mud Zone suggest the possibility of long distance transport of both contaminants through the Changjiang riverine plume.The contents were not correlated with the distance from the pollution source,indicating other factors including particle deposition rate and sediment grain size obviously affecting the distribution pattern.NP was also detected in a sediment core at layers deposited from the year of 1971 to 2001 with contents of up to 20.9 ng/g(dry mass).The deposition fluxes of NP varied from 0.68 to 17.9 ng/(cm2 · a) with peaks and valleys reflecting the traces of economic development history in China during the previous three decades.BPA was detected at sediment layers deposited from 1973 to 2001 with contents of up to 3.66 ng/g.The fluxes of BPA varied from 0.62 to 3.13 ng/(cm2 · a) showing a similar pattern as NP.The contents of NP and BPA also indicated potential risks on benthic organisms in the study area.  相似文献   

9.
Ecological research has been made for quite a long period in some marine-derived saline lakes in the Vest-fold Hills, Antarctica. The results show distinct succession of zooplankton community in those lakes. The change in community structure of zooplankton is related directly to environmental evolution in nature and the variation of lake conditions, such as physical and chemical factors as well. In the Burton Lake, there is a rather stable annual fluctuation in both temperature and salinity, and the community has probably been in the stage of climax succession. The Fletcher Lake is still undergoing a process by unregular tide flood from nearby bay, so that zooplankton community has been changing due to variance in temperature and salinity.  相似文献   

10.
Locating the quantitized natural sediment fingerprints is an important work for marine sediment dynamics study.The total of 146 sediment samples were collected from the Shelf of the East China Sea and five rivers,including Huanghe (Yellow),Changjiang (Yangtze),Qiantang,Ou and Min River.The sediment grain size and the contents of rare earth elements (REEs) were measured with laser particle size analyzer and ICP-MS technology.The results show that absolute REE content (ΣREE) and the concentration ratio of light REEs to heavy REEs (L/HREE) are different in the sediments among those rivers.There are higher REE contents in being less than 2 m and 2–31 μm fractions in the Changjiang Estuary surface sediments.The REE contents of bulk sediment are dominated by the corresponding values of those leading size-fractions.REE of sediment is higher close to the estuaries and declines seaward on the inner shelf of the East China Sea (ECS).The L/HREE ratio has a tendency of increase southward from 28 ? N.Hydrodynamic conditions plays a predominate role on spacial distributions of the surficial sediment’s REE parameters.In some situations,the currents tend to remove the coarser light grains from initial populations,as well as the deposit of the finer heavy mineral grains.In other situations,the currents will change the ratio of sediment constituents,such as ratio between silts and clays in the sediments.As a result,the various values of REE or L/HREE ratio in different bulk sediments are more affected by the change of size-fractions than source location.Under the long-term stable hydrodynamic environment,i.e.,the East China Sea Shelf,new sediment transport model based on the size and density gradation concept may help to understand the spatial distribution patterns of REE parameters.  相似文献   

11.
《Marine Chemistry》2007,103(1-2):172-184
Here we report on temporal changes in the concentration and composition of lignin phenols in high molecular weight (< 0.2 μm, > 1 kDa) dissolved organic matter (HMW DOM) collected from the lower Mississippi and Pearl Rivers (MR and PR) (USA). Monthly water samples were collected at a station in the lower reach in each river from August 2001 to August 2003. Significantly higher concentrations of lignin and Λ8 values (mg lignin phenols in 100 mg organic carbon) in the Pearl River than in the Mississippi River, reflected sporadic inputs of terrestrial DOM during rainstorm events from wetlands and forest soils. Larger seasonal variations in lignin concentration and composition in the Pearl River, compared to the Mississippi River, were attributed to shifts in organic matter sources from topsoil inputs during rainstorm events to groundwater inputs and in situ production during base flow in this small river. Conversely, lower Λ8 and vanillic acid to vanillin ratios [(Ad/Al)v] in the HMW DOM of the lower Mississippi River may be a result of a lower export rate of lignin from agricultural soils due to lower carbon storage in the expansive agricultural systems of the Mississippi River watershed, as well as dilution of phytoplankton DOM inputs. Large seasonal changes in lignin concentration and Λ8 (linked at times with river discharge), and minimal variability in the composition of lignin phenols, likely represented an integrated signal of soil-derived vascular inputs from the upstream drainage basin. If we are to better understand the controls of organic matter delivery to the coastal zone from both small and large rivers, sampling strategies need to be adjusted to account for the different scales of hydrologic response time and in situ processing associated with different residence times.  相似文献   

12.
《Marine Chemistry》2005,93(1):53-73
The provenance of organic matter in sediments from the Mackenzie River and Beaufort Shelf was investigated using the stable carbon and radiocarbon isotopic compositions of bulk organic matter and the stable carbon isotopic compositions of individual organic compounds, including lignin-derived phenols and lipid-derived fatty acids. Most river suspended sediments and shelf surface sediments contained organic carbon characterized by highly depleted Δ14C values that were consistent with average radiocarbon ages exceeding 7000 years. The stable carbon isotopic signatures of lignin phenols were uniformly depleted (−25≥δ13C≥−32‰), indicating the predominant contributions of C3 vascular plant sources. The isotopic compositions of C14 and C16 fatty acids exhibited important contrasts between the river (−36‰ to −40‰) and shelf (−25‰ to −29‰) sediments that were consistent with contributions from freshwater algae and/or vascular plants in the former and marine phytoplankton in the latter. Using 14C isotopic mass balance, the abundances of modern and ancient organic matter were quantitatively constrained. The fate of organic matter in the Beaufort Shelf was explored by normalizing these abundances to the specific surface area of sediments. Ancient organic carbon, which may include old pre-aged soil material as well as fossil bitumen or kerogen, accounted for the majority (∼70%) of the particulate organic matter exported by the Mackenzie River and deposited in surface sediments of the Beaufort Shelf. Modern organic carbon accounted for ∼30% in both river and shelf sediments, with significant contributions from vascular plant-derived materials in both river and shelf samples and from marine algae in the shelf sediments. Respiration (and/or leaching) of particle-bound marine organic matter dominates the carbon metabolism in the Mackenzie Delta/Beaufort Shelf region. However, land-derived pools, including modern carbon derived from vascular plants as well as ancient carbon also appeared to undergo a degree of post-depositional degradation prior to burial in the shelf. These novel source apportionments are reflected in an updated carbon budget for the study area.  相似文献   

13.
Sedimentary material from coastal and nearshore areas in the Mississippi Delta region are comprised of different organic carbon sources with diverse ages that require isotopic and elemental records for resolving the various sources of plant residues. Carbon isotopic ((13)C, (14)C) values were used to differentiate contributions from plants using the C3, C4, and/or CAM (crassulacean acid metabolism) carbon fixation pathways., and iodine concentrations indicated that wetland plant residues are a significant source of organic carbon in a sediment core from the Mississippi River delta region collected at a 60 m water depth. This sediment core had been extensively described in Oktay et al. [Oktay, S.D., Santschi, P.H., Moran, J.E., Sharma, P., 2000. The (129)Iodine Bomb Pulse Recorded in Mississippi River delta Sediments: Results from Isotopes of I, Pu, Cs, Pb, and C. Geochim. Cosmochim. Acta 64 (6), 989-996.] and significantly, includes unique features that had not previously been seen in the marine environment. These special features include a plutonium isotopic close-in fallout record that indicates a purely terrestrial source for these sediment particles and the elements associated with it, and a distinct iodine isotopic peak (as well as peaks for plutonium and cesium isotopes) that indicate little bioturbation in this core. Our carbon isotopic and iodine data can thus be compared to published records of changes in drainage basin land use, river hydrology, and hydrodynamic sorting of suspended particles to elucidate if these changes are reflected in nearshore sediments. This comparison suggests a significant contribution for organic carbon (OC) from C4 plants to these sediments during the 1950's to early 1960's. Relative older carbon isotopes, and episodically high iodine concentrations (up to 34 ppm) were observed during this time period that (1) indicate sediment deposition that is coincident with the times of major hydrological changes induced from dam and levee building in both the upper and lower reaches of the Mississippi River drainage basin, and (2) suggest episodic organic carbon deposition from wetland plant residues.  相似文献   

14.
Late-Quaternary sections (about 1 Ma) from the Congo deep-sea fan (ODP Leg 175, site 1075) were used to reconstruct the terrigenous organic matter supply to the easternmost equatorial Atlantic Ocean. Variations in quantity and quality of the riverine organic matter reflect the interaction between the paleoclimatic development within the continental catchment area and the paleoceanographic conditions in the Congo river plume. To characterize the delivery of organic matter from terrigenous and marine sources, we used elemental and bulk carbon isotopic analyses, Rock-Eval pyrolysis, lignin chemistry, and organic petrology. High-amplitude fluctuations occurring about every 15-25 ka reveal a mainly precessional control on organic sedimentation. Results from Rock-Eval pyrolysis indicate a mixed kerogen type III/II, as would be anticipated in front of a major river. Fluctuations in Tmax from Rock-Eval pyrolysis demonstrate pronounced cyclic changes in the delivery of low- and high-mature organic matter. Contribution of the low-mature organic fraction was strongest during warm climates supporting enhanced marine production offshore of the Congo. Organic petrological observations confirm the existence of abundant terrigenous plant tissues, both non-oxidized (vitrinite) and oxidized (inertinite). Charcoal-like organic matter (fusinite) is attributed to periods of increased bush fires in the continental hinterland, and implies more arid climatic conditions. Results from ratios of specific phenolic lignin components suggest that terrigenous organic matter in Late-Quaternary sections of site 1075 mainly derives from non-woody angiosperm tissue, i.e., grasses and leaves. Correlation between the amount of specific lignin phenols and the bulk '13Corg signature fosters the conclusion that an appreciable amount of the terrigenous organic fraction derives from C4 plant matter. This may cause an underestimation of the terrigenous proportion of bulk organic matter when assessments are based on bulk carbon isotopic signatures alone.  相似文献   

15.
《Marine Chemistry》2001,73(3-4):253-271
The influence of mangrove-fringed tropical estuaries on coastal carbon budgets has been widely recognised. However, a quantitative differentiation between riverine and mangrove-derived inputs to the dissolved (DOM) and microparticulate organic matter (POM) pool of these environments has been hitherto not possible. Based on lignin-derived phenols and stable carbon isotopes a chemical signature for mangrove, terrestrial and marine-derived organic matter was established for a mangrove estuary in North Brazil. A mixing model was applied to calculate the contribution of each of the three sources to the DOM and POM pool in the estuary throughout 18 tidal cycles in the course of one year. Best source assignment for POM was reached with the yield of lignin phenols and δ13C as paired indicators, while the origin of DOM was best identified by the yield of lignin phenols and the acid to aldehyde ratio of vanillyl phenols. Although only about 6% of the fluvial catchment area is covered by mangroves, their contribution to the estuarine DOM and POM pool generally exceeded several times the terrigenic input from the hinterland. This outwelling of mangrove-derived organic matter was enhanced during the rainy season. DOM and POM were exported from the mangrove to the estuary in similar proportions. Most mangrove-POM was rapidly removed from the water column, while mangrove-DOM behaved conservatively. In contrast, terrestrial DOM was almost entirely removed in the outer part of the estuary, which was accompanied by a concomitant increase in terrestrial POM. This seems to be the result of a geochemical barrier zone for this type of DOM in the estuary. Generally, a high proportion of mangrove-DOM was present in the outer part of the estuary, even at high tide. This indicates DOM outwelling from mangroves in adjacent bays or estuaries and points to similar driving forces controlling this process on a regional scale. Mangroves probably play a more important role than rivers for marine carbon budgets along the North Brazilian coast south of the Amazon estuary.  相似文献   

16.
In order to characterize the sources and fate of organic matter (OM) in the Pichavaram estuarine-mangrove ecosystem (east coast of India), stable isotope (δ13C and δ15N) ratios and molecular lignin analyses were conducted in plant litter, benthic algae, sediment, particulate matter and in a variety of benthic invertebrate species. The δ13C signature of plant litter ranges from −29.75‰ to −27.64‰ suggesting that mangrove trees follow the C3 photosynthetic pathway. Sedimentary δ13C signature (−28.92‰ to −25.34‰) demonstrates the greater influence of plant litter organic matter on sedimentary organic matter. Suspended particulate organic pool was influenced by terrestrial source and also seems to be influenced by the marine phytoplankton. Enriched signature of δ15N in surface sediments (4.66–8.01‰; avg. 6.69‰) suggesting the influence of anthropogenic nitrogen from agricultural fields and human settlements. Spatial chemical variability in availability of nitrogen and plant associated microbial interactions demonstrate variability in δ15N signature in mangrove plant litter. Two (lower and higher) trophic levels of invertebrates were identified with and observed >4‰ gradient in δ13C signal between these two trophic groups. The observed δ13C values suggest that the lower level invertebrates feed on phytoplankton and higher level organisms have a mixed source of diet, phytoplankton, sediment and particulate organic matter. Lignin phenol analyses explain that the benthic surface layer was almost free of lignin. The ratio between syringyl phenols to vanillyl phenols (S/V) is 1.14–1.32 (avg. 1.23) and cinnamyl phenols to vanillyl phenols (C/V) is 0.17–0.31 (avg. 0.24), demonstrate non-woody angiosperm tissues was the major sources of lignin to this ecosystem, while aldehyde to acid ratios (Ad/Al) describe diagenetic nature of sediment and is moderately to less degraded. A two-end-member mixing model indicate that the terrigenous OM was dominant in the estuarine zones, while in the mangrove zone terrigenous supply accounts for 60% and marine input accounts for 40%.  相似文献   

17.
对长江口泥质区24Z孔的沉积物柱状样进行了粒度和元素分析,根据沉积物的粒度特征可将岩芯从下到上分为3个阶段:A阶段(1931—1964年)粒度参数的波动较小,各层位平均粒度Φ在5.58~7.65;B阶段(1964—1983年)粒度参数波动范围比A阶段更小,整个阶段没有出现明显峰值,Φ在6.51~7.37;C阶段(1983—2003年)粒度参数波动范围明显增大,出现多个峰值,Φ在5.59~7.46。元素Zr和Rb质量比(mZr/mRb)的大小实际上反映了粗粒级矿物与黏土粒级矿物的相对含量的高低,24Z孔的沉积物中mZr/mRb波动范围在1.02~3.59,出现了多个明显的峰值。利用24Z孔沉积物平均粒度和mZr/mRb识别出多个突变层位,结合长江中下游洪水水文记录,发现突变层位年代与20世纪80年代后的水文洪水年份有着较好的对应,这可能与长江主泓的变化有关。对比突变层位与正常层位的粒度特征,突变层位沉积物的粒度频率曲线呈负偏态且峰高而尖,正常层位粒度频率曲线呈正偏态且峰低而宽,同时,概率累积曲线也指示突变层位沉积物在沉积过程中受到了更强的水动力作用。研究长江口泥质区南部24Z孔的沉积物粒度特征和对洪水事件的沉积响应,可以更好地了解长江洪水所携带的粗颗粒物质在长江口泥质区的分布范围,有助于重建长江流域古洪水从而更好的认识长江流域洪水发生的规律。  相似文献   

18.
三峡工程运行对洞庭湖与荆江三口关系的影响分析   总被引:1,自引:0,他引:1  
三峡水库于2003年6月1日正式开始蓄水,其防洪、发电、航运等综合效益日益明显。根据水文泥沙观测资料,采用BP(Back Propagation)神经网络、变差系数法、双累积曲线法等方法分析三峡工程的运行对洞庭湖与荆江三口关系的影响,结果表明:(1)从年际和年代际尺度上看,长江上游降水量减少和三峡工程建设等人类活动是影响洞庭湖水沙变异的主要因素;(2)长江中下游荆江三口分流分沙锐减,并呈现三口口门趋于淤积,藕池河和虎渡河逐渐走向衰亡;(3)从洞庭湖泥沙沉积量过程线来看,2003—2010年洞庭湖的累计泥沙淤积量仅为2301×104t,比多年平均值减少95.6%;(4)运用BP神经网络对洞庭湖出湖水量和沙量进行模拟,结果显示模拟精度满足洞庭湖出湖水沙预测的需要。  相似文献   

19.
Continental shelves play a major role as transition zone during transport of multiply-sourced organic matter into the deep sea. In order to obtain a comprehensive understanding of the origin and fractionation processes of organic matter at the NW Iberian margin, 40 surface sediment samples were analyzed for a structurally diverse range of lipid biomarkers, lignin phenols, grain size distribution, organic carbon content (TOC), its stable carbon isotopic composition (δ13CTOC), and the organic carbon to nitrogen ratio (TOC/TN). The biomarker inventory reflected a heterogeneous mixture of organic matter from various marine and terrestrial sources. Soil- and vascular plant-derived continental organic matter, indicated by lignin phenols and plant-derived triterpenoids, was primarily associated with the silt fraction and transported by river run-off. The spatial distribution patterns of higher plant-derived waxes, long-chain n-alkanes, n-alcohols, and n-fatty acids suggested distinct different transport mechanisms and/or sources. The branched tetraether index, a molecular proxy expressing the relative abundance of branched dialkyl tetraethers vs. crenarchaeol and considered to signal soil-derived organic matter, was not as sensitive as the other molecular indicators in detecting continental organic matter. Hydrodynamic sorting processes on the shelf resulted in a separation of different types of terrestrial organic matter; grass and leaf fragments and soil organic matter were preferentially transported offshore and deposited in areas of lower hydrodynamic energy. Algal lipid biomarker distributions indicated a complex community of marine plankton contributing to organic matter. Spatial and seasonal patterns of phytoplankton growth primarily controlled the distribution of algal organic matter components. The interplay of all of these processes controls production, distribution, and deposition of organic matter and results in three distinct provinces at the Galicia–Minho shelf: (I) fresh marine organic matter dominated the inner shelf region; (II) high inputs of terrestrial organic matter and high TOC content characterized the mid-shelf deposited mudbelt; (III) lower concentrations of relatively degraded organic matter with increased proportions of refractory terrestrial components dominated the outer shelf and continental slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号